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Scientific Computing
Computation is now recognized as the "third pillar" of science (along with
theory and experiment). Why?

Practically relevant mathematical models do not have analytical solutions

Large amounts of data need to be processed automatically

Modern computers can handle large-scale problems
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What is Scientific Computing
Scientific computing is closely related to numerical analysis

"Numerical analysis is the study of algorithms for the problems of continuous

mathematics" [Nick Trefethen, SIAM News, 1992]

Continuous mathematics involves real numbers as opposed to integers

Numerical analysis studies these algorithms 

Scientific computing applies them to practical problems

Scientific computing is distinct from Computer Science, which focuses on
discrete mathematics (e.g. graph theory)
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Applications of  
Scientific Computing
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Cosmology
Cosmological simulations to test theories of galaxy formation
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Biology
Protein folding

Statistical analysis of gene expression
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Computational Fluid Dynamics
CFD simulations replace or complement wind-tunnel experiments

Computational geometry is easier to tweak than a physical model

Simulations provide the entire flow field, not available experimentally
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Geophysics
Experimental data is only available on Earth's surface

Simulations help to test models of the interior
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Calculation of π
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Calculation of 

 is the ratio of a circle's circumference to its diameter

Babylonians (1900 BC): 

From the Old Testament (1 Kings 7:23): 
“And he made the molten sea of ten cubits from brim to brim, round in

compass, and the height thereof was five cubits; and a lines of thirty cubits

did compass it round about” 
Implies 

Egyptians (1850 BC): 

π

π

3.125

π ≈ 3

(  ) ≈9
16 2 3.16
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Calculation of 

Archimedes (287-212 BC) bounded  by perimeters of regular polygons:
inscribed and superscribed

For 96-sided polygon:    (interval length: 0.00201)

Example of an infinite process converging to the exact solution

Provides both the estimate and error bounds

π

π

 <71
223 π <  7

22
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Calculation of 

James Gregory (1638-1675) discovers the arctangent series

Setting  gives

but it converges very slowly

π

arctanx = x −  +
3
x3

 −
5
x5

 +
7
x7

…

x = 1

 =
4
π
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3
1

 −
5
1

 +
7
1

…
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Calculation of 

The arctangent series converges faster for points closer to 0

John Machin (1680-1752) observed that

and computed 100 digits of 

Derivation 

π

arctanx = x −  +
3
x3

 −
5
x5

 +
7
x7

…

 =
4
π

4 arctan  −
5
1

arctan  

239
1

π

tanα =  5
1

tan 2α =  =1−tan α2
2 tan α

 12
5

tan 4α =  =1−tan 2α2

2 2

2 tan 2α
 119

120

120

tan 4α −  =( 4
π )  =1+tan 4α

tan 4α−1
 239

1
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Calculation of 
Users of Manchin's formula

1706 John Machin 100 digits

1719 Thomas de Lagny 112 digits

1739 Matsunaga Ryohitsu 50 digits

1794 Georg von Vega 140 digits

1844 Zacharias Dase 200 digits

1847 Thomas Clausen 248 digits

1853 William Rutherford 440 digits

1876 William Shanks 707 digits

π
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Sources of Error  
in Scientific Computing
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Sources of Error in Scientific Computing
There are several sources of error in solving real-world problems

Some are beyond our control  
(e.g. uncertainty in modeling parameters or initial conditions)

Some are introduced by our numerical approximations
Truncation/discretization error: 
Objects from continuous mathematics need to be discretized 
(finite differences, truncated infinite series...)
Rounding error: 
Computers work with finite precision arithmetic
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Sources of Error in Scientific Computing
It is crucial to understand and control the error introduced by numerical
approximation, otherwise the results might be garbage

This is a major part of Scientific Computing, called error analysis

Error analysis becomes more important for larger scale problems as errors
accumulate

Most people are familiar with rounding error, 
but discretization error is far more important in practice
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Discretization Error vs. Rounding Error
Consider a finite difference approximation to 

From Taylor series (for 

we see that

Suppose , then bound on discretization error is

f (x)′

f  (x;h) =diff  

h

f(x + h) − f(x)

θ ∈ [x,x + h])

f(x + h) = f(x) + hf (x) +′ f (θ)h /2′′ 2

f  (x;h) =diff  =
h

f(x + h) − f(x)
f (x) +′ f (θ)h/2′′

∣f (θ)∣ ≤′′ M

∣f (x) −′ f  (x;h)∣ ≤diff Mh/2
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Discretization Error vs. Rounding Error
But we can’t compute  in exact arithmetic

Let  denote finite precision approximation of 

Numerator of  introduces rounding error  
(on modern computers , will discuss this shortly)

