AM205 Quiz 4. Optimization

Q1
Suppose that $g: \mathbb{R} \to \mathbb{R}$ is a nonlinear smooth function with a fixed point $\alpha \in \mathbb{R}$ i.e. $g(\alpha) = \alpha$. Which of the following statements are true in general?
$\Box g'(\alpha) = 1$ $\Box g'(\alpha) < 1$ $\Box g'(\alpha) \le 1$ $\Box \text{ none of the above}$
Q2
Suppose that a sequence x_k converges linearly to α . Define $y_k = (x_k - \alpha)^2$. Which of the following statements is true in general?
$□$ y_k converges linearly to 0 $□$ y_k converges superlinearly to 0
Q3
Consider a scalar equation $f(x) = 0$ with a smooth and strictly convex function $f : \mathbb{R} \to \mathbb{R}$ Which of the following methods are expected to converge superlinearly ? Assume that the nitial guess is chosen sufficiently close to a solution.
 □ bisection method □ Newton's method □ secant method □ none of the above
Q4
Consider a continuous function $f : \mathbb{R} \to \mathbb{R}$. Which of the following statements are true?
□ if f is coercive on \mathbb{R} , then f has a global minimum in \mathbb{R} □ if f has a unique global minimum in \mathbb{R} , then f is coercive on \mathbb{R} □ none of the above
Q5
The function $f(x) = x $ defined on \mathbb{R} is
 □ coercive □ convex □ strictly convex □ none of the above

Q6
The Hessian of the function $f(x,y) = x^2 + y^2$ is
 □ positive definite □ negative definite □ indefinite □ none of the above
Q7
To optimize a function $f: \mathbb{R}^n \to \mathbb{R}$, the BFGS algorithm relies on evaluations of
\square the function f \square the gradient ∇f \square the Hessian H_f
Q8
Recall the Lagrangian function $\mathcal{L}(b,\lambda) = b^T b + \lambda^T (Ab - y)$ corresponding to an underdetermined linear least squares problem. Assume that $A \in \mathbb{R}^{m \times n}$ has full rank and $m \le n$. Suppose that this function is minimized using Newton's method with a zero initial guess $b_0 = 0$ and $\lambda_0 = 0$. How many iterations would Newton's method need to satisfy $\ \nabla \mathcal{L}\ _2 < 10^{-5}$?
□ one □ depends on $ A _2$ □ depends on $ A _2$ and $ y _2$