AM205 Quiz 3. Numerical calculus. Solution

Q1

Newton-Cotes formulas are quadrature rules that

☑ are obtained by integrating a polynomial interpolant

□ use Newton's method to find the quadrature weights

Q2

Consider a quadrature rule $Q(f) = \sum_{k=0}^{n} w_k f(k)$ to approximate the integral $\int_0^2 f(x) dx$. This rule uses n + 1 function values at integer points $0, \ldots, n$. However, only the points 0, 1, 2 belong to the integration range [0, 2]. Suppose that the constant weights w_0, \ldots, w_n are chosen to maximize the degree of polynomials on which this quadrature is exact. This implies that the quadrature rule is exact on all polynomials of degree (choose the highest)

 $\square 2$ $\square 3$ $\square n$ $\square n+1$

Answer: Newton-Cotes formulas using an interpolating polynomial will be exact on polynomials of degree *n* regardless of the integration range. The interpolating polynomial coincides with the integrand.

Q3

Gauss quadrature using n + 1 points is exact on all polynomials of degree (choose the highest)

 $\begin{tabular}{l} \square & n \\ \boxtimes & 2n+1 \end{tabular} \end{tabular}$

Q4

The centered difference approximation $\frac{f(x+h)-f(x-h)}{2h}$ to f'(x) is exact on all polynomials f(x) of degree (choose the highest)

- $\Box 0$
- \Box 1
- ⊠ 2
- □ 3
- $\Box 4$

Q5

Compare two methods for solving a system of linear ODEs: forward Euler (explicit) and backward Euler (implicit). The backward Euler method

- \boxtimes has a larger stability region
- \Box has a higher order of accuracy
- \boxtimes requires solving a linear system at every time step
- $\hfill\square$ none of the above

Q6

Richardson extrapolation applies to an existing numerical method and can be used to

- \boxtimes increase its order of accuracy
- \boxtimes estimate its order of accuracy
- \boxtimes estimate its absolute error
- $\hfill\square$ none of the above

Q7

Compare one-step and multistep methods for solving ODEs. To achieve the same order of accuracy, multistep methods require

 $\boxtimes\,$ fewer function evaluations

 \Box more function evaluations

Q8

Recall the θ -method for the heat equation. The method is fully explicit with $\theta = 0$ and fully implicit with $\theta = 1$. Which of the following methods are unconditionally stable?

- \boxtimes Crank-Nicolson
- \Box θ -method with $\theta = 0.25$
- $\boxtimes \theta$ -method with $\theta = 0.5$
- $\boxtimes \theta$ -method with $\theta = 1$
- \Box none of the above

Q9

Examples of hyperbolic equations are

- \boxtimes advection equation
- \Box heat equation
- \Box Poisson equation
- \boxtimes wave equation
- $\hfill\square$ none of the above

Q10

Recall the central difference method $\frac{U_j^{n+1}-U_j^n}{\Delta t} + c \frac{U_{j+1}^n - U_{j-1}^n}{2\Delta x} = 0$ for the advection equation. Even if $c\Delta t / \Delta x$ is small, the method cannot be used in practice for the following reasons:

- □ does not satisfy the CFL condition
 ⊠ unconditionally unstable
 □ requires two boundary conditions