
AM205 HW4. PDEs, nonlinear equations, optimization

P1. Finite differences for advection [31 pts]

Here you will compare the stability and accuracy of two finite difference schemes for
the linear advection equation ut + cux = 0. Assume that c ∈ R is a constant and c > 0.
The exact solution u(x, t) is approximated with values un

j ≈ u(xj, tn) on a uniform grid
xj = j∆x and tn = n∆t. Denote the CFL number as ν = c∆t/∆x. The two schemes are the
central difference scheme

un+1
j − un

j

∆t
+ c

un
j+1 − un

j−1

2∆x
= 0 (1)

and the second-order upwind scheme

un+1
j − un

j

∆t
+ c

3un
j − 4un

j−1 + un
j−2

2∆x
= 0. (2)

(a) [2 pts] For each scheme, determine the range of ν that satisfy the CFL condition.

(b) [8 pts] For each scheme, show that its truncation error has the form

Tn
j = A1utt(tn, xj)∆t + A2uxxx(tn, xj)∆x2 + h.o.t. (3)

and provide expressions for the factors A1 and A2.

(c) [11 pts] To analyze the stability, substitute the ansatz un
j = λneijk∆x into each scheme

and derive an expression for the amplification factor λ as a function of k∆x and ν. Stability
implies that the Fourier modes are not amplified, i.e. |λ| ≤ 1. However, you are not asked
to solve this inequality analytically. Instead, perform the following for each scheme

• Set ν = 0.25 and plot |λ| as a function of k∆x ∈ [0, π]. Report k∆x and |λ| of the
”most unstable” mode, i.e. corresponding to the largest |λ|. Are there any values of
k∆x for which the scheme is stable? Use samples of λ obtained at 100 equidistant
points k∆x ∈ [0, π].

• Plot maxk∆x |λ| as a function of ν ∈ [0, 0.5]. Are there any values of ν for which the
scheme is stable? Use samples of λ obtained at 100 equidistant points k∆x ∈ [0, π]
and 100 equidistant points ν ∈ [0, 0.5].

1

(d) [10 pts] Implement both schemes and solve an initial value problem for the advection
equation with periodic boundary conditions in the range x ∈ [0, 1] using a uniform grid of
128 points. Set c = 1 and ν = 0.25. You can start from [examples/unit3/advection.py]

which already implements the central difference scheme. Try using a smooth initial profile
u(x, 0) = e−20(x−0.5)2

and solve the equation in the time range t ∈ [0, 0.5]. Also try using
a discontinuous initial profile u(x, 0) = 1 if |x − 0.5| < 0.2 and u(x, 0) = 0 otherwise
and solve the equation in the time range t ∈ [0, 0.1]. These parameters are chosen to
demonstrate that although both schemes can be unstable and have the same order of
accuracy, the second-order upwind scheme produces more accurate results.

P2. Newton fractal [31 pts]

A fractal is a geometric shape containing structures at arbitrarily small scales. One example
is the Newton fractal which is characterized by Newton’s method applied to a complex-
valued polynomial. Following the canonical example of the Newton fractal, we use the
polynomial

f (z) = z3 − 1 (4)

with complex roots
1, −1

2 + i
√

3
2 , −1

2 − i
√

3
2 . (5)

A unique color is assigned to each root (e.g. red, green, and blue). The fractal is represented
by an image in the complex plane. Each point z ∈ C is colored depending on the outcome
of Newton’s method applied to f and started from z. If the iteration converges to a root,
z is colored by the color of that root. Otherwise, z receives a default color (e.g. white). You
will visualize the canonical Newton fractal and also apply the same technique to other
iterative methods.

Denote z = x + iy ∈ C, f (z) = u(x, y) + iv(x, y) ∈ C, and x = (x, y) ∈ R2. Define a
vector-valued function g : R2 → R2 as g(x) = (u(x, y), v(x, y)). These types of notation
will be used interchangeably. Recall that the function f (z) is complex differentiable if
partial derivatives of u(x, y) and v(x, y) exist and satisfy the Cauchy–Riemann equations
∂u
∂x = ∂v

∂y and ∂u
∂y = − ∂v

∂x .

(a) [6 pts] Newton’s method can be formulated in two different ways: for the complex-
valued function f (z) and the vector-valued function g(x). They correspond to two update
rules

zk+1 = zk − f (zk)/ f ′(zk) (6)

and
xk+1 = xk − (Jg(xk))

−1g(xk), (7)

where Jg is the Jacobian matrix of g. Analytically show that both formulations are equiv-
alent, i.e. they produce the sequences related as zk = xk + iyk. To do this, use the
Cauchy–Riemann equations and write both update rules as linear equations instead of

2

https://github.com/pkarnakov/am205/tree/main/examples/unit3/advection.py
https://en.wikipedia.org/wiki/Newton_fractal

inverting the derivatives. Your proof should be general for any complex differentiable
function f (z), e.g. without assuming that it is a polynomial.

