AM205 Quiz 4. Optimization. Solution

Q1
Suppose that $g: \mathbb{R} \rightarrow \mathbb{R}$ is a nonlinear smooth function with a fixed point $\alpha \in \mathbb{R}$, i.e. $g(\alpha)=\alpha$. Which of the following statements are true in general?
$\square g^{\prime}(\alpha)=1$
$\square\left|g^{\prime}(\alpha)\right|<1$
$\square\left|g^{\prime}(\alpha)\right| \leq 1$
\boxtimes none of the above
Answer: For example, consider a function $\hat{g}(x)=g(x)+c(x-\alpha)$ which has the same fixed point, but can have an arbitrary derivative depending on c.

Q2

Suppose that a sequence x_{k} converges linearly to α. Define $y_{k}=\left(x_{k}-\alpha\right)^{2}$. Which of the following statements is true in general?
$\boxtimes y_{k}$ converges linearly to 0
y_{k} converges superlinearly to 0
Answer: Linear convergence means $\lim _{k \rightarrow \infty}\left|x_{k+1}-\alpha\right| /\left|x_{k}-\alpha\right|=\mu$, where $0<\mu<1$. For y_{k}, we have $\lim _{k \rightarrow \infty}\left|y_{k+1}\right| /\left|y_{k}\right|=\lim _{k \rightarrow \infty}\left(x_{k+1}-\alpha\right)^{2} /\left(x_{k}-\alpha\right)^{2}=\mu^{2}$, so y_{k} converges linearly to 0 .

Q3

Consider a scalar equation $f(x)=0$ with a smooth and strictly convex function $f: \mathbb{R} \rightarrow \mathbb{R}$. Which of the following methods are expected to converge superlinearly? Assume that the initial guess is chosen sufficiently close to a solution.bisection method
\boxtimes Newton's method
\boxtimes secant methodnone of the above

Q4

Consider a continuous function $f: \mathbb{R} \rightarrow \mathbb{R}$. Which of the following statements are true?
\boxtimes if f is coercive on \mathbb{R}, then f has a global minimum in \mathbb{R}
if f has a unique global minimum in \mathbb{R}, then f is coercive on \mathbb{R}none of the above

Q5

The function $f(x)=|x|$ defined on \mathbb{R} is
\boxtimes coercive
\boxtimes convexstrictly convexnone of the above

Q6

The Hessian of the function $f(x, y)=x^{2}+y^{2}$ is
\boxtimes positive definitenegative definite \square indefinitenone of the above

Q7
To optimize a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, the BFGS algorithm relies on evaluations of the function f
\boxtimes the gradient ∇fthe Hessian H_{f}

Q8

Recall the Lagrangian function $\mathcal{L}(b, \lambda)=b^{T} b+\lambda^{T}(A b-y)$ corresponding to an underdetermined linear least squares problem. Assume that $A \in \mathbb{R}^{m \times n}$ has full rank and $m \leq n$. Suppose that this function is minimized using Newton's method with a zero initial guess $b_{0}=0$ and $\lambda_{0}=0$. How many iterations would Newton's method need to satisfy $\|\nabla \mathcal{L}\|_{2}<10^{-5}$?
\boxtimes onedepends on $\|A\|_{2}$depends on $\|A\|_{2}$ and $\|y\|_{2}$
Answer: Newton's method solves any quadratic optimization problem exactly after one iteration.

