AM205 Quiz 2. Numerical linear algebra

Q1

Which of the vector norm axioms are violated for the *p*-norm if 0 ?

- \Box absolute homogeneity
- \Box triangle inequality
- \Box positive definiteness
- $\hfill\square$ none of the above

Q2

The product of two upper triangular matrices is an upper triangular matrix.

 \Box true

 \Box false

Q3

Consider a matrix $A \in \mathbb{R}^{n \times n}$ and vector $b \in \mathbb{R}^n$. Assume that an LU factorization of A is known. What is the complexity of solving the linear system Ax = b using that LU factorization?

- $\square \mathcal{O}(n)$
- $\square \mathcal{O}(n^2)$
- $\square \mathcal{O}(n^3)$
- $\hfill\square$ none of the above

Q4

Let L_j be an elementary elimination matrix from one step of the LU factorization algorithm for a square matrix A. Which of the following statements are correct in general for any A? The matrix L_j is

- \Box invertible
- \Box lower triangular
- □ orthogonal
- □ sparse
- \Box none of the above

Q5

Suppose that a square matrix *A* has a Cholesky factorization $A = LL^T$, where *L* is a square invertible lower triangular matrix. Which of the following statements are correct in general for any *L*? The matrix *A* is

- \Box lower triangular
- \Box positive-definite

- \Box symmetric
- \Box none of the above

Q6

Which of the following factorizations of a square matrix are unique?

- 🗆 LU
- $\Box QR$
- $\hfill\square$ none of the above

Q7

Suppose that *F* is a Householder reflector. Which of the following statements are correct in general?

 $\Box F \text{ is orthogonal}$ $\Box F^2 = I$ $\Box \text{ none of the above}$

Q8

Suppose that *Q* is an orthogonal matrix and $Q = U\Sigma V^T$ is its singular value decomposition. Which of the following statements are correct in general?

- $\Box \Sigma$ is diagonal
- \Box Σ is invertible
- $\Box \|\Sigma\|_2 = 1$
- \Box none of the above

Q9

Consider a matrix $A \in \mathbb{R}^{n \times n}$ and vector $b \in \mathbb{R}^n$. Which of the following factorizations, once known, reduce the complexity of solving the linear system Ax = b to $\mathcal{O}(n^2)$?

- \Box LU
- $\Box QR$
- \Box SVD
- \Box Cholesky
- $\hfill\square$ none of the above