AM205 Quiz 4. Optimization. Solution

Q1

Suppose that $g : \mathbb{R} \to \mathbb{R}$ is a nonlinear smooth function with a fixed point $\alpha \in \mathbb{R}$, i.e. $g(\alpha) = \alpha$. Which of the following statements are true in general?

 $\Box g'(\alpha) = 1$ $\Box |g'(\alpha)| < 1$ $\Box |g'(\alpha)| \le 1$ $\boxtimes \text{ none of the above}$

Answer: For example, consider a function $\hat{g}(x) = g(x) + c(x - \alpha)$ which has the same fixed point, but can have an arbitrary derivative depending on *c*.

Q2

Suppose that a sequence x_k converges linearly to α . Define $y_k = (x_k - \alpha)^2$. Which of the following statements is true in general?

- \boxtimes *y*^{*k*} converges linearly to 0
- \Box *y*^{*k*} converges superlinearly to 0

Answer: Linear convergence means $\lim_{k\to\infty} |x_{k+1} - \alpha| / |x_k - \alpha| = \mu$, where $0 < \mu < 1$. For y_k , we have $\lim_{k\to\infty} |y_{k+1}| / |y_k| = \lim_{k\to\infty} (x_{k+1} - \alpha)^2 / (x_k - \alpha)^2 = \mu^2$, so y_k converges linearly to 0.

Q3

Consider a scalar equation f(x) = 0 with a smooth and strictly convex function $f : \mathbb{R} \to \mathbb{R}$. Which of the following methods are expected to converge **superlinearly**? Assume that the initial guess is chosen sufficiently close to a solution.

- $\hfill\square$ bisection method
- \boxtimes Newton's method
- \boxtimes secant method
- $\hfill\square$ none of the above

Q4

Consider a continuous function $f : \mathbb{R} \to \mathbb{R}$. Which of the following statements are true?

- \boxtimes if *f* is coercive on \mathbb{R} , then *f* has a global minimum in \mathbb{R}
- \Box if *f* has a unique global minimum in \mathbb{R} , then *f* is coercive on \mathbb{R}
- \Box none of the above

Q5

The function f(x) = |x| defined on \mathbb{R} is

- \boxtimes coercive
- \boxtimes convex
- \Box strictly convex
- $\hfill\square$ none of the above

Q6

The Hessian of the function $f(x, y) = x^2 + y^2$ is

- \boxtimes positive definite
- \Box negative definite
- $\hfill\square$ indefinite
- $\hfill\square$ none of the above

Q7

To optimize a function $f : \mathbb{R}^n \to \mathbb{R}$, the BFGS algorithm relies on evaluations of

- \Box the function *f*
- \boxtimes the gradient ∇f
- \Box the Hessian H_f

Q8

Recall the Lagrangian function $\mathcal{L}(b, \lambda) = b^T b + \lambda^T (Ab - y)$ corresponding to an underdetermined linear least squares problem. Assume that $A \in \mathbb{R}^{m \times n}$ has full rank and $m \leq n$. Suppose that this function is minimized using Newton's method with a zero initial guess $b_0 = 0$ and $\lambda_0 = 0$. How many iterations would Newton's method need to satisfy $\|\nabla \mathcal{L}\|_2 < 10^{-5}$?

- \boxtimes one
- \Box depends on $||A||_2$
- \Box depends on $||A||_2$ and $||y||_2$

Answer: Newton's method solves any quadratic optimization problem exactly after one iteration.