
AM205 HW3. Numerical calculus. Solution

P1. Adaptive integration

(a) The third Legendre polynomial is P3(x) = 1
2 x(5x2 − 3), which has roots at

x1 = −
√

3
5

, x2 = 0, x3 =

√
3
5

We now solve for the weights by integrating the Lagrange interpolating polynomials
through these three points. We have

w0 =
∫ 1

−1
L0(x)dx =

∫ 1

−1

x − 0
−
√

3/5 − 0
× x −

√
3/5

−
√

3/5 −
√

3/5
dx

=
5
6

∫ 1

−1
(x2 −

√
3/5x)dx =

5
6

∫ 1

−1
(x2)dx

=
5
6

2
3
=

5
9

Similarly, we can do the integration for w1 to obtain

w1 =
∫ 1

−1
L1(x)dx =

∫ 1

−1

x +
√

3/5
+
√

3/5
× x −

√
3/5

−
√

3/5
dx

= −5
3

∫ 1

−1
(x2 − 3

5
)dx = −5

3
(

2
3
− 6

5
)

= −5
3
(− 8

15
) =

8
9

Finally, w2 is given by

w2 =
∫ 1

−1
L2(x)dx =

∫ 1

−1

x − 0√
3/5 − 0

× x +
√

3/5√
3/5 +

√
3/5

dx

=
5
6

∫ 1

−1
(x2 +

√
3/5x)dx =

5
6

∫ 1

−1
(x2)dx

=
5
6

2
3
=

5
9

and therefore [w0, w1, w2] = [5
9 , 8

9 , 5
9]

We now show that this quadrature rule integrates polynomials of up to degree 5 exactly.
We show this property on [−1, 1], and if it holds there, it holds on any arbitrary interval
after an affine transformation. An arbitrary fifth-order polynomial can be written as

p5(x) = a + bx + cx2 + dx3 + ex4 + f x5

1

We can integrate p5(x) on [−1, 1] and obtain∫ 1

−1
p5(x)dx = a

∫ 1

−1
dx + b

∫ 1

−1
xdx + c

∫ 1

−1
x2dx

+ d
∫ 1

−1
x3dx + e

∫ 1

−1
x4dx + f

∫ 1

−1
x5dx

We can evaluate the simple integrals and arrive at∫ 1

−1
p5(x)dx = 2a +

2c
3
+

2e
5

Evaluating the integral using the weights and quadrature points, we get∫ 1

−1
p5(x)dx =

5
9
(a − (

3
5
)1/2b +

3
5

c − (
3
5
)3/2d +

9
25

e − (
3
5
)5/2 f) +

8
9
(a)

+
5
9
(a + (

3
5
)1/2b +

3
5

c + (
3
5
)3/2d +

9
25

e + (
3
5
)5/2 f)

We can sum the fractions and obtain∫ 1

−1
p5(x)dx =

8
9

a + 2 × 5
9
(a +

3
5

c +
9

25
e) = 2a +

2
3

c +
2
5

e

Hence, the expressions from using quadrature points and weights and from direct integra-
tion are identical, so the method is correct for all polynomials up to the fifth order.

(b) See solution code in [p1_adaptive_integration.py]. We implement the adaptive
scheme using the 3-point Gauss quadrature as discussed in part (a). For the integrals of
the form ∫ 7/2

−1
(−xm − (x + 3)2 + 4)dx

the computed integral values, estimated error, and number of intervals are given below

m Integral value Estimated error Num. of intervals
4 -176.119 0 1
5 -377.086 0 1
6 -990.151 7.83 × 10−7 16
7 -2885.59 7.00 × 10−7 27
8 -8828.28 1.33 × 10−6 29

As expected from part (a), the integnrals for m ≤ 5 are computed exactly with a single
integration step. The integrals for m ≥ 6 are determined to high accuracy with a small
number of subdivisions of the interval.

