
AM205 HW1. Data fitting

P1. Polynomial approximation of the gamma function [10 pts]

The gamma function is defined as

Γ(x) =
∫ ∞

0
tx−1e−t dt

and satisfies (n − 1)! = Γ(n) for integers n.
Note: In Python, the gamma function is available in the scipy.special module.

(a) [3 pts] Construct an approximation g(x) to the gamma function as the Lagrange
polynomial of the following points:

n 1 2 3 4 6
Γ(n) 1 1 2 6 120

Write the polynomial as g(x) = ∑4
k=0 gkxk. Report the values of the coefficients gk.

(b) [3 pts] Construct another approximation h(x) to the gamma function by first cal-
culating the fourth order polynomial p(x) that interpolates the points (n, log(Γ(n))) for
n = 1, 2, 3, 4, 6. Then define the approximation as h(x) = exp(p(x)). Report the values of
the coefficients of p(x).

(c) [2 pts] Plot values of Γ(x), g(x), and h(x) and the relative errors |Γ(x)− g(x)|/Γ(x)
and |Γ(x)− h(x)|/Γ(x) on the interval 1 ≤ x ≤ 6. Use a logarithmic scale for the error.

(d) [2 pts] Calculate the maximum relative error between Γ(x) and g(x) on the interval
1 ≤ x ≤ 6 by evaluating the functions on a uniform grid with 1001 points. Repeat this for
Γ(x) and h(x). Which of the two approximations is more accurate?

P2. Error bounds with Lagrange polynomials [15 pts]

(a) [3 pts] Let f (x) = e−4x + e3x. Write a program to calculate and plot the Lagrange
polynomial pn−1(x) of f (x) at the Chebyshev points xj = cos((2j − 1)π/2n) for j =
1, . . . , n. For n = 4, over the range [−1, 1], plot f (x) and Lagrange polynomial p3(x).

(b) [4 pts] Recall from the lectures that the infinity norm for a function g on [−1, 1] is
defined as ∥g∥∞ = maxx∈[−1,1] |g(x)|. Calculate ∥ f − p3∥∞ by sampling the function at
1001 equally-spaced points over [−1, 1].
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(c) [6 pts] Recall the interpolation error formula from the lectures,

f (x)− pn−1(x) =
f (n)(θ)

n!
(x − x1)(x − x2) . . . (x − xn)

for some θ ∈ [−1, 1]. Use this formula to derive an upper bound for ∥ f − pn−1∥∞ for any
positive integer n. Your bound should be a mathematical formula, and should not rely on
numerical sampling.

(d) [2 pts] Find a cubic polynomial p†
3 such that ∥ f − p†

3∥∞ < ∥ f − p3∥∞.

P3. Condition number of a matrix [8 pts]

For a 2 × 2 invertible matrix A, define the condition number to be κ(A) = ∥A∥ ∥A−1∥ as
discussed in the lectures. Assume that the matrix norm is defined using the Euclidean
vector norm.

(a) [2 pts] Find two 2 × 2 invertible matrices B and C such that κ(B + C) < κ(B) + κ(C).

(b) [2 pts] Find two 2 × 2 invertible matrices B and C such that κ(B + C) > κ(B) + κ(C).

(c) [4 pts] Suppose that Q is an orthogonal matrix, i.e. QT = Q−1, and α ∈ R. Find κ(QA)
in terms of κ(A) and Q. Find κ(αA) in terms of κ(A) and α.

P4. Periodic cubic splines [15 pts]

In the lectures we discussed the construction of cubic splines to interpolate between a
number of control points. We found that it was necessary to impose additional constraints
at the end points of the spline in order to have enough constraints to determine the cubic
spline uniquely. Here, we examine the construction of cubic splines on a periodic interval
t ∈ [0, 4), where t = 0 is equivalent to t = 4. Working in a periodic interval simplifies the
spline construction and requires no additional constraints.
Note: Do not use existing modules, such as scipy.interpolate, for constructing the
spline. However, you may use other modules for solving linear systems and numerical
integration (e.g. numpy.linalg.solve and scipy.integrate).

(a) [5 pts] Consider four points (t, x) = (0, 0), (1, 4), (2, 0), (3,−4). Construct a cubic
spline sx(t) that is piecewise cubic in the four intervals [0, 1), [1, 2), [2, 3), and [3, 4). At
t = 0, 1, 2, 3 the cubics should match the control points, giving eight constraints. At
t = 0, 1, 2, 3 the first and second derivatives should match, giving and additional eight
constraints and allowing sx(t) to be uniquely determined.
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(b) [1 pts] Plot sx(t) and 4 sin(tπ/2) on the interval [0, 4) and show that they are similar.

(c) [6 pts] Construct a second cubic spline sy(t) that goes through the four points (t, y) =
(0, 2), (1, 0), (2,−2), (3, 0). Plot sy(t) and 2 cos(tπ/2) on the interval 0 ≤ t < 4 to see how
similar they are.

(d) [3 pts] In the xy-plane, plot the parametric curve (sx(t), sy(t)) for t ∈ [0, 4). Calculate
the area enclosed by the parametric curve to at least five decimal places. Use the area to
estimate π from the relationship A = r1r2π where r1 = 2 and r2 = 4.

