
AM205 HW3. Numerical calculus

P1. Adaptive integration [23 pts]

(a) [4 pts] Given the cubic Legendre polynomial P3(x) = 1
2 x(5x2 − 3), derive the 3-point

Gauss quadrature rule on the interval [−1, 1] by evaluating the relevant integrals by hand
or symbolically. Demonstrate that this quadrature rule integrates all polynomials up to the
expected degree exactly.

(b) [12 pts] In the lectures we discussed a method of evaluating integrals
∫ b

a f (x)dx by
adaptively refining the calculation in regions where the function varies rapidly. To begin, a
tolerance level T > 0 is introduced, and the calculation starts using a single integration
interval [a, b].

Let Ia,b be the integral of f over this interval using the three-point quadrature rule from
part (a), which needs to be rescaled to apply to [a, b] instead of [−1, 1]. In addition, define
c = a+b

2 and calculate Îa,b = Ia,c + Ic,b as a more refined estimate of the integral. Then
Ea,b = |Ia,b − Îa,b| is an estimate of the error of Ia,b. If Ea,b < (b − a)T, then the error is
acceptable, and the method can terminate. Otherwise this interval must be subdivided
into [a, c] and [c, b], and the above procedure must be applied to these two intervals. The
procedure must be applied recursively until the errors become smaller than the tolerance.

Write a function to implement this adaptive integration scheme. Using T = 10−6, apply
it to the integrals ∫ 7/2

−1
(−xm − (x + 3)2 + 4)dx

for m = 4, 5, 6, 7, 8. For each case, report the value of the integral, the total estimated
error (by summing the relevant Eα,β terms), and the total number of intervals that are used.

(c) [7 pts] Use your adaptive integration routine from part (a) and T = 10−6 to evaluate
the three integrals∫ 3

−1
|x − π

8
|dx,

∫ 1

−1
g(x)dx,

∫ 1

−1
x sin

x
x2 + 0.01

dx.

where

g(x) =

{
4x5 + 12x4 − 8x2 − x, if x < 0,
sin(5x2), if x ≥ 0.

For each case, report the value of the integral, the total estimated error (by summing the
relevant Eα,β terms), and the total number of intervals that are used. For each integral, plot
the integrand and mark the quadrature points and subinterval endpoints.

1

P2. Finite differences and least squares [23 pts]

Here you will consider two approaches to derive a finite difference approximation: from
the Taylor expansion and by differentiating a polynomial fitted to the function values.

(a) [2 pts] Recall that we can numerically approximate f ′(x) via the Taylor expansion
of a function f about x. In the simplest case, we evaluate the expansion at x + h (or
x − h) and neglect an O(h2) term to obtain either the “forward difference formula” or
the “backward difference formula”. We can combine these approximations to obtain the
“centered difference formula” which is second-order accurate.

Using the same approach, derive a fourth-order approximation to f ′(x). Evaluate
the Taylor expansion of f about x at x + h, x − h, x + 2h, x − 2h and then combine these
formulas to cancel out the terms of order O(h2), O(h3), and O(h4).

(b) [4 pts] For each of the following functions

• f (x) = ex, for x ∈ [0, 2]

• f (x) = (sin x)2, for x ∈ [0, π]

• f (x) = x5 − 3x3, for x ∈ [0, 2]

evaluate the second-order centered difference and fourth-order approximation derived
in part (a) and plot their absolute error in the log-linear scale. Perform your analysis for
h = 0.2 and h = 0.02. Qualitatively describe your results and explain your observations.
Does the error reduce according to the expected order of accuracy?

(c) [8 pts] In the remainder of this problem, you will construct a family of finite dif-
ference approximations using least-squares fitting. Consider a general finite difference
approximation to the first derivative

f ′(x) ≈
w0 f (x − h m−1

2) + w1 f (x − h m−1
2 + h) + . . . + wm−1 f (x + h m−1

2)

h
,

which is a linear combination of function values on a stencil of m equidistant points
centered at x. The coefficients w ∈ Rm determine the approximation. Design an algorithm
to numerically compute these coefficients by differentiating a polynomial of degree p ≤
m+ 1 fitted to the function values. Note that the coefficients w will only depend on m and p.
They should not depend on h, f , or x. Your algorithm should construct the Vandermonde
matrix for the stencil points, solve the normal equations to find the least-squares fit, and
then exactly evaluate its derivative. Implement the algorithm.