2

https://code.harvard.edu/AM205/public/blob/main/homework/hw3_calculus/solution/p1_adaptive_integration.py

(c) We use the same integration routine to compute the integrals for this part. The answers
are given below

Integral Integral value Estimated error Num. of intervals∫ 3
−1 |x − π

8 |dx 4.37 0 16∫ 1
−1 g(x)dx -0.17 1.11 × 10−7 10∫ 1

−1 x sin(x
x2+0.01)dx 0.76 7.24 × 10−7 26

Plots of the functions with the quadrature points and intervals are shown below.

-1 0 1 2 3
x

0.0

0.5

1.0

1.5

2.0

2.5

3.0

f(x
)

|x− π/8|

-1.0 -0.5 0.0 0.5 1.0
x

-1.5

-1.0

-0.5

0.0

0.5

1.0
f(x

)
Piecewise Function

-1.0 -0.5 0.0 0.5 1.0
x

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

f(x
)

xsin(x/(x2+0.01)

P2. Finite differences and least squares

(a) First, we evaluate the Taylor expansion around x at five points as suggested

f (x − 2h) = f (x)− 2h f ′(x) +
4h2 f (2)(x)

2
− 8h3 f (3)(x)

6
+

16h4 f (4)(x)
24

− 32h5 f (5)(x)
120

+ · · ·

f (x − h) = f (x)− h f ′(x) +
h2 f (2)(x)

2
− h3 f (3)(x)

6
+

h4 f (4)(x)
24

− h5 f (5)(x)
120

+ · · ·

f (x + h) = f (x) + h f ′(x) +
h2 f (2)(x)

2
+

h3 f (3)(x)
6

+
h4 f (4)(x)

24
+

h5 f (5)(x)
120

+ · · ·

f (x + 2h) = f (x) + 2h f ′(x) +
4h2 f (2)(x)

2
+

8h3 f (3)(x)
6

+
16h4 f (4)(x)

24
+

32h5 f (5)(x)
120

+ · · ·

We then rearrange and to get the O(h2), O(h3), and O(h4) terms to cancel:

8 × (f (x + h)− f (x − h))− (f (x + 2h)− f (x − 2h)) = 12h f ′(x)− 48h5 f (5)

120

So,

f ′(x) =
f (x − 2h)− 8 f (x − h) + 8 f (x + h)− f (x + 2h)

12h
+O(h4)

3

(b) We observe that despite the choice of h, the scaling between the errors of the two
approximations remains the same.

0.0 0.5 1.0 1.5 2.0
x

10−5

10−4

10−3

10−2

10−1

ab
so

lu
te

 e
rro

r

ex, h=0.2

order 2
order 4

0 1 2 3 4
x

10−6

10−5

10−4

10−3

10−2

10−1

ab
so

lu
te

 e
rro

r

sin(x)2, h=0.2

order 2
order 4

0.0 0.5 1.0 1.5 2.0
x

10−4

10−3

10−2

10−1

100

101

ab
so

lu
te

 e
rro

r

x5 − 3x3, h=0.2
order 2
order 4

0.0 0.5 1.0 1.5 2.0
x

10−9

10−8

10−7

10−6

10−5

10−4

10−3

ab
so

lu
te

 e
rro

r

ex, h=0.02

order 2
order 4

0 1 2 3 4
x

10−10

10−8

10−6

10−4

ab
so

lu
te

 e
rro

r

sin(x)2, h=0.02

order 2
order 4

0.0 0.5 1.0 1.5 2.0
x

10−7

10−5

10−3

10−1

ab
so

lu
te

 e
rro

r

x5 − 3x3, h=0.02
order 2
order 4

(c) See solution code in [p2_finite_differences.py]. We aim to build an approximation
to the first derivative f ‘(0) of a function f (x) given its values on a stencil of m points
xi = tih, where ti = (i − m−1

2) for i = 0, . . . , m − 1. The points are centered at zero.
Denote f̄ = [f (x0), . . . , f (xm−1)]

T ∈ Rm. The approximation is based on a polynomial of
degree p fitted to the function values. Define a polynomial of degree p with coefficients
b = [b0, . . . , bp]T ∈ Rp+1 as

g(x) =
p

∑
j=0

bjxj.