(b) [8 pts] Implement Newton’s method for f (z) given by (4). Terminate the algorithm if
any of the following conditions is met

• the distance to one of the roots z is below the tolerance ϵ = 10−3, i.e. |z − zk| < ϵ;

• the absolute value exceeds the threshold A = 103, i.e. |zk| > A;

• the number of iterations reaches K = 100, i.e. k ≥ K.

Plot the trajectories of the method, i.e. all points zk, for each of the starting points

−0.2 + 0.75i, 0.4 + 0.75i, 1 + 0.75i, 1.6 + 0.75i, (8)

which are chosen to demonstrate convergence to different roots. Mark the starting points
and the exact roots (5) on the plot.

Generate an image representing the Newton fractal. The image should cover the
rectangle x, y ∈ [−2, 2] and have a resolution of 256 × 256. You may increase or decrease
the resolution depending on your implementation’s performance. Mark the exact roots (5)
on the image. Qualitatively describe your observations. Does the method converge from
any starting point?

(c) [8 pts] Recall the secant method which replaces the derivative in Newton’s method by
its finite-difference approximation using the function values from two previous iterations.
The secant method is only applicable to univariate scalar functions, since in a higher-
dimensional space the derivative is a matrix. However, the secant method can be applied
on the complex plane using the following update rule

zk+1 = zk − f (zk)
zk − zk−1

f (zk)− f (zk−1)
. (9)

Repeat part (b) using the secant method. For the first iteration to obtain z1 given z0, apply
Newton’s method.

(d) [9 pts] Another method of root finding is gradient descent applied to the squared
residual

L(x) = ∥g(x)∥2
2 (10)

with the update rule
xk+1 = xk − η∇L(xk), (11)

where η = 0.025. Repeat part (b) using this method. The gradient ∇L(x) should be
computed analytically (symbolically or by hand).

3

P3. Himmelblau’s function [30 pts]

One benchmark for optimization algorithms is the minimization of Himmelblau’s function

f (x, y) =
(

x2 + y − 11
)2

+
(
x + y2 − 7

)2, (12)

which has four global minima of 0. You will apply three different optimization algorithms
to this function with various starting points aiming for its four different global minima.
Denote x = (x, y). You should not use library functions that already implement the three
considered optimization algorithms. However, you may and should use library functions
for specific steps of the algorithms, as indicated below.

(a) [10 pts] Minimize Himmelblau’s function using gradient descent with a constant factor,
i.e. with the update rule

xk+1 = xk − η∇ f (xk), (13)

where η = 0.015. Try two sets of starting points

• (1, 1), (−1, 1), (−1,−1), (1,−1),

• (3, 3), (−3, 3), (−3,−3), (3,−3).

Terminate the algorithm if either ∥∇ f (xk)∥2 < ϵ with ϵ = 10−5 or the number of iterations
reaches 1000. For each set of the starting points, plot in the same graph

• contours of f (x, y) with x, y ∈ [−5, 5],

• starting points,

• trajectories of the optimizer, i.e. points xk from all iterations.

For each starting point, report the performed number of iterations, solution xterm at the
last iteration, values of the function f (xterm), and its gradient ∇ f (xterm). Qualitatively
describe your observations. Does the method converge to the global minimum? Does the
method find critical points, i.e. such that ∇ f (x) = 0?

(b) [10 pts] Repeat part (a) using steepest descent method, i.e. with the update rule

xk+1 = xk + αs, (14)

where s = −∇ f (xk) is the line search direction, and α minimizes the function

g(α) = f (xk + αs). (15)

Use any optimizer to minimize the function g(α). One option is the BFGS method avail-
able in scipy.optimize.minimize. Another option is scipy.optimize.line_search that
enforces strong Wolfe conditions.

4

https://en.wikipedia.org/wiki/Himmelblau's_function
https://en.wikipedia.org/wiki/Wolfe_conditions

(c) [10 pts] Repeat part (a) using Newton’s method, i.e. with the update rule

H f (xk)(xk+1 − xk) = −∇ f (xk), (16)

where H f (xk) is the Hessian of f . Use a library function to solve the linear system.

5

	P1. Finite differences for advection [31 pts]
	P2. Newton fractal [31 pts]
	P3. Himmelblau's function [30 pts]

