
AM205 HW1. Data fitting. Solution

P1. Polynomial approximation of the gamma function

(a) We consider finding a polynomial g(x) = ∑4
k=0 pkxk that fits the data points (j, Γ(j)) for

j = 1, 2, 3, 4, 6. Since here are a small number of data points, we can use the Vandermonde
matrix to find the coefficients of the interpolating polynomial g(x) = ∑4

k=0 gkxk. The linear
system is 

1 1 1 1 1
1 2 4 8 16
1 3 9 27 81
1 4 16 64 256
1 6 36 216 1296




g0
g1
g2
g3
g4

 =


1
1
2
6

120

 (1)

The program gamma p1 gamma.py solves this system, and shows that the coefficients
are g0 = 17.8, g1 = −34.917, g2 = 24.458, g3 = −7.0833, g4 = 0.74167

(b) We now consider finding a polynomial p(x) = ∑4
k=0 pkxk that fits the transformed

data points (j, log(j)) for j = 1, 2, 3, 4, 6. The coefficients are given by
1 1 1 1 1
1 2 4 8 16
1 3 9 27 81
1 4 16 64 256
1 6 36 216 1296




p0
p1
p2
p3
p4

 =


log 1
log 1
log 2
log 6

log 120

 (2)

We get the coefficients as p0 = 1.1274, p1 = −1.8725, p2 = 0.848, p3 = −0.10902, p4 =
0.006107

(c) The plots of three functions and relative errors are as follows
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(d) Maximum relative error: 0.69894 for g(x), 0.027223 for h(x). The more accurate
approximation is h(x).

P2. Error bounds with Lagrange polynomials

(a) and (b) The following figure shows the Lagrange polynomial p3(x) over the true
function f(x) using a slightly modified version of the in-class code example. Running the
code, the infinity norm of the error is approximately 6.04238.
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(c) The difference between f(x) and and the interpolating polynomial pn−1(x) can be
expressed as

f (x)− pn−1(x) =
f (n)(θ)

n!

n

∏
i=1

(x − xi) (3)

where θ is a specific value within the interval from -1 to 1. To obtain a bound on ∥ f −
pn−1∥∞, we consider the magnitude of the terms on the right hand side. Since the xi are at
the roots of the n-th Chebyshev polynomial Tn(x), it follows that the product is a scalar
multiple of this polynomial

n

∏
i=1

(x − xi) = λTn(x) (4)

where λ is some scaling constant. The coefficient in front of xn on the left hand side is 1.
Using properties of Chebyshev polynomials, the coefficient of xn in Tn(x) is 2n−1. Hence
λ = 2−(n−1). The Chebyshev polynomials satisfy |Tn(x)| ≤ 1 for x ∈ [−1, 1] and hence∣∣∣ n

∏
i=1

(x − xi)
∣∣∣ ≤ 1

2n−1 (5)

for x ∈ [−1, 1].
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Now consider the n-th derivative of f , which is given by

f (n)(θ) = (−4)ne−4θ + (3)ne3θ (6)

The maximum value of | f (n)(θ)| can occur at two places: (i) at an internal maximum, or
(ii) at one of the end points of the interval, θ = ±1. Consider case (i) first. If n is odd, then

f (n+1)(θ) = 4n+1e−4θ + 3n+1e3θ (7)

and since both terms are positive, there is no value of θ where f n+1(θ) = 0. If n is even,
then

f (n+1)(θ) = −4n+1e−4θ + 3n+1e3θ (8)

Setting f n+1(θ) = 0 gives
4n+1e−4θ = 3n+1e3θ (9)

and hence (4/3)n+1 = e7θ, so

θ =
(n + 1) log(4/3)

7
(10)

is a single solution. However, since

f (n+2)(θ) =
∣∣∣(−4)n+2e−4θ + 2n+2e2θ

∣∣∣ > 0 (11)

it follows that this must be a minimum of f (n). Since f (n) > 0, it must be a minimum of∣∣ f (n)
∣∣ also. Hence, for all values of n there is no possibility that the maximum of

∣∣∣ f (n)
∣∣∣

occurs in the interior of the interval. Thus the only remaining possibilities are at the
endpoints. Since the factor of (−3)n grows more rapidly in magnitude, the maximum will
occur at θ = −1, and hence ∣∣∣ f (n)(θ)

