Applied Mathematics 205 Unit 1. Data Fitting

Lecturer: Petr Karnakov

September 7, 2022

Motivation

- Data fitting: Construct a continuous function that represents discrete data. Fundamental topic in Scientific Computing
- We will study two types of data fitting
- interpolation: fit the data points exactly
- least-squares: minimize error in the fit (e.g. useful when there is experimental error)
- Data fitting helps us to
- interpret data: deduce hidden parameters, understand trends
- process data: reconstructed function can be differentiated, integrated, etc

Motivation

- Suppose we are given the following data points

- Such data could represent
- time series data (stock price, sales figures)
- laboratory measurements (pressure, temperature)
- astronomical observations (star light intensity)

Motivation

- We often need values between the data points
- Easiest thing to do: "connect the dots" (piecewise linear interpolation)

Question: What if we want a smoother approximation?

Motivation

- We have 11 data points, we can use a degree 10 polynomial

$$
\begin{aligned}
y & =2.98+16.90 x-219.77 x^{2}+1198.07 x^{3}-3518.54 x^{4}+6194.09 x^{5} \\
& -6846.49 x^{6}+4787.40 x^{7}-2053.91 x^{8}+492.90 x^{9}-50.61 x^{10}
\end{aligned}
$$

- However, a degree 10 interpolant doesn't seem to capture the underlying pattern, has bumps and changes rapidly

Motivation

- Let's try linear regression:
minimize the error in a linear approximation of the data
- Best linear fit: $y=2.94+0.25 x$

- Clearly not a good fit!

Motivation

- We can use least-squares fitting
to generalize linear regression to higher-order polynomials
- Best quadratic fit: $y=3.22-0.68 x+0.47 x^{2}$

- Still not so good ...

Motivation

- Best cubic fit: $y=2.97+1.32 x-2.16 x^{2}+0.88 x^{3}$

- Looks good! A "cubic model" captures this data well
- In real-world problems it can be challenging to find the "right" model for experimental data

Motivation

- Data fitting is often performed with multi-dimensional data
- 2D example: points (x, y) with feature z

- See [examples/unit1/fit_2d.py]

Motivation: Summary

- Interpolation is a fundamental tool in Scientific Computing, provides simple representation of discrete data
- Common to differentiate, integrate, optimize an interpolant
- Least squares fitting is typically more useful for experimental data
- Removes noise using a lower-order model
- Data-fitting calculations are often performed with big datasets
- Efficient and stable algorithms are very important

Polynomial Interpolation

- Let \mathbb{P}_{n} denote the set of all polynomials of degree n on \mathbb{R}
- Polynomial $p(\cdot ; b) \in \mathbb{P}_{n}$ has the form

$$
p(x ; b)=b_{0}+b_{1} x+b_{2} x^{2}+\ldots+b_{n} x^{n}
$$

with coefficients $b=\left[b_{0}, b_{1}, \ldots, b_{n}\right]^{T} \in \mathbb{R}^{n+1}$

Polynomial Interpolation

- Suppose we have data

$$
\mathcal{S}=\left\{\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\right\}
$$

where $x_{0}, x_{1}, \ldots, x_{n}$ are called interpolation points

- Goal: Find a polynomial that passes through every data point in \mathcal{S}
- Therefore, we must have $p\left(x_{i} ; b\right)=y_{i}$ for each $i=0, \ldots, n$
$\Longrightarrow n+1$ equations
- For uniqueness, we should look for a polynomial with $n+1$ parameters \Longrightarrow look for $p \in \mathbb{P}_{n}$

Polynomial Interpolation

- This leads to the following system of $n+1$ equations with $n+1$ unknowns

$$
\begin{aligned}
b_{0}+b_{1} x_{0}+b_{2} x_{0}^{2}+\ldots+b_{n} x_{0}^{n}= & y_{0} \\
b_{0}+b_{1} x_{1}+b_{2} x_{1}^{2}+\ldots+b_{n} x_{1}^{n}= & y_{1} \\
\vdots & \\
b_{0}+b_{1} x_{n}+b_{2} x_{n}^{2}+\ldots+b_{n} x_{n}^{n}= & y_{n}
\end{aligned}
$$