Hence we have the rounding error

f  (x;h)diff

  (x;h)f
~
diff f  (x;h)diff

  f
~
diff ≲ ϵ∣f(x)∣

ϵ ≈ 10−16

 f  (x;h) −diff   (x;h)  ≲f
~
diff   −   =

h

f(x+h)−f(x)
h

f(x+h)−f(x)+ϵf(x)
ϵ∣f(x)∣/h
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Discretization Error vs. Rounding Error
Then we can bound the total error (discretization and rounding) 

Since  is so small, here we expect discretization error to dominate 
until  gets sufficiently small

  

∣f (x) −   (x;h)∣′ f
~
diff = ∣f (x) − f  (x;h) + f  (x;h) −   (x;h)∣′

diff diff f
~
diff

≤ ∣f (x) − f  (x;h)∣ + ∣f  (x;h) −   (x;h)∣′
diff diff f

~
diff

≤ Mh/2 + ϵ∣f(x)∣/h

ϵ

h
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Discretization Error vs. Rounding Error
Consider . 
Error of  at  as function of  

f(x) = exp(5x)
f  (x,h)diff x = 1 h
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Discretization Error vs. Rounding Error
Note that in the finite difference example, 
we observe error growth due to rounding as 

A more common situation (that we’ll see in Unit 1, for example) 
is that the error plateaus at around  due to rounding error  
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100
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ro

r
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ϵ
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Absolute vs. Relative Error
Recall our bound 

This is a bound on Absolute Error

Generally more interesting to consider Relative Error

Relative error is a dimensionless quantity

If unknown, true value is replaced with an estimate

∣f (x) −′
  (x;h)∣ ≤f

~
diff Mh/2 + ϵ∣f(x)∣/h

Absolute Error = true value − approximate value

Relative Error ≡  

true value
Absolute Error
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Absolute vs. Relative Error
For our finite difference example, plotting relative error just rescales the
error values
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Convergence Plots
We have shown several plots of error as a function of a discretization
parameter

In general, these plots are very important in scientific computing to
demonstrate that a numerical method is behaving as expected

To display convergence data in a clear way, it is important to use
appropriate axes for our plots
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Convergence Plots
Most often we will encounter algebraic convergence, where error decreases as

 for some 

Algebraic convergence: If , then

Plotting algebraic convergence on log–log axes asymptotically yields a
straight line with slope 

Hence a good way to deduce the algebraic convergence rate is by comparing
error to  on log–log axes

Chq C, q ∈ R
E = Chq

logE = logC + q log h

q

Chq
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Convergence Plots
Sometimes we will encounter exponential convergence, where error decays as

 as 

If  then

Hence for exponential convergence, better to use log-linear axes 
(like the previous “error plateau” plot)

Ce−qN N → ∞

E = Ce−qN

logE = logC − qN
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Numerical Sensitivity
In practical problems we will always have input perturbations 
(modeling uncertainty, rounding error)

Let , and denote perturbed input 

Also, denote perturbed output by , and 

The function  is sensitive to input perturbations if 

This is sensitivity inherent in , independent of any approximation (though
a numerical approximation  can exacerbate sensitivity)

y = f(x) =x̂ x + Δx

=ŷ f( )x̂  =ŷ y + Δy

f Δy ≫ Δx

f

 ≈f̂ f
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Sensitivity and Conditioning
For a sensitive problem,  
small input perturbation leads to large output perturbation

Can be made quantitative with the concept of (relative) condition number

Problems with  are called ill-conditioned. 
In such problems, small input perturbations are amplified

Condition number =  

∣Δx/x∣
∣Δy/y∣

Condition number ≫ 1
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Sensitivity and Conditioning
Condition number can be analyzed for various problem types (independent
of algorithm used to solve the problem). Examples:

Function evaluation, 
Matrix multiplication,  (solve for  given )
Linear system,  (solve for  given )

y = f(x)
Ax = b b x

Ax = b x b
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Conditioning: Function Evaluation
Problem: evaluate function, 

Perturbed problem: 

Change in : 

Change in : 

Condition number is the ratio of relative changes

y = f(x)

y + Δy = f(x + Δx)

x Δx

y Δy ≈ f (x)Δx′

κ =  =
Δx/x

f (x)Δx/f(x)′
 

f(x)
f (x)x′
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Conditioning: Matrix Multiplication
Problem: multiply matrix and vector,  

Perturbed problem:  

Condition number is

Matrix norm

Condition number  from linear algebra is an upper bound for 

b = Ax

b + Δb = A(x + Δx) ⟹ Δb = AΔx

κ =  =
∥Δx∥/∥x∥
∥Δb∥/∥b∥

  =
∥Δx∥

∥AΔx∥
∥Ax∥
∥x∥

  