P5. Image reconstruction from low light [24 pts]

In the archive am205_hw1_data.zip, you will find a directory called p5_fragments that
contains several photo fragments of a scene with different objects taken from a bird feeder
station in the Netherlands. The filename of each image (e.g. 0258_frag0.png) consists of
two parts. The first part is a timestamp (hours and minutes). The second part denotes one
of the four fragments showing different objects. Images 0258, 0646, and 0704 were taken
in low light, while image 0927 was taken in regular light.

Figure 1: Full scene at time 0927 (left) and all extracted fragments (right).

The size of each image is 256 × 256 pixels. Each pixel in the image can be represented
as a vector p ∈ R3 containing three intensity values between 0 and 1 for the red, green,
and blue components. Assume that all pixels in fragments having the same timestamp
are indexed and Kall is the set of all possible indices, so that |Kall| = 4 · 2562. Let K0,
K1, K2, K3 ⊂ Kall denote the subsets of indices corresponding to fragments 0, 1, 2, and 3
respectively, so that |K0| = |K1| = |K2| = |K3| = 2562. Then, let pA

k , pB
k , pC

k , and pD
k be the

k-th pixel of images with timestamps 0258, 0646, 0704, and 0927 respectively.
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(a) [13 pts] Consider reconstructing the regular-light photo pD from the three low-light
photos pA, pB, and pC using the following model

pk = FApA
k + FBpB

k + FCpC
k + pconst, (1)

where FA, FB, and FC are 3 × 3 matrices and pconst ∈ R3. Find a least-squares fit for the
unknown FA, FB, FC, and pconst using pixels from fragments 0 and 1. Specifically, you
should minimize the error

SABC(K) =
1
|K| ∑

k∈K
∥FApA

k + FBpB
k + FCpC

k + pconst − pD
k ∥2

2

for K = K0 ∪ K1. Report the obtained values of FA, FB, FC, and pconst. Visualize the output
of the fitted model (1) for all four fragments together with the reference images 0927.
Some pixel intensities you obtain from (1) may lie outside the range between 0 and 1, in
which case you need to clip them, e.g. using numpy.clip. Calculate the error SABC for each
fragment, i.e. report values of SABC(K0), SABC(K1), SABC(K2), and SABC(K3).

(b) [8 pts] Repeat part (a) using only images 0646 as input. In this case, the model
simplifies to

pk = FBpB
k + pconst, (2)

and the fitting error takes the form

SB(K) =
1
|K| ∑

k∈K
∥FBpB

k + pconst − pD
k ∥2

2.

(c) [3 pts] Compare results from parts (a) and (b). Does using multiple light levels as
input improve the quality of the fit compared to using a single light level?

P6. Determining hidden chemical sources [20 pts]

Suppose that ρ(x, t) represents the concentration of a chemical diffusing in two-dimensional
space, where x = (x, y). The concentration satisfies the diffusion equation

∂ρ

∂t
=

∂2ρ

∂x2 +
∂2ρ

∂y2 . (3)

If a localized point source of chemical is introduced at the origin at t = 0, its concentration
satisfies

ρc(x, t) =
1

4πt
exp

(
− x2 + y2

4t

)
.

(a) [3 pts] Show by direct calculation that the concentration ρc satisfies (3).
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(b) [7 pts] Suppose that 49 point sources of chemicals are introduced at t = 0 with
different strengths, on a 7 × 7 regular lattice covering the coordinates x = −3,−2, . . . , 3
and y = −3,−2, . . . , 3. By linearity of (3) the concentration will satisfy

ρ(x, t) =
48

∑
k=0

λkρc(x − vk, t),

where vk is the k-th lattice site and λk is the strength of the chemical introduced at that
site. In the archive am205_hw1_data.zip, you will find a file p6_data.txt with many
measurements of ρ(x, t) at t = 4. The file contains three columns: position xi, position yi,
and concentration ρ(xi, 4) for i = 0, . . . , 199. By any means necessary, determine the
concentration strengths λk.

(c) [6 pts] Suppose that the measurements have some experimental error, so that the
measured values ρ̃i in the file are related to the true values ρi according to

ρ̃i = ρi + ei

where the ei are normally distributed with mean 0 and variance 10−8. Construct a hy-
pothetical sample of the true ρi, and repeat your procedure from part (b) to determine
the concentrations λk. Repeat this sampling procedure for at least 100 times, and use it
to measure the standard deviation in the λk at the lattice sites (0, 0), (1, 1), (2, 2), (3, 3).
Which of these has the largest standard deviation and why?

(d) [4 pts] You should find that the concentrations λk from part (b) take values in the
range between 0 and 32. Round each λk to the nearest integer and convert the integer to
its binary representation consisting of five bits. The bits encode monochrome images. To
recover the first image, take the most significant (fifth bit, even if zero) bit from the 5-bit
binary representation of all λk and draw them on a 7x7 grid. Repeating this for all bits will
give you five images. What message can you read from them?
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