
AM205 HW2. Numerical linear algebra

P1. Equations with vector norms [8 pts]

Define a matrix

A =

[
4 −3
2 0

]
representing a linear transformation Av for v = (x, y)T ∈ R2. Here you will consider
a system of equations ∥v∥p = 1 and ∥Av∥p = 2 and see that the system has only four
solutions for any finite p but has infinitely many solutions for p = ∞.

(a) [3 pts] Plot two curves ∥v∥2 = 1 and ∥Av∥2 = 2. Analytically find the coordinates of
four points v ∈ R2 where the two curves intersect and mark them on the plot.

(b) [1 pts] Plot two curves ∥v∥4 = 1 and ∥Av∥4 = 2.

(c) [2 pts] Plot two curves ∥v∥∞ = 1 and ∥Av∥∞ = 2. Analytically show that both curves
contain the entire line segment connecting the points (1, 2

3) and (1, 1). Mark the line
segment on the plot.

(d) [2 pts] For any finite p ≥ 1, analytically show that if v ∈ R2 satisfies both ∥v∥p = 1
and ∥Av∥p = 2, then either 4x = y or 4x = 5y, i.e. the solutions always lie on the two
straight lines. Draw the straight lines on your plots from the previous parts.

P2. Condition number of LU factorization [15 pts]

(a) [5 pts] Implement the LU factorization algorithm for a square matrix A ∈ Rn×n with
partial pivoting and without pivoting. Do not use library functions for the LU factorization.

(b) [3 pts] In the same log-linear plot, show the condition number κ(A) and the condition
numbers κ(L) and κ(U) after each step of the algorithm (i.e. after eliminating the elements
below the diagonal in one column) with and without pivoting for the Vandermonde matrix
on 10 equidistant points in the range [1, 2] (including the endpoints). Use the same ordering
as in numpy.vander() by default, i.e. decreasing powers from left to right.

(c) [3 pts] Repeat part (b) for the following “pseudorandom” matrix A ∈ Rn×n

Aij = cos
(
37 cos(37 (i + nj))

)
for i, j = 1, . . . , n

with n = 10.

1

(d) [4 pts] Sample 1000 random 10 × 10 matrices A with elements distributed uniformly
in [−1, 1] and plot the histograms of log10 κ(A), log10 κ(U) with pivoting, and log10 κ(U)
without pivoting. To compute the histograms, use 50 equal-width bins in the range [0, 5].
Report the most probable value of κ, i.e. value from the bin with the largest number of
samples. Which algorithm (with or without pivoting) is expected to provide a smaller
condition number κ(U)? Are your results consistent with this expectation?

P3. Sparse linear algebra [19 pts]

Here you will implement common operations with sparse matrices in different formats
and analyze their cost. Consider three different storage formats: two-dimensional array
(dense), compressed sparse row (CSR), and compressed sparse column (CSC). Do not use
library functions or operators. However, you may and should use existing data structures
(e.g. scipy.sparse.csr_array).

(a) [3 pts] Write three functions that implement the matrix-vector product Ax for x ∈ Rn

and matrix A ∈ Rn×n stored in each of the three formats (dense, CSR, CSC). Store vectors
as one-dimensional arrays.

(b) [5 pts] Consider a matrix A ∈ Rn×n stored in the CSR format and matrix B ∈ Rn×n

stored in the CSC format. Write a function that returns the product AB in the CSC format.

(c) [5 pts] Write a function that takes matrix A ∈ Rn×n in the CSC format and column
index j and returns the elementary elimination matrix

Lj =

1 · · · 0 0 · · · 0
...

...
0 · · · 1 0 · · · 0
0 · · · −aj+1,j/ajj 1 · · · 0
...

...
0 · · · −anj/ajj 0 · · · 1

in the CSR format, such that Lj A contains only zeros below the diagonal in column j.

(d) [2 pts] Write a function sparse_lu() that takes a matrix A ∈ Rn×n stored in the CSC
format and returns an upper triangular matrix U = Ln−1 · · · L2L1A stored in the CSC
format. Reuse the two functions from parts (b) and (c).