Denote its values at points xi as ḡ = [g(x0), . . . , g(xm−1)]
T ∈ Rm. Then

ḡ = Vb

where V ∈ Rm,p+1 is the Vandermonde matrix

V =

1 x0 x2

0 · · · xp
0

1 x1 x2
1 · · · xp

1
...

...
...

1 xm−1 x2
m−1 · · · xp

m−1

 .

4

https://code.harvard.edu/AM205/public/blob/main/homework/hw3_calculus/solution/p2_finite_differences.py

The coefficients b are obtained by least-squares fitting, i.e from minimizing the fitting error
∥ḡ − f̄ ∥2 = ∥Vb − f̄ ∥2, and therefore satisfy the normal equations VTVb = VT f̄ , for which

b = (VTV)−1VT f̄ .

The approximation to first derivative f ′(0) is then given by

f ′(0) ≈ g′(0) = b1 = eT
1 b = [eT

1 (V
TV)−1VT] f̄ ,

which is a linear combination of the function values and can be written as

f ′(0) ≈ w0 f (x0) + . . . + wm−1 f (xm−1)

h

with w = heT
1 (V

TV)−1VT ∈ Rm. Note that w only depends on m and does not depend on
h or f̄ , since the fitting is invariant to translation and scaling. The same approximation
holds at an arbitrary point x

f ′(x) ≈
w0 f (x − h m−1

2) + w1 f (x − h m−1
2 + h) + . . . + wm−1 f (x + h m−1

2)

h
.

Now using this general procedure, we can compute the coefficients of various finite
difference approximations.

(d) Below, we tabulate the computed coefficients w for all (m, p) pairs:

• (m, p) = (3, 2), (5, 4)

w3,2 = [−0.5, 0.0, 0.5]
w5,4 = [0.0833,−0.6667, 0.0, 0.6667,−0.0833]

• (m, p) = (5, 2), (7, 4)

w5,2 = [−0.2,−0.1, 0.0, 0.1, 0.2]
w7,4 = [0.0873,−0.2659,−0.2302, 0.0, 0.2302, 0.2659,−0.0873]

• (m, p) = (7, 2), (9, 4)

w7,2 = [−0.1071,−0.0714,−0.0357, 0.0, 0.0357, 0.0714, 0.1071]
w9,4 = [0.0724,−0.1195,−0.1625,−0.1061, 0.0, 0.1061, 0.1625, 0.1195,−0.0724]

5

(e) Results:
Case p = 2

0.0 0.2 0.4 0.6 0.8 1.0
-1.0
-0.5
0.0
0.5
1.0
1.5

fu
nc

tio
n

f(x)
f(x) with noise

0.0 0.2 0.4 0.6 0.8 1.0
-20

-10

0

10

20

de
riv

at
iv

e

exact
m=3 p=2
m=5 p=2
m=7 p=2

0.0 0.2 0.4 0.6 0.8 1.0
x

10−3

10−2

10−1

100

101

de
riv

at
iv

e
er

ro
r m=3 p=2

m=5 p=2
m=7 p=2

Case p = 4

0.0 0.2 0.4 0.6 0.8 1.0
-1.0
-0.5
0.0
0.5
1.0
1.5

fu
nc

tio
n

f(x)
f(x) with noise

0.0 0.2 0.4 0.6 0.8 1.0
-20

-10

0

10

20

de
riv

at
iv

e

exact
m=5 p=4
m=7 p=4
m=9 p=4

0.0 0.2 0.4 0.6 0.8 1.0
x

10−3

10−2

10−1

100

101

de
riv

at
iv

e
er

ro
r m=5 p=4
m=7 p=4
m=9 p=4

Below are the RMS errors for all (m, p) pairs considered:

RMSE3,2 = 0.05437
RMSE5,2 = 0.1367
RMSE7,2 = 0.2761
RMSE5,4 = 0.04888
RMSE7,4 = 0.03130
RMSE9,4 = 0.02543

The approximation with the lowest error is given by (p, m) = (4, 9). In general, we see that
the error for the same stencil size is lower for larger p. This is intuitive as a quartic will
better approximate our function than a quadratic. Interestingly, increasing the stencil size
decreases the error for p = 4 but increases the error for p = 2. In part (d), we highlighted
how for m > p + 1, we observe a stronger smoothing effect on the stencil of m points. So,
for p = 2, larger stencils are poorly fit by our polynomial, leading to low-quality weights
for our approximation of f ′(x).

