AM205 Quiz 2. Numerical linear algebra. Solution

Q1

Which of the vector norm axioms are violated for the *p*-norm if 0 ?

- \Box absolute homogeneity
- \boxtimes triangle inequality
- \Box positive definiteness
- $\hfill\square$ none of the above

Q2

The product of two upper triangular matrices is an upper triangular matrix.

- ⊠ true
- \Box false

Q3

Consider a matrix $A \in \mathbb{R}^{n \times n}$ and vector $b \in \mathbb{R}^n$. Assume that an LU factorization of A is known. What is the complexity of solving the linear system Ax = b using that LU factorization?

- $\square \mathcal{O}(n)$
- $\boxtimes \mathcal{O}(n^2)$
- $\square \mathcal{O}(n^3)$
- $\hfill\square$ none of the above

Q4

Let L_j be an elementary elimination matrix from one step of the LU factorization algorithm for a square matrix A. Which of the following statements are correct in general for any A? The matrix L_j is

- \boxtimes invertible
- \boxtimes lower triangular
- □ orthogonal
- ⊠ sparse
- $\hfill\square$ none of the above

Answer: The matrix is not orthogonal since its inverse is obtained by negating the elements below the diagonal, which is different from its transpose.

Q5

Suppose that a square matrix *A* has a Cholesky factorization $A = LL^T$, where *L* is a square invertible lower triangular matrix. Which of the following statements are correct in general for any *L*? The matrix *A* is

- \Box lower triangular
- \boxtimes positive-definite
- \boxtimes symmetric
- $\hfill\square$ none of the above

Q6

Which of the following factorizations of a square matrix are unique?

- 🗆 LU
- $\Box QR$
- $\boxtimes\,$ none of the above

Q7

Suppose that *F* is a Householder reflector. Which of the following statements are correct in general?

- \boxtimes *F* is orthogonal
- $\boxtimes F^2 = I$
- $\hfill\square$ none of the above

Q8

Suppose that *Q* is an orthogonal matrix and $Q = U\Sigma V^T$ is its singular value decomposition. Which of the following statements are correct in general?

- $\boxtimes \Sigma$ is diagonal
- $\boxtimes \Sigma$ is invertible
- $\boxtimes \ \|\Sigma\|_2 = 1$
- $\hfill\square$ none of the above

Answer: For any Q, $\|\Sigma\|_2 = \|Q\|_2$. Since Q is orthogonal, $\|Q\|_2 = 1$.

Q9

Consider a matrix $A \in \mathbb{R}^{n \times n}$ and vector $b \in \mathbb{R}^n$. Which of the following factorizations, once known, reduce the complexity of solving the linear system Ax = b to $\mathcal{O}(n^2)$?

- 🛛 LU
- $\boxtimes QR$
- \boxtimes SVD
- \boxtimes Cholesky
- \Box none of the above

Answer:

- A = LU, solve Ly = b, Ux = y
- A = QR, solve Qy = b, $y = Q^T b$, Rx = y

- A = UΣV^T, solve Uy = b, y = U^Tb, ΣV^Tx = y, V^Tx = Σ⁻¹y, x = VΣ⁻¹y
 A = LL^T is a type of LU