(e) [4 pts] By adding a counter to your functions (use a global variable or return the
number of operations together with the result), measure the number of floating point
operations K(n) required to complete sparse_lu() for n = 5, 6, . . . , 50 in each of the
following cases

2

• A is a tridiagonal matrix

A =

3 1
1 3 1

1
. 1

1 3

 ,

• A = I + H, where H is a Hilbert matrix with elements

Hij =
1

i + j − 1
for i, j = 1, . . . , n.

You may ignore those operations and loops that do not contribute to the leading term
of K(n), i.e. measure it up to asymptotic equivalence. Make a log-log plot of the number of
operations K(n) as a function of n. Fit a straight line log C + q log n ≈ log K(n) and report
the obtained C and q.

P4. Unstable LU factorization [15 pts]

Consider matrices G(n, c) ∈ Rn×n of the form

G(n, c) =

c 0 0 . . . 0 c
−1 1 0 . . . 0 0
−1 −1 1 . . . 0 0

...
...

−1 −1 −1 . . . 1 0
−1 −1 −1 . . . −1 0

with n ≥ 3 and c ∈ R, c > 0. In the following, you will perform the LU factorization of
G(n, c) with partial pivoting, i.e. by selecting the row with the largest absolute value in
the corresponding column. If the choice of the pivot is non-unique, i.e. multiple rows
contain elements with the same absolute value, select the one with the minimal row index
(however, if you use a library implementation in part (d), any choice of the row is allowed).

(a) [3 pts] Consider two cases 0 < c < 1 and c > 1. In each case, perform the LU factor-
ization of G(4, c) with partial pivoting (either by hand or using symbolic computation).
Report matrices U1, U2, and U3 = U obtained after each step of the algorithm, i.e. after
eliminating the elements below the diagonal in one column. The results should contain c
as a parameter.

3

(b) [3 pts] Consider two cases 0 < c < 1 and c > 1. For each case, perform the LU
factorization of G(n, c) with partial pivoting in general for all n ≥ 3 and report the
resulting matrix U. The result should contain c as a parameter. Showing the results of
intermediate steps is not necessary.

(c) [2 pts] Write a function that returns G(n, c).

(d) [7 pts] Consider two cases c = 0.95 and c = 1.05. For each case and for n =
3, 4, . . . , 80, let G = G(n, c), define the reference solution x ∈ Rn as n equidistant points
in the range [1, 2] (including the endpoints), and construct a right-hand side vector b =
Gx. Perform the LU factorization of G with partial pivoting numerically (e.g. using
scipy.linalg.lu) and solve the system Gx̃ = b by solving two triangular systems (e.g.
using scipy.linalg.solve_triangular). Plot the 2-norm relative error ∥x − x̃∥2/∥x∥2 as
a function of n for each c. Explain if the observed behavior of the error is consistent with
the form of the matrix U obtained in parts (a) or (b).

P5. QR factorization applied to a bouncing ball [15 pts]

Here you will analyze the trajectories of a bouncing Super Ball. In the data archive
am205_hw2_data.zip, there is a directory super containing twenty images showing two
bounces of the ball on a table top. The images are given for illustration only, you will not
need to process them. The duration between two frames is 7/120 s. The diameter of the
ball is 42.5 mm corresponding to 43.5 pixels. In the same archive, you will find a text file
super_ypos.txt that lists the y positions of the ball center measured in pixels for each
frame k, which were calculated from the images.

(a) [6 pts] Write a function that performs the QR factorization using Givens rotations for
an arbitrary rectangular matrix A ∈ Rm×n where m ≥ n. Test your function on 10 random
11 × 7 matrices, with elements drawn from a uniform distribution in [−1, 1], by verifying
that the Frobenius norm ∥A − QR∥F is small. Do not use library functions for the QR
factorization.