∣∣∣ ≤ ∣∣∣(−4)ne4 + 3ne−3
∣∣∣ (12)

Combining the results from above equations establishes that

∥ f − pn−1∥∞ ≤
∣∣(−4)ne4 + 3ne−3

∣∣
n!2n−1 (13)

(d) There are many ways to find better control points, and this problem illustrates that
while the Chebyshev points are a good set of points at which to interpolate a general
unknown function, they are usually not optimal for a specific function. One simple
method is to examine where the maximum interpolation error is achieved. This is happens
near x = -1. Hence if we move the first control point to the left, it will result in a better
approximation of f (x) within this region. In this case, we shift the first control point by
-0.02, which leads to an infinity norm of 5.16790. The following are the fitting plots after
changing tha control points and the corresponding errors.
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P3. Condition number of a matrix

(a) Throughout this problem, ∥ · ∥ is taken to mean the Euclidean norm. The first two
parts of this problem can be solved using diagonal matrices only. Consider first

B =

[
2 0
0 1

]
, C =

[
1 0
0 2

]
(14)

Then ∥B∥ = 2, ∥B−1∥ = 1 and hence κ(B) = 2. Similarly, κ(C) = 2. Adding the two
matrices together gives

B + C =

[
3 0
0 3

]
= 3I (15)

and hence κ(B + C) = ∥3I∥ ∥ 1
3 I∥ = 3 × 1

3
= 1. For these choices of matrices,κ(B + C) <

κ(B) + κ(C).

(b) If

B =

[
4 0
0 2

]
, C =

[
1 0
0 −1

]
, (16)

then κ(B) = 2. Similarly, κ(C) = 1. Adding the two matrices together gives

B + C =

[
5 0
0 1

]
(17)

and hence κ(B + C) = 5. For these choices of matrices,κ(B + C) > κ(B) + κ(C).

(c)

κ(αA) = ∥αA∥ × ∥(αA)−1∥ = ∥αA∥ × ∥1
α

A−1∥ = ∥α∥ × ∥1
α
∥ × ∥A∥ × ∥A−1∥
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κ(αA) = ∥A∥ × ∥A−1∥ = κ(A)

∥QA∥ = sup
x ̸=0

∥QAx∥
∥x∥ .

But, multiplying by an orthogonal matrix Q does not change the 2-norm. Therefore,

sup
x ̸=0

∥QAx∥
∥x∥ = sup

x ̸=0

∥Ax∥
∥x∥ = ∥A∥.

One can also show this by

∥QAx∥ =
√
⟨QAx, QAx⟩ =

√
⟨Ax, QTQAx⟩ =

√
⟨Ax, Ax⟩ = ∥Ax∥.

Similary, one may also find
∥(QA)−1∥ = ∥A−1∥

Finally,
κ(QA) = ∥QA∥ × ∥(QA)−1∥ = ∥A∥ × ∥A−1∥ = κ(A)

P4. Periodic cubic splines

(a)

sx(t) =


6t − 2t3 0 ≤ t < 1
−4 + 18t − 12t2 + 2t3 1 ≤ t < 2
−4 + 18t − 12t2 + 2t3 2 ≤ t < 3
104 − 90t + 24t2 − 2t3 3 ≤ t ≤ 4

(b)
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(c)

sy(t) =
1
2

sx(t + 1) =


3(t + 1)− (t + 1)3 0 ≤ t < 1
−2 + 9(t + 1)− 6(t + 1)2 + (t + 1)3 1 ≤ t < 2
−2 + 9(t + 1)− 6(t + 1)2 + (t + 1)3 2 ≤ t < 3
52 − 45(t + 1) + 12(t + 1)2 − (t + 1)3 3 ≤ t ≤ 4

simplifies to

sy(t) =


2 − 3t2 − t3 0 ≤ t < 1
2 − 3t2 + t3 1 ≤ t < 2
2 − 3t2 + t3 2 ≤ t < 3
18 − 24t + 9t2 − t3 3 ≤ t ≤ 4
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The estimated π value is 3.05000.
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P5. Image reconstruction from low light

(a) Reconstruction of the regular-light photo 0927 from the three low-light photos 0258,
0646, 0704. Using fragments 0 and 1 for training, and fragments 2 and 3 for testing. The
program p5_reconstruction.py implements the algorithm.

