AM205 Quiz 2. Numerical linear algebra. Solution

Q1
Which of the vector norm axioms are violated for the p-norm if $0<p<1$?
absolute homogeneity
\boxtimes triangle inequality
positive definiteness
none of the above

Q2

The product of two upper triangular matrices is an upper triangular matrix.
\boxtimes truefalse

Q3

Consider a matrix $A \in \mathbb{R}^{n \times n}$ and vector $b \in \mathbb{R}^{n}$. Assume that an LU factorization of A is known. What is the complexity of solving the linear system $A x=b$ using that LU factorization?
$\square \mathcal{O}(n)$
$\boxtimes \mathcal{O}\left(n^{2}\right)$$\mathcal{O}\left(n^{3}\right)$
none of the above

Q4

Let L_{j} be an elementary elimination matrix from one step of the LU factorization algorithm for a square matrix A. Which of the following statements are correct in general for any A ? The matrix L_{j} is
\boxtimes invertible
\boxtimes lower triangularorthogonal
\boxtimes sparse
none of the above
Answer: The matrix is not orthogonal since its inverse is obtained by negating the elements below the diagonal, which is different from its transpose.

Q5

Suppose that a square matrix A has a Cholesky factorization $A=L L^{T}$, where L is a square invertible lower triangular matrix. Which of the following statements are correct in general for any L ? The matrix A is
lower triangular
\boxtimes positive-definite
\boxtimes symmetricnone of the above

Q6

Which of the following factorizations of a square matrix are unique?

LU

$\square \mathrm{QR}$
\boxtimes none of the above

Q7

Suppose that F is a Householder reflector. Which of the following statements are correct in general?
$\boxtimes F$ is orthogonal
$\boxtimes F^{2}=I$none of the above

Q8

Suppose that Q is an orthogonal matrix and $Q=U \Sigma V^{T}$ is its singular value decomposition. Which of the following statements are correct in general?
$\boxtimes \Sigma$ is diagonal
$\boxtimes \Sigma$ is invertible
$\boxtimes\|\Sigma\|_{2}=1$none of the above
Answer: For any $Q,\|\Sigma\|_{2}=\|Q\|_{2}$. Since Q is orthogonal, $\|Q\|_{2}=1$.

Q9

Consider a matrix $A \in \mathbb{R}^{n \times n}$ and vector $b \in \mathbb{R}^{n}$. Which of the following factorizations, once known, reduce the complexity of solving the linear system $A x=b$ to $\mathcal{O}\left(n^{2}\right)$?

```
LU
| QR
| SVD
| Cholesky
    none of the above
```


Answer:

- $A=L U$, solve $L y=b, U x=y$
- $A=Q R$, solve $Q y=b, y=Q^{T} b, R x=y$
- $A=U \Sigma V^{T}$, solve $U y=b, y=U^{T} b, \Sigma V^{T} x=y, V^{T} x=\Sigma^{-1} y, x=V \Sigma^{-1} y$
- $A=L L^{T}$ is a type of LU

