AM205 HW0. Introduction

P1. Chebyshev polynomials

The Chebyshev polynomials $T_{k}(x)$ can be defined using the recursive relation

$$
T_{k}(x)=2 x T_{k-1}(x)-T_{k-2}(x)
$$

and $T_{0}(x)=1, T_{1}(x)=x$. Evaluate and plot the Chebyshev polynomial of degree 5 at 101 evenly spaced points in the interval $x \in[-1,1]$. Draw a 3D surface plot of the function $T_{3}(x) T_{5}(y)$ on a 101×101 grid in the domain $(x, y) \in[-1,1]^{2}$.

P2. Square root

Use the iteration

$$
x_{k+1}=\frac{1}{2}\left(x_{k}+\frac{a}{x_{k}}\right)
$$

to approximate \sqrt{a}. This is known as Heron's formula and it is equivalent to the NewtonRaphson method for the function $f(x)=x^{2}-a$. Choose an initial starting value of $x_{0}=a$ and iterate until $\left|x_{k+1}-x_{k}\right|<\epsilon$ for some tolerance ϵ. Determine the number of iterations required to compute $\sqrt{5}$ for the cases of $\epsilon=10^{-3}$ and $\epsilon=10^{-9}$.

P3. Finite differences

(a) Let $f(x)=\tan x$ and consider the finite-difference approximation

$$
f_{a}^{\prime}(x ; h)=\frac{f(x+h)-f(x-h)}{2 h}
$$

Make a $\log -\log$ plot of the relative error $E=\left|f^{\prime}(x)-f_{a}^{\prime}(x ; h)\right| /\left|f^{\prime}(x)\right|$ at $x=1$ as a function of h for $h=10^{-k}$, using $k=1,1.5, \ldots, 16$. Use linear regression to fit the relative error to the straight line

$$
\log E=\log C+q \log h
$$

for some constants C and q. Show that $q \approx 2$, meaning that the approximation is secondorder accurate.
(b) Repeat the analysis for the approximation

$$
f_{b}^{\prime}(x ; h)=\frac{-11 f(x)+18 f(x+h)-9 f(x+2 h)+2 f(x+3 h)}{6 h}
$$

and determine the rate of convergence q.

P4. Calculation of Pi

In the first lecture we discussed Archimedes' method of calculating π from perimeters of inscribed and superscribed regular polygons. Areas of the polygons can serve the same purpose. Consider a circle of unit radius. Let a_{n} and b_{n} be the areas of inscribed and superscribed regular polygons with 3×2^{n} sides, respectively.
(a) The case of $n=0$ therefore corresponds to inscribed and superscribed equilateral triangles. Use geometry to show that $a_{0}=\frac{3}{4} \sqrt{3}$ and $b_{0}=3 \sqrt{3}$.
(b) Show that

$$
\frac{2}{b_{n+1}}=\frac{1}{a_{n+1}}+\frac{1}{b_{n}}, \quad a_{n+1}^{2}=a_{n} b_{n}
$$

and write a program to evaluate $\left(a_{n}, b_{n}\right)$ for $n=0,1, \ldots, 40$. In addition, calculate $c_{n}=$ $\frac{1}{2}\left(a_{n}+b_{n}\right)$.
(c) Make a log-linear plot of the absolute errors $\left|a_{n}-\pi\right|$ and $\left|c_{n}-\pi\right|$ as a function of n. How fast do these two sequences converge to π ? Is there a difference in the convergence rate between a_{n} and c_{n} ?