2

(d) [3 pts] Numerically compute the coefficients w and list them (up to four significant
digits) for the following cases

• (m, p) = (3, 2), (5, 4)
This polynomial interpolates all of m function values (m = p + 1). The approxima-
tions should coincide with centered differences in part (a).

• (m, p) = (5, 2), (7, 4)
These have two extra points (m = p + 3) and will have some smoothing effect.

• (m, p) = (7, 2), (9, 4)
These have four extra points (m = p + 5) and will have a stronger smoothing effect.

(e) [6 pts] Consider a function
f (x) = sin (10x2)

and the same function perturbed with “pseudo-random” noise

g(x) = f (x) + 0.001 cos(1000 cos(1000(x + 1))

in the range x ∈ [0, 1]. First, take p = 2 and use your algorithm from part (c) to obtain
three approximations ĝ′m(x) to g′(x) for m = 3, 5, and 7 points with the step size h = 0.01.
Evaluate the approximations at 101 equidistant points in [0, 1]. Plot the derivative of
f ′(x) (not the perturbed g′(x)) and your three approximations obtained from g(x). Plot
the absolute error |ĝ′m(x)− f ′(x)| in the log-linear scale. Report the root-mean-square
(RMS) error in |ĝ′m(x)− f ′(x)|. Repeat the same for p = 4 and m = 5, 7, 9. Which of the
approximations gives the lowest RMS error? Do you observe different trends for the RMS
error in the cases p = 2 and p = 4 as m increases? Explain why.

P3. Gravity assist [23 pts]

Here you will navigate a spacecraft between two planets to reach a target. Treat the
spacecraft as a particle x(t) ∈ R2 and the two planets as stationary point masses at
p1 = (−0.5, 0) and p2 = (0.5, 0). The spacecraft moves according to Newton’s second law

d2x
dt2 = f(x)

under the gravitational acceleration toward both planets

f(x) =
p1 − x

|p1 − x|3 +
p2 − x

|p2 − x|3 .

The spacecraft starts at point x0 = (0,−1) with an initial velocity v0 = (u0, v0). The goal
will be to find an initial velocity such that the spacecraft reaches a target xT = (0, 1) at time
T = 1.

3

(a) [6 pts] Solve the initial value problem for the motion of the spacecraft starting at
x(0) = x0 in the range t ∈ [0, T] for the following cases

(i) Vary u0 over 11 equidistant points in [−0.1, 0.1] and set v0 = 1.15.
These trajectories should approach the target passing p2 on the left.

(ii) Vary u0 over 11 equidistant points in [1.5, 1.7] and set v0 = 1.15.
These trajectories should approach the target passing p2 on the right.

You can use a library function to solve the problem (e.g. scipy.integrate.solve_ivp).
Plot the trajectories and mark the starting point, target, and planets.

(b) [12 pts] In this part, you will find the initial velocity by solving a nonlinear boundary
value problem. The boundary conditions are x(0) = x0 and x(T) = xT. The initial
velocity is unknown. Represent the approximate trajectory as xi ≈ x(ti) on a grid of N + 1
equidistant points ti ∈ [0, T] (including the endpoints) for i = 0, . . . , N with N = 100. Use
the following discretization

xi−1 − 2xi + xi+1

∆t2 = f(xi), i = 1, . . . , N − 1,

where ∆t = T/N. Note that f is a nonlinear function, so the discretized equation is
nonlinear with respect to xi. We will solve the problem iteratively using Newton’s method.
Let xs

i be the trajectory at iteration s and linearize the equation about xs
i

xi−1 − 2xi + xi+1

∆t2 = f(xs
i) +

∂f(xs
i)

∂x
(xi − xs

i), i = 1, . . . , N − 1.