The fitted matrices are

FA =

0.01344 0.01344 0.01344
0.04126 0.04126 0.04126
0.05247 0.05247 0.05247


FB =

−0.54727 0.34517 −0.3521
−1.34219 1.13862 −0.20986
−1.33221 0.21761 0.65449


FC =

1.57982 −0.61108 0.40334
0.07498 1.07357 0.2709
0.08154 −0.85494 2.11257


pconst =

 4.54571
−12.72907
−5.966


The error for each fragment

SABC(K0) = 0.0598315
SABC(K1) = 0.0719668
SABC(K2) = 0.0795461
SABC(K3) = 0.150443

fragment 2
reconstructed 0927

fragment 2
actual 0927

fragment 3
reconstructed 0927

fragment 3
actual 0927
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(b) Reconstruction of the regular-light photo 0927 from one low-light photo 0646. Using
fragments 0 and 1 for training, and fragments 2 and 3 for testing.

FB =

 4.3031 −3.56403 1.56626
−1.11043 2.64979 0.97944
−1.57174 −4.69737 8.40347


pconst =

36.76942
18.52413
24.98479


The error for each fragment

SB(K0) = 0.0845624
SB(K1) = 0.081768
SB(K2) = 0.106275
SB(K3) = 0.165774

fragment 2
input 0646

fragment 2
reconstructed 0927

fragment 2
actual 0927

fragment 3
input 0646

fragment 3
reconstructed 0927

fragment 3
actual 0927

(c) The fitting error SABC is smaller than SB for all fragments. The reconstructed frag-
ments 2 and 3 from part (a) appear more similar to the actual images. Therefore, including
more light levels improves the quality of the fit.

P6. Determining hidden chemical sources

(a) The time derivative of ρc is

∂ρc

∂t
=

x2 + y2 − 4bt
16πb2t3 exp(−x2 + y2

4bt
) (18)
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The x derivative of ρc is
∂ρc

∂x
=

−2x
16πb2t2 exp(−x2 + y2

4bt
) (19)

and the second x derivative is
∂2ρc

∂2x
=

x2 − 2bt
16πb3t3 exp(−x2 + y2

4bt
) (20)

By symmetry the second y derivative is

∂2ρc

∂2y
=

y2 − 2bt
16πb3t3 exp(−x2 + y2

4bt
) (21)

and hence

∇2ρc =
x2 + y2 − 4bt

16πb3t3 exp(−x2 + y2

4bt
) (22)

(b) We now consider the case when b = 1 and 49 point sources of chemicals are introduced
at t = 0 with different strengths, on a 7 × 7 regular lattice covering the coordinates x =
-3,-2,...,3 and y = -3,-2,...,3. The concentration satisfies

ρ(x, t) =
48

∑
k=0

λkρc(x − vk, t) (23)

where vk is the kth lattice site and λk is the strength of the chemical introduced at that site.
Two hundred measurements, ρM(xi, t), at locations xi and at t = 4 are provided. Estimating
the concentrations can be viewed as a linear least squares problem, finding the λk such
that

S =
199

∑
i=0

∣∣∣∣∣ρM(xi, t)−
48

∑
k=0

λkρc(xi − vk, t)

∣∣∣∣∣ (24)

Even though Eq. 24 is quite complicated and involves the the expression for ρc, the
parameters λk still enter linearly, and hence it can be solved using the linear least squares
approach. The function part_b() in p6_diffusion.py computes the λk and prints them.
They are all positive, with a maximum value of approximately 24.

(c) Suppose that the measurements have some experimental error,so that the measured
values ρ̃i in the file are related to the true values ρi according to

ρ̃i = ρi + ei (25)

The function part_c() in p6_diffusion.py performs a sample of N computations of the
λk when each of the ρM are perturbed by a small normally distributed shift with mean
0 and variance 10−8. The obtained standard deviations for the λk at four lattice sites are:
22268 at (0, 0), 14034 at (1, 1), 2868 at (2, 2), and 117 at (3, 3). They show much larger
variations than the actual λk values that were measured in part (b). The largest errors are
at the central (0, 0) lattice site, which is reasonable since it is furthest away from any of the
measurements in the file, thus making it most difficult to estimate.
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(d) A common mistake here is that the floating point values λk are not rounded (e.g. using
round()) as requested but rather truncated (e.g. using int()), which leads to incorrect
images. The encoded message is “AM205”
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