∥Δx∥
∥AΔx∥

∥b∥
∥A b∥−1

∥A∥ =   

v=0
max

∥v∥
∥Av∥

κ(A) κ

κ =   ≤
∥Δx∥

∥AΔx∥
∥b∥

∥A b∥−1

∥A∥ ∥A ∥ =−1 κ(A)
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Conditioning: Linear System
Problem: solve linear system  

Perturbed problem:  

Condition number is

Matrix norm

Condition number  from linear algebra is an upper bound for 

Ax = b

A(x + Δx) = b + Δb ⟹ AΔx = Δb

κ =  =
∥Δb∥/∥b∥
∥Δx∥/∥x∥

  =
∥AΔx∥
∥Δx∥

∥x∥
∥Ax∥

  

∥Δb∥
∥A Δb∥−1

∥x∥
∥Ax∥

∥A∥ =   

v=0
max

∥v∥
∥Av∥

κ(A) κ

κ =   ≤
∥Δb∥

∥A Δb∥−1

∥x∥
∥Ax∥

∥A ∥ ∥A∥ =−1 κ(A)
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Exercise: Diagonal Matrix

A =      

d  1

0
0

0
d  2

0

0
0
d  3

Matrix norm

∥A∥ =   =
v=0

max
∥v∥

∥Av∥
max(∣d  ∣, ∣d  ∣, ∣d  ∣)1 2 3

Condition number

κ(A) = ∥A∥∥A ∥ =−1
 

min(∣d  ∣, ∣d  ∣, ∣d  ∣)1 2 3

max(∣d  ∣, ∣d  ∣, ∣d  ∣)1 2 3
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Stability of an Algorithm
In practice, we solve problems by applying a numerical method to a
mathematical problem, e.g. apply Gaussian elimination to 

To obtain an accurate answer, we need to apply a stable numerical method
to a well-conditioned mathematical problem

Question: What do we mean by a stable numerical method?

Answer: Roughly speaking, the numerical method doesn’t accumulate error
(e.g. rounding error) and produce garbage

We will make this definition more precise shortly, but first, we discuss
rounding error and finite-precision arithmetic

Ax = b
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Code Examples
From here on, a number of code examples will be provided

They will be available via Git repository  

Git is one example of version control software, which tracks the changes of
files in a software project. Features:

Compare files to any previous version
Merge changes in the same files by multiple people
Not suitable for binary files (Word, PDF, images, videos, etc)

Note: Avoid storing large binary files in repositories. 
They cannot be removed without rewriting history

github.com/pkarnakov/am205

36
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Git
Git can be installed as a command-line utility on all major systems.

For authentication, you will need to add an SSH key to your profile at

Follow this  to generate an SSH key

To download a copy of the repository, use

Then, at later times, you can type

to obtain any updated files.  for Git are also available

code.harvard.edu

guide

git clone git@code.harvard.edu:AM205/public.git

git pull

Graphical interfaces

37

https://code.harvard.edu/settings/keys
https://docs.github.com/en/authentication/connecting-to-github-with-ssh/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent
https://git-scm.com/download/gui/windows


Finite-Precision Arithmetic
Key point: we can only represent a finite and discrete subset of the real
numbers on a computer.

The standard approach in modern hardware is to use binary floating point
numbers (basically “scientific notation” in base 2),

x = ±(1 + d  2 + d  2 + … + d 2 ) × 21
−1

2
−2

p
−p E

= ±(1.d  d  … d  )  × 21 2 p 2
E
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Finite-Precision Arithmetic
We store

Note that the term bit is a contraction of “binary digit”

This format assumes that  to save a mantissa bit, 
but sometimes  is required, such as to represent zero.

The exponent resides in an interval .

   

1 sign bit

 ±

p mantissa bits

 d  , d  , … , d  1 2 p

exponent bits

 E

d  =0 1
d  =0 0

L ≤ E ≤ U

39



IEEE Floating Point Arithmetic
Universal standard on modern hardware is IEEE floating point arithmetic
(IEEE 754), adopted in 1985

Development led by Prof. William Kahan (UC Berkeley), who received the
1989 Turing Award for his work

total bits

IEEE single precision 32 23 -126 127

IEEE double precision 64 52 -1022 1023

Note that single precision has 8 exponent bits but only 254 (not 256)
different values of , since some exponent bits are reserved to represent
special numbers

p L U

E
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Exceptional Values
These exponents are reserved to indicate special behavior, including values
such as Inf and NaN:

Inf = “infinity”, e.g.  (also )
NaN = “not a number”, e.g. , 

1/0 −1/0 = −Inf
0/0 Inf/Inf
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IEEE Floating Point Arithmetic
Let  denote the floating point numbers. Then  and .

Question: How should we represent a real number , which is not in ?

Answer: There are two cases to consider:

Case 1:  is outside the range of  (too small or too large)
Case 2: The mantissa of  requires more than  bits.