Solve this linear problem for xi using any linear solver of your choice. One option is to
adapt the scalar TDMA algorithm (e.g. [spline_tdma.py]): scalar unknowns will turn
into vectors xi, coefficients will turn into 2 × 2 matrices, and division will turn into matrix
inversion. After solving the linear system, update the trajectory as xs+1

i = xi and proceed
to the next iteration. Iterate until the maximum absolute change is smaller than a given
tolerance, i.e. maxi=0,...,N |xs+1

i − xs
i | < 10−10. Implement the method.

(c) [5 pts] The final trajectory in part (b) will depend on the initial guess x0
i at iteration

s = 0. Consider two cases corresponding to (i) and (ii) from part (a) and pick one trajectory
obtained there as an initial guess. Plot the initial guess, trajectories after the first three
iterations, the final trajectory, and also mark the starting point, target, and planets. Report
the approximate initial velocity (x1 − x0)/∆t from the final trajectory. Report the number
of iterations to achieve convergence.

4

https://github.com/pkarnakov/am205/tree/main/examples/unit1/spline_tdma.py

P4. Advection and anti-diffusion [23 pts]

Here you will amend a discretization of the linear advection equation with an anti-diffusion
term to improve its accuracy. The problem consists of the linear advection equation

ut + ux = 0

for the unknown function u(x, t) in the domain x ∈ [0, 1] and t ∈ [0, 1] with periodic
boundary conditions. Consider two choices of the initial conditions

usmooth(x) =

{
exp

(
1 − 1

1−z2

)
, |z| < 1

0, otherwise

ustep(x) =

{
1, |z| < 1
0, otherwise

where z(x) = (x − 0.5)/0.2. Use the method of lines to solve the problem, i.e. reduce
the equation to a system of ODEs, and use a library function to solve the ODEs (e.g.
scipy.integrate.solve_ivp). Represent the approximate solution ui(t) ≈ u(xi, t) on a
grid of N equidistant points xi = ih for i = 0, . . . , N − 1 with h = 1/N and N = 100. To
impose periodic boundary conditions, define u−1 = uN−1 and uN = u0.

(a) [7 pts] Implement the first-order upwind scheme

dui

dt
+

ui − ui−1

h
= 0.

Consider two choices of the initial conditions u(x, 0) = usmooth(x) and u(x, 0) = ustep(x).
For each case, solve the problem until t = 1 and plot ui(0) together with ui(1). In the exact
solution, the advected profile coincides with the initial profile since it passes exactly one
period. Qualitatively describe the approximate solutions in both cases. Do you observe
smearing, oscillation, change of magnitude, or phase shift?

(b) [7 pts] Use the Taylor expansion to find A > 0 in the leading term of the truncation
error

ui − ui−1

h
= ux − Ahuxx +O(h2).

Note that the approximation from part (a) can be viewed as a solution of the following
equation

ut + ux = Ahuxx +O(h2)

called the modified equation, which looks like the original advection equation with an added
diffusion term. One natural idea to improve the accuracy of the discretization is to subtract
an approximation of the leading error term. Consider another scheme

dui

dt
+

ui − ui−1

h
= −A

ui+1 − 2ui + ui−1

h

5

which is now second-order accurate. The added term is an anti-diffusion term and it is
supposed to counteract numerical diffusion. Implement the new scheme and plot the
solutions at t = 1 for both choices of the initial conditions. Do you observe smearing,
oscillation, change of magnitude, or phase shift?

(c) [9 pts] Modify the previous scheme by only applying the anti-diffusion term if the
solution is monotonic

dui

dt
+

ui − ui−1

h
= −G(ui−1, ui, ui+1)A

ui+1 − 2ui + ui−1

h
,

where function

G(v0, v1, v2) =

{
1, (v2 − v1)(v1 − v0) > 0
0, otherwise

detects if the sequence v0, v1, v2 is monotone. Implement the scheme, compute the solutions
for the same two cases and plot the results. The new scheme should reduce the effect of
numerical diffusion without producing oscillatory solutions.

6

	P1. Adaptive integration [23 pts]
	P2. Finite differences and least squares [23 pts]
	P3. Gravity assist [23 pts]
	P4. Advection and anti-diffusion [23 pts]