- The system is linear with respect to unknown coefficients b_{0}, \ldots, b_{n}

Vandermonde Matrix

- The same system in matrix form

$$
V b=y
$$

with

- unknown coefficients $b=\left[b_{0}, b_{1}, \ldots, b_{n}\right]^{T} \in \mathbb{R}^{n+1}$
- given values $y=\left[y_{0}, y_{1}, \ldots, y_{n}\right]^{T} \in \mathbb{R}^{n+1}$
- matrix $V \in \mathbb{R}^{(n+1) \times(n+1)}$ called the Vandermonde matrix

$$
\left[\begin{array}{ccccc}
1 & x_{0} & x_{0}^{2} & \cdots & x_{0}^{n} \\
1 & x_{1} & x_{1}^{2} & \cdots & x_{1}^{n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & x_{n} & x_{n}^{2} & \cdots & x_{n}^{n}
\end{array}\right]
$$

Existence and Uniqueness

- Let's prove that if the $n+1$ interpolation points are distinct, then $V b=y$ has a unique solution
- We know from linear algebra that for a square matrix A : if $A z=0 \Longrightarrow z=0$, then $A b=y$ has a unique solution
- If $V b=0$, then $p(\cdot ; b) \in \mathbb{P}_{n}$ has $n+1$ distinct roots
- Therefore we must have $p(\cdot ; b)=0$, or equivalently $b=0$
- Hence $V b=0 \Longrightarrow b=0$ so $V b=y$ has a unique solution for any $y \in \mathbb{R}^{n+1}$

Vandermonde Matrix

- This tells us that we can find the polynomial interpolant by solving the Vandermonde system $V b=y$
- However, this may be a bad idea since V is ill-conditioned

Monomial Interpolation

- The problem is that Vandermonde matrix corresponds to interpolation using the monomial basis
- Monomial basis for \mathbb{P}_{n} is $\left\{1, x, x^{2}, \ldots, x^{n}\right\}$
- As n increases, basis functions become increasingly indistinguishable, columns are more "linearly dependent", the matrix is ill-conditioned
- See [examples/unit1/vander_cond.py], condition number of Vandermonde matrix

Monomial Basis

- Question: What is the practical consequence of this ill-conditioning?
- Answer:
- We want to solve $V b=y$
- Finite precision arithmetic gives an approximation \hat{b}
- Residual $\|V \hat{b}-y\|$ will be small but $\|b-\hat{b}\|$ can still be large! (will be discussed in Unit 2)
- Similarly, small perturbation in b can give large perturbation in $V b$
- Large perturbations in $V b$ can yield large $\|V b-y\|$, hence a "perturbed interpolant" becomes a poor fit to the data

Monomial Basis

- These sensitivities are directly analogous to what happens with an ill-conditioned basis in \mathbb{R}^{n}
- Consider a basis v_{1}, v_{2} of \mathbb{R}^{2}

$$
v_{1}=[1,0]^{T}, \quad v_{2}=[1,0.0001]^{T}
$$

- Let's express two close vectors

$$
y=[1,0]^{T}, \quad \tilde{y}=[1,0.0005]^{T}
$$

in terms of this basis i.e. $y=b_{1} v_{1}+b_{2} v_{2}$ and $\tilde{y}=\tilde{b}_{1} v_{1}+\tilde{b}_{2} v_{2}$

- By solving a 2×2 linear system in each case, we get

$$
b=[1,0]^{T}, \quad \tilde{b}=[-4,5]^{T}
$$

- The answer b is highly sensitive to perturbations in y

Monomial Basis

- The same happens with interpolation using a monomial basis
- The answer (coefficients of polynomial) is highly sensitive to perturbations in the data
- If we perturb b slightly, we can get a large perturbation in $V b$ so the resulting polynomