
AM205 HW2. Numerical linear algebra. Solution

P1. Equations with vector norms

See solution code in [p1_norms.py].

(a)

-2 -1 0 1 2
x

-2

-1

0

1

2

y

p=2

When b is written as (x, y) ∥b∥2 = 1 would require x2 + y2 = 1 and ∥Ab∥2 = 2 would
imply (4x − 3y)2 + (2x)2 = 4 equivalent to 20x2 + 9y2 − 24xy = 4. We can subtract 4 times
first equation from the second equation and obtain

16x2 − 24xy + 5y2 = 0.

Using the quadratic formula, we can find x as function of y. First solution would be

x =
(24y +

√
576y2 − 320y2)

32

x =
24y +

√
256y

32
=

24 +
√

256
32

=
40
32

y =
5
4

y

The other solution is

x =
24 −

√
256

32
y =

1
4

y

Now, let’s go back to equation x2 + y2 = 1.
Using the second solution would require:

1
16

y2 + y2 = 1

17
16

y2 = 1

1

https://code.harvard.edu/AM205/public/blob/main/homework/hw2_linear/solution/p1_norms.py

y = ± 4√
17

Meaning two solutions obtained when x = 1
4 y are

(
1√
17

,
4√
17

), (− 1√
17

,− 4√
17

)

When x = 5
4 y,

25
16

y2 + y2 = 1

41
16

y2 = 1

y = ± 4√
41

And the solutions are
(

5√
41

,
4√
41

), (− 5√
41

,− 4√
41

)

(b)

-2 -1 0 1 2
x

-2

-1

0

1

2

y

p=4

(c)

2

-2 -1 0 1 2
x

-2

-1

0

1

2

y

p=inf

Writing b as b = (x, y). ∥b∥∞ = 1 implies either |x| = 1 and |y| ≤ 1 or |x| ≤ 1 and
|y| = 1. If we consider first case,

2 = ∥Ab∥∞ = max{|4x − 3y|, |2x|} = max{|4x − 3y|, 2}

This would imply it is necessary for |4x − 3y| ≤ 2.
When x and y have opposite sign, solution won’t exist because |4x − 3y| ≥ 4 > 2. If

x = 1, then −2 ≤ 4 − 3y ≤ 2. Solving this would require: 2
3 ≤ y ≤ 2, but recall that the

absolute value of y can’t be greater than 1. This gives us x = 1, 2
3 ≤ y ≤ 1 as solution.

Similary when we consider x = −1, we get x = −1,−1 ≤ y ≤ −2
3 . If we consider the

second case, we get
2 = ∥Ab∥∞ = max{|4x − 3y|, |2x|}

When x and y have opposite sign, solution won’t exist because |4x − 3y| ≥ 3 > 2. So, let’s
consider case when x and y have same sign. If |4x − 3y| = 2 this would require either
|4x| = 5 or |4x| = 1. But x can’t be greater than 1 so, first two possible solution is (0.25, 1)
and (−0.25,−1). Another possible case is when |2x| = 2 and solutions satisfying that
conditions are (1, 1) and (−1,−1)

(d) For arbitrary p, it would require

|x|p + |y|p = 1

|4x − 3y|p + |2x|p = 2p

The first equation can be multiplied by 2p and then be subtracted from the second equation.
This would result in

|4x − 3y|p = |2y|p

This implies either 4x − 3y = 2y or 4x − 3y = −2y Which means it satisfies either x = y
4 or

x = 5
4 y Using this, let’s plug it back into |x|p + |y|p = 1 For first case,

(
1
4

p
+ 1)|y|p = 1

3

as p goes toward ∞, this would become

y∞ = 1,

in this case y = ±1 so (0.25, 1) and (−0.25,−1) are on this line. For second case,

(
5
4

p
+ 1)|y|p = 1

|y| = (
1

5
4

p
+ 1

)
1
p

and as p goes toward ∞,

y = ±4
5

so this passes through (1, 4
5) and (−1,−4

5) on the solution. So, in this case limit as p goes
toward ∞, solution differs from solution at ∞ norm.

P2. Condition number of LU factorization

See solution code in [p2_lu.py].

(b) Condition numbers κ(A) and κ(U) after each step of the factorization for the Van-
dermonde matrix. With pivoting, κ(U) remains small and κ(L) does not change from its
initial value κ(A). Without pivoting, κ(U) rapidly increases after the first step and does
not change much afterwards, while κ(L) steadily decreases.

0 2 4 6 8 10
step

100

102

104

106

108

1010

1012

κ

A
L, pivot
U, pivot
L, no pivot
U, no pivot

(c) Condition numbers κ(A) and κ(U) after each step for the pseudorandom matrix. With
pivoting, both κ(U) and κ(L) do not exceed κA. Without pivoting, both grow above κ(A).
This example confirms the trend observed in part (c), where the algorithm without pivoting
tends to result in larger condition numbers.

4

https://code.harvard.edu/AM205/public/blob/main/homework/hw2_linear/solution/p2_lu.py

0 2 4 6 8 10
step

100

101

102

103

κ

A
L, pivot
U, pivot
L, no pivot
U, no pivot

(d) Histogram of the condition number. The most probable values are: κ(A) = 17.783,
κ(U) = 17.783 with pivoting, and κ(U) = 223.87 without pivoting. The algorithm with
pivoting is expected to provide a smaller condition number, which is consistent with the
observations.

0 1 2 3 4 5
log10(κ)

0

25

50

75

100

125

150

co
un

t

A
U, pivot
U, no pivot

P3. Sparse linear algebra

See solution code in [p3_sparse.py].

(a) See function mul_dense() for dense matrix-vector multiplication, function mul_csr()

for matrix-vector multiplication stored in CSR format, function mul_csc() for CSC format.

(b) See function mul_csr_csc().

(c) See function elim_csr().

(d) See function sparse_lu().

5

https://code.harvard.edu/AM205/public/blob/main/homework/hw2_linear/solution/p3_sparse.py

(e) In functions elim_csr() and mul_csr_csc() we add a global variable to count the
flops when implementing sparse_lu() for both the tridiagonal matrices and I + H matri-
ces. Below is the log-log plot of the number of operations K(n) as a function of n (dots),
and the fitted straight line log C + q log n ≈ log K(n) (solid lines), with fitted parameters

Tridiagonal matrix: Ct = 18.5, qt = 2.2
I + H : Ch = 6.66, qh = 3

which means the total number of flops is slightly larger than O(n2) for the n× n tridiagonal
matrix , and amounts to O(n3) for the n × n matrix I + H.

1.5 2.0 2.5 3.0 3.5 4.0
logn

4

6

8

10

12

14
lo
gK

(n
)

tridiagonal
I+H
Ct=18.5 qt=2.2
Ch=6.66 qh=3

P4. Unstable LU factorization

(a) See symbolic computations in [p4_lu_sympy.py].

G(4, c) =

c 0 0 c
−1 1 0 0
−1 −1 1 0
−1 −1 −1 0

Case 0 < c < 1. Partial pivoting at step j selects row j + 1.

U1 =

−1 1 0 0
0 c 0 c
0 −2 1 0
0 −2 −1 0

 U2 =

−1 1 0 0
0 −2 1 0
0 0 c

2 c
0 0 −2 0

 U3 =

−1 1 0 0
0 −2 1 0
0 0 −2 0
0 0 0 c

Case c > 1. Partial pivoting at step j selects row j.

U1 =

c 0 0 c
0 1 0 1
0 −1 1 1
0 −1 −1 1

 U2 =

c 0 0 c
0 1 0 1
0 0 1 2
0 0 −1 2

 U3 =

c 0 0 c
0 1 0 1
0 0 1 2
0 0 0 4

6

https://code.harvard.edu/AM205/public/blob/main/homework/hw2_linear/solution/p4_lu_sympy.py

(b)

G(n, c) =

c 0 0 . . . 0 c
−1 1 0 . . . 0 0
−1 −1 1 . . . 0 0

...
...

−1 −1 −1 . . . 1 0
−1 −1 −1 . . . −1 0

Case 0 < c < 1. Elements in the last column do not grow.

U =

−1 1 0 0 . . . 0 0
0 −2 1 0 . . . 0 0
0 0 −2 1 . . . 0 0
...

...
...

...

0 0 0 0 . . . 1 0
0 0 0 0 . . . −2 0
0 0 0 0 . . . 0 c

Case c > 1. Elements in the last column grow exponentially, and the matrix becomes
ill-conditioned. For example, the last two rows approach “linear dependency”, i.e. the
cosine of the angle between them 22n−5/

√
(1 + 4n−3)4n−2 ≈ 1 for large n.