F F ⊂ R ∣F∣ < ∞

x F

x F
x p
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IEEE Floating Point Arithmetic
Case 1:  is outside the range of  (too small or too large)

Too small:
Smallest positive value that can be represented in  
double precision is 
For a value smaller than this we get underflow, 
and the value typically set to 0

Too large:
Largest  (  and all mantissa bits are 1) 
is approximately 
For values larger than this we get overflow, 
and the value typically gets set to Inf

x F

≈ 10−323

x ∈ F E = U

2 ≈1024 10308
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IEEE Floating Point Arithmetic
Case 2: The mantissa of  requires more than  bits

Need to round  to a nearby floating point number

Let  denote our rounding operator

There are several different options: 
round up, round down, round to nearest, etc

This introduces a rounding error
absolute rounding error 
relative rounding error 

x p

x

round : R → F

x − round(x)
(x − round(x))/x
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Machine Precision
It is important to be able to quantify this rounding error — it’s related to
machine precision, often denoted as  or 

 is the difference between 1 and the next floating point number after 1,
therefore 

In IEEE double precision, 

ϵ ϵ  mach

ϵ

ϵ = 2−p

ϵ = 2 ≈−52 2.22 × 10−16
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Rounding Error
Let .

Then  for , where 
 and .

 or  depending on the rounding rule, 
and hence 

Also, 

x = (1.d  d  … d  d  )  ×1 2 p p+1 2 2 ∈E R  +

x ∈ [x  ,x  ]− + x  ,x  ∈− + F
x  =− (1.d  d  … d  )  ×1 2 p 2 2E x  =+ x  +− ϵ × 2E

round(x) = x  − x  +

∣round(x) − x∣ < ϵ × 2E

∣x∣ ≥ 2E

46



Rounding Error
Hence we have a relative error of less than 

Another standard way to write this is

where  and 

Hence rounding gives the correct answer to within a factor of 

ϵ

  < ϵ
x

round(x) − x

round(x) = x 1 +  = x(1 + δ)(
x

round(x) − x
)

δ =  

x
round(x)−x ∣δ∣ < ϵ

1 + ϵ
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Floating Point Operations
An arithmetic operation on floating point numbers is called a “floating point
operation”: , , ,  versus , , , 

Computer performance is often measured in Flop/s:  
number of Floating Point OPerations per second

Supercomputers are ranked based on number of flops achieved in the
LINPACK test, which solves dense linear algebra problems

Currently, the fastest computers are in the 100 petaflop range: 
1 petaflop =  floating point operations per second

⊕ ⊖ ⊗ ⊘ + − × /

1015

48



Supercomputers
See  for an up-to-date list of the fastest supercomputers

 is from LINPACK,  is from clock rate

www.top500.org

R  max R  peak 49

http://www.top500.org/


Supercomputers
Modern supercomputers are very large, link many processors together with
fast interconnect to minimize communication time

 
 at Oak Ridge is 1102 PFlop/sFrontier 50

https://www.top500.org/system/180047


Floating Point Operation Error
IEEE standard guarantees that for 

where  and  represent one of the four arithmetic operations

Hence from our discussion of rounding error, it follows that for 

for some 

x, y ∈ F

x⊛ y = round(x ∗ y)

∗ ⊛
x, y ∈ F

x⊛ y = (x ∗ y)(1 + δ)

∣δ∣ < ϵ
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Loss of Precision
Machine precision can be tested. See 

Since  is so small, we typically lose very little precision per operation

[unit0/precision.py]

ϵ
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https://github.com/pkarnakov/am205/tree/main/examples/unit0/precision.py


IEEE Floating Point Arithmetic
For more detailed discussion of floating point arithmetic, see:

Michael L. Overton. Numerical Computing with IEEE Floating Point

Arithmetic. SIAM, 2001 10.1137/1.9780898718072 53

https://doi.org/10.1137/1.9780898718072


Numerical Stability of an Algorithm
We have discussed rounding for a single operation, but in AM205 we will
study numerical algorithms that require many operations

For an algorithm to be useful, it must be stable in the sense that rounding
errors do not accumulate and result in “garbage” output

More precisely, numerical analysts aim to prove backward stability: 
The method gives the exact answer to a slightly perturbed problem

For example, a numerical method for solving  should give the exact
answer for  for small , 

Ax = b

(A + ΔA)x = (b + Δb) ΔA Δb
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Numerical Stability of an Algorithm
We note the importance of conditioning: 
backward stability doesn’t help us if the mathematical problem is ill-
conditioned

For example, if  is ill-conditioned then a backward stable algorithm for
solving  can still give large error for 

Backward stability analysis is a deep subject which we do not cover in detail
in AM205
We will, however, compare algorithms with different stability properties and
observe the importance of stability in practice

A

Ax = b x
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