(b) [6 pts] During the experiment, the ball follows three parabolic arcs separated from
each other by the two bounces. Using your QR factorization function, fit each of the three
different arcs to

y(k) = αk2 + βk + γ,

where k is the frame index. Report the obtained coefficients and plot the fitted model
together with the data points.

4

https://en.wikipedia.org/wiki/Super_Ball

(c) [3 pts] Using your fitted models from part (b), calculate and report the gravitational
acceleration g from each of the three parabolic arcs. Using the fits to the first two arcs,
calculate the height h above the table top from which the ball is released. This should be
the distance from the table top to the bottom of the ball. All quantities should be reported
in the SI units.

P6. Traffic light images from PCA [20 pts]

Here you will apply the principal component analysis (PCA) to images showing a traf-
fic light, calibrate the components using labeled images, and generate new images not
observed in practice. The images are extracted from a time-lapse video produced in Italy.

In the archive am205_hw2_data.zip, you will find a directory traffic with images
a_*.png numbered by the image index. Each image has a resolution of 240 × 135 pixels
with RGB channels. In the following, each image is represented as a vector p ∈ Rn

containing the color intensity values between 0 and 1, where n = 240 × 135 × 3. The
dataset consists of m = 64 images pi for i = 0, . . . , m − 1.

(a) [4 pts] Construct the image pmin ∈ Rn as the element-wise minimum over all images.
Visualize pmin. In the following, vectors pi − pmin are referred to as relative images.

(b) [5 pts] Assemble a matrix A ∈ Rm×n with rows (pi − pmin)
T for i = 0, . . . , m − 1.

Using the reduced SVD of A, extract the first three principal components v1, v2, v3 ∈ Rn

which are orthonormal vectors. It is important to use the reduced SVD since the matrices
generated by the full SVD will not fit in memory. Note that unlike the case discussed in the
lecture, the reduced SVD is applied to matrix A with m < n and returns you a non-square
matrix of the right singular vectors. Visualize the images defined as 0.5(1 + vk/∥vk∥∞) for
k = 1, 2, 3.

(c) [8 pts] Three images with indices 0, 37, and 5 are used for calibration. They show three
states of the traffic light: g1 = (1, 0, 0)T (red), g2 = (0, 1, 0)T (yellow), and g3 = (0, 0, 1)T

(green).

Denote the respective relevant images as q1 = p0 − pmin, q2 = p37 − pmin, and q3 =
p5 − pmin. Assemble a matrix V ∈ R3×n with rows v1, v2, v3 from part (b). Define a new

5

https://www.youtube.com/watch?v=yGE-dyjht64

of set vectors w1, w2, w3 ∈ Rn and the corresponding matrix W ∈ R3×n as

W = FV (1)

with an unknown matrix F ∈ R3×3. The state vectors will be used as coordinates in the
basis W. The relative image corresponding to a state vector g ∈ R3 is recovered by WTg.
The unknown matrix F can be found by minimizing the least-squares error

S(F) =
3

∑
k=1

∥∥qk − WTgk
∥∥2

=
3

∑
k=1

∥∥qk − VTFTgk
∥∥2,

which is equivalent to solving the normal equations

V(qk − VTFTgk) = 0, k = 1, 2, 3.

Note that V consists of orthonormal rows and the state vectors g1, g2, g3 are linearly
independent. Solve these equations to obtain F, then compute W from (1) that will give
you w1, w2, w3. Report the obtained F. Visualize the images defined as 0.5(1 + wk/∥wk∥∞)
for k = 1, 2, 3.

(d) [3 pts] Some state vectors correspond to abnormal states of the traffic light. Con-
sider new state vectors g = (0, 1, 1), (1, 0, 1), and (1, 1, 0). Visualize the corresponding
images pmin + WTg after clipping the values to [0, 1].

6

	P1. Equations with vector norms [8 pts]
	P2. Condition number of LU factorization [15 pts]
	P3. Sparse linear algebra [19 pts]
	P4. Unstable LU factorization [15 pts]
	P5. QR factorization applied to a bouncing ball [15 pts]
	P6. Traffic light images from PCA [20 pts]