More specifically, we can think of our choice of m and p as affecting two different
contributions to the error: (i) the truncation error and (ii) the error from the noise. For a
larger stencil with p = 2, the increased truncation error dominates the reduction of the
noise.

6

P3. Gravity assist

See solution code in [p3_gravity.py].

(a) Below are the solutions of the initial value problem.

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
x

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

y

bodies
target
start

(b) The reference implementation adapts the TDMA algorithm to 2 × 2 matrices.

(c) Below are the solutions of the boundary value problem for two choices of the initial
guess. In both cases, the iterations converge to a trajectory that satisfies the boundary con-
ditions and the original nonlinear equation. The obtained trajectories qualitatively match
those from part (a). For the first case, the trajectory passes between the two planets, takes
6 iterations until convergence, and results in the initial velocity of (2.5749 · 10−18, 1.4822).
For the first case, the trajectory passes the two planets on the right, takes 8 iterations until
convergence, and results in the initial velocity of (1.5816, 1.3038).

7

https://code.harvard.edu/AM205/public/blob/main/homework/hw3_calculus/solution/p3_gravity.py

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
x

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5
y

final
iterations
initial
bodies
target
start

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
x

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

y

final
iterations
initial
bodies
target
start

P4. Advection and anti-diffusion [23 pts]

See solution code in [p4_advection.py].

(a) Below are the results for the original first-order upwind scheme. In both cases, we
observe smearing of the solution. However, there is not additional oscillation or phase
shift, i.e. the maximum remains at the expected position. The magnitude has decreased.
This behavior is consistent with the truncation error analysis, which reveals an additional
diffusion term added by the discretization.

0.00 0.25 0.50 0.75 1.00
x

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

u

original

0.00 0.25 0.50 0.75 1.00
x

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

u

original

(b) Taylor expansion of u(x) about xi gives

u (xi − h) = u(xi)− ux(xi)h +
1
2

uxx(xi)h2 +O(h3). (1)

8

https://code.harvard.edu/AM205/public/blob/main/homework/hw3_calculus/solution/p4_advection.py

Therefore, the backward difference evaluates to

u(xi)− u(xi − ∆x)
∆x

= ux(xi)−
1
2

huxx(xi) +O(h2), (2)

which results in A = 0.5.
Below are the results for the scheme with the anti-diffusion term added unconditionally.

In fact, in this case we obtain the central difference scheme. We do not observe any
smearing of the solution. For the smooth function, there is moderate oscillation, no phase
shift, and no change of magnitude. For the step function, there is significant oscillation, no
phase shift, and no change of magnitude, although the magnitude is harder to determine
due to oscillation.

0.00 0.25 0.50 0.75 1.00
x

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

u

anti-diffusion

0.00 0.25 0.50 0.75 1.00
x

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

u

anti-diffusion

(c) Below are the results for the scheme with the anti-diffusion term added only in points
where the solution is monotonic. As expected, this reduces the numerical diffusion without
introducing oscillation. The magnitude has slightly decreased for the smooth function and
has not changed for the step function. There is no significant phase shift.

Note that the function scipy.integrate.odeint() with default parameters may fail in
this case, unable to choose a proper time step. Overriding the default parameters to set the
time manually may solve the issue. For example, the following

scipy.integrate.odeint(rhs, u_init, tt, hmax=1e-3, atol=1e10)

should produce a correct solution. The function scipy.integrate.solve_ivp() gives a
correct solution with default parameters.

9

0.00 0.25 0.50 0.75 1.00
x

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2
u

anti-diffusion, monotone

0.00 0.25 0.50 0.75 1.00
x

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

u

anti-diffusion, monotone

10

	P1. Adaptive integration
	P2. Finite differences and least squares
	P3. Gravity assist
	P4. Advection and anti-diffusion [23 pts]

