AM205 Quiz 3. Numerical calculus

Q1 Nouvton Cotos formulas are quadratura rules that
Newton-Cotes formulas are quadrature rules that □ are obtained by integrating a polynomial interpolant □ use Newton's method to find the quadrature weights
Q2
Consider a quadrature rule $Q(f) = \sum_{k=0}^n w_k f(k)$ to approximate the integral $\int_0^2 f(x) dx$. This rule uses $n+1$ function values at integer points $0,\ldots,n$. However, only the points $0,1,2$ belong to the integration range $[0,2]$. Suppose that the constant weights w_0,\ldots,w_n are chosen to maximize the degree of polynomials on which this quadrature is exact. This implies that the quadrature rule is exact on all polynomials of degree (choose the highest)
$ \begin{array}{c} \square \ 2 \\ \square \ 3 \\ \square \ n \\ \square \ n+1 \end{array} $
Q3
Gauss quadrature using $n+1$ points is exact on all polynomials of degree (choose the highest)
Q4
The centered difference approximation $\frac{f(x+h)-f(x-h)}{2h}$ to $f'(x)$ is exact on all polynomials $f(x)$ of degree (choose the highest) $\begin{array}{c} \bigcirc 0 \\ \bigcirc 1 \\ \bigcirc 2 \\ \bigcirc 3 \\ \bigcirc 4 \end{array}$
Q5
Compare two methods for solving a system of linear ODEs: forward Euler (explicit) and backward Euler (implicit). The backward Euler method
 □ has a larger stability region □ has a higher order of accuracy □ requires solving a linear system at every time step

\square none of the above
Q6 Richardson extrapolation applies to an existing numerical method and can be used to □ increase its order of accuracy □ estimate its order of accuracy □ estimate its absolute error □ none of the above
Q7 Compare one-step and multistep methods for solving ODEs. To achieve the same order of accuracy, multistep methods require ☐ fewer function evaluations ☐ more function evaluations
Q8 Recall the θ -method for the heat equation. The method is fully explicit with $\theta=0$ and fully implicit with $\theta=1$. Which of the following methods are unconditionally stable? \Box Crank-Nicolson \Box θ -method with $\theta=0.25$ \Box θ -method with $\theta=0.5$ \Box θ -method with $\theta=1$ \Box none of the above
Q9 Examples of hyperbolic equations are □ advection equation □ heat equation □ Poisson equation □ wave equation □ none of the above
Q10 Recall the central difference method $\frac{U_j^{n+1}-U_j^n}{\Delta t}+c\frac{U_{j+1}^n-U_{j-1}^n}{2\Delta x}=0$ for the advection equation Even if $c\Delta t/\Delta x$ is small, the method cannot be used in practice for the following reasons: \Box does not satisfy the CFL condition \Box unconditionally unstable \Box requires two boundary conditions