U =

c 0 0 . . . 0 c
0 1 0 . . . 0 1
0 0 1 . . . 0 2
...

...
0 0 0 . . . 1 2n−3

0 0 0 . . . 0 2n−2

(c, d) See solution code in [p4_lu_unstable.py]. In the case c = 1.05, the relative error
rapidly increases with n and reaches 100% for n ≈ 60 . This corresponds to c > 1 where
the elements in the last column of U increase exponentially while the diagonal element
is 1, which leads to loss of precision.

7

https://code.harvard.edu/AM205/public/blob/main/homework/hw2_linear/solution/p4_lu_unstable.py

0 20 40 60 80
n

10−18

10−14

10−10

10−6

10−2

102

106

re
la

tiv
e

er
ro

r

c=1.05
c=0.95

P5. QR factorization applied to a bouncing ball

See solution code in [p5_ball.py].

(a) The function givens_QR() implements the QR factorization using Givens rotations.
Note that the function does not explicitly construct a full Givens rotation matrix, but rather
implements the required multiplications by modifying specific rows of R or columns of Q.

(b) The obtained coefficients for each parabolic arc are:

α [m/s2] β [m/s] γ [m]
arc 1 4.90863 0.06586 0.03083
arc 2 4.86767 −4.81635 1.32054
arc 3 4.89995 −9.06585 4.38929

The fits plotted together with the data points. The dashes lines show the estimate time
and position of the ball’s release and the first bounce, required in part (c).

-0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
t [s]

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

y
[m

] arc 1
arc 2
arc 3
data

8

https://code.harvard.edu/AM205/public/blob/main/homework/hw2_linear/solution/p5_ball.py

(c) Estimates of the gravitational acceleration, given as 2α:

g [m/s2]
arc 1 9.81726
arc 2 9.73535
arc 3 9.79990

The minimum of arc 1 provides the time and position of the ball’s release: t =
−0.00671 s, y = 0.03061 m. The intersection of arcs 1 and 2 provides the time and
position of the first bounce: t = 0.26358 s, y = 0.38922 m. The difference between the two
positions gives the distance from the table top to the ball bottom: 0.35861 m. No need to
subtract the radius: the difference would be zero if the ball was released exactly from the
table.

P6. Traffic light images from PCA

The program [p6_pca.py] loads the 64 images and calculates pmin, and performs PCA on
those images.

(a) The following image corresponds to pmin.

p_min

(b) The second row in Figure 1 shows the first three principal components.

(c) To obtain F, we need to solve the normal equations,

V(qk − VTFTgk) = 0, k = 1, 2, 3.

where V consists of orthonormal rows, i.e. VVT = I. They can be written in a more
compact form

VQT = FTG,

where Q ∈ R3×n has rows q1, q2, q3 and G ∈ R3×3 has rows g1, g2, g3. Therefore F can be
expressed as

F = (G−1)T(QTV),

9

https://code.harvard.edu/AM205/public/blob/main/homework/hw2_linear/solution/p6_pca.py

reference [1 0 0] reference [0 1 0] reference [0 0 1]

original V[0] original V[1] original V[2]

transformed W[0] transformed W[1] transformed W[2]

generated [0 1 1] generated [1 0 1] generated [1 1 0]

Figure 1: First row: Image 0, 37, and 5 used for calibration. Second row: the first three
principal component after normalization; Third row: the first three principal component
after transformation (after normalization). Fourth row: three new generated states g =
(0, 1, 1), (1, 0, 1), and (1, 1, 0).

10

which evaluates to

F =

 −47.459 −11.554 −1.366
−29.877 2.796 −37.817
−24.368 38.137 −0.094

 .

Then W is computed as W = FV. The third row in Figure 1 shows the first three trans-
formed principal components wk (k = 1, 2, 3) after normalization.

(d) The fourth row in Figure 1 shows the images generated from the states g = (0, 1, 1),
(1, 0, 1), and (1, 1, 0).

11

	P1. Equations with vector norms
	P2. Condition number of LU factorization
	P3. Sparse linear algebra
	P4. Unstable LU factorization
	P5. QR factorization applied to a bouncing ball
	P6. Traffic light images from PCA

