AM205 HW0. Introduction. Solution

The source code for this solution is available at
https://code.harvard.edu/AM205/public/tree/main/homework/hw0_intro/solution

P1. P1. Chebyshev polynomials

The program [p1_chebyshev. py] produces the following plot using the mplot3d toolkit from Matplotlib. The style is customized by definitions in file matplotlibrc automatically read from the working directory.

P2. P2. Square root

See solution code in [p2_sqrt.py].
Exact value with double precision: $\sqrt{5} \approx 2.23606797749978981$.
Computed approximations (correct digits are highlighted):

k	x_{k}	$\left\|x_{k+1}-x_{k}\right\|$
0	5	2
1	3	0.666666666666666519
2	2.33333333333333348	0.0952380952380953438
3	2.23809523809523814	0.00202634245187471862
4	2.23606889564336342	$9.18143385320036032 \mathrm{e}-07$
5	2.23606797749997810	$1.88293824976426549 \mathrm{e}-13$
6	2.23606797749978981	0

The number of iterations is 4 for $\epsilon=10^{-3}$ and 5 for $\epsilon=10^{-9}$.

P3. P3. Finite differences

(a), (b) The approximations are implemented in [p3_fd.py]. The log-log plot of the relative error is V-shaped since the rounding error dominates for values of $h<10^{-8}$. To analyze the accuracy of the finite difference approximations, the fitting range for the linear regression needs to be chosen in the region $h>10^{-8}$, where the truncation error dominates. Linear regression in the range $h \in\left[3.16 \cdot 10^{-4}, 3.16 \cdot 10^{-2}\right]$ results in
(a) $C_{a}=2.77, \quad q_{a}=2$
(b) $C_{b}=47.7, \quad q_{b}=3.07$
so the approximation (a) is second-order accurate and (b) is third-order accurate. Note that values of C_{a} and C_{b} may be sensitive to the fitting range.

In addition, [p3_fd_mpmath.py] implements the same approximations using the arbitrary precision library mpmath. The following plot is produced with a precision of 50 decimal places.

P4. P4. Calculation of Pi

(a) Consider a coordinate system with the origin at the center of the circle. The inscribed triangle has vertices

$$
x_{0}=(1,0), \quad x_{1}=\left(-\frac{1}{2}, \frac{\sqrt{3}}{2}\right), \quad x_{2}=\left(-\frac{1}{2},-\frac{\sqrt{3}}{2}\right)
$$

Its area can be calculated using the three-dimensional vector product,

$$
a_{0}=\frac{\left|\left(x_{1}-x_{0}\right) \times\left(x_{2}-x_{0}\right)\right|}{2}=\frac{\left|\left(-\frac{3}{2}, \frac{\sqrt{3}}{2}, 0\right) \times\left(-\frac{3}{2},-\frac{\sqrt{3}}{2}, 0\right)\right|}{2}=\frac{\left|\left(0,0, \frac{3 \sqrt{3}}{2}\right)\right|}{2}=\frac{3 \sqrt{3}}{4} .
$$

By similarity, the vertices of the superscribed triangle are obtained by scaling from the vertices of the inscribed triangle. The correct scaling factor is 2 , giving vertices

$$
\hat{x}_{0}=(2,0), \hat{x}_{1}=(-1, \sqrt{3}), \hat{x}_{2}=(-1,-\sqrt{3})
$$

since the edge between \hat{x}_{1} and \hat{x}_{2} must exactly touch the circle at $\left(\hat{x}_{1}+\hat{x}_{2}\right) / 2=(-1,0)$. Therefore, the area is scaled by 4 giving $b_{0}=4 a_{0}=3 \sqrt{3}$.
(b) Consider a regular inscribed polygon with $k=3 \times 2^{n}$ sides. It can be broken down into $2 k$ right triangles each with area $\frac{1}{2} \cos \frac{\pi}{k} \sin \frac{\pi}{k}$ and hence

$$
a_{n}=k \cos \frac{\pi}{k} \sin \frac{\pi}{k} .
$$

The corresponding superscribed polygon can be broken down into $2 k$ right triangles each with area $\frac{1}{2} \tan \frac{\pi}{k}$ and hence

$$
b_{n}=k \tan \frac{\pi}{k}
$$

These results agree with (a)

$$
a_{0}=3 \cos \frac{\pi}{3} \sin \frac{\pi}{3}=\frac{3 \sqrt{3}}{4} \quad \text { and } \quad b_{0}=3 \tan \frac{\pi}{3}=3 \sqrt{3} .
$$

Then

$$
\frac{2}{b_{n+1}}=\frac{1}{k \tan \frac{\pi}{2 k}}=\frac{1+\cos \frac{\pi}{k}}{k \sin \frac{\pi}{k}}=\frac{1}{k \sin \frac{\pi}{k}}+\frac{\cos \frac{\pi}{k}}{k \sin \frac{\pi}{k}}=\frac{1}{2 k \sin \frac{\pi}{2 k} \cos \frac{\pi}{2 k}}+\frac{1}{b_{n}}=\frac{1}{a_{n+1}}+\frac{1}{b_{n}}
$$

using the half-angle $\tan \frac{\theta}{2}=\frac{\sin \theta}{1+\cos \theta}$ and double angle $\sin 2 \theta=2 \sin \theta \cos \theta$ identities. Similarly,

$$
a_{n+1}^{2}=4 k^{2} \cos ^{2} \frac{\pi}{2 k} \sin ^{2} \frac{\pi}{2 k}=k^{2} \sin ^{2} \frac{\pi}{k}=k^{2} \tan \frac{\pi}{k} \sin \frac{\pi}{k} \cos \frac{\pi}{k}=a_{n} b_{n}
$$

(c) The program [p4_pi.py] calculates the values of a_{n} and c_{n} up to $n=40$ and estimates that

$$
\left|a_{n}-\pi\right| \approx 2.29 \cdot 4^{-n}
$$

Both a_{n} and c_{n} have the same convergence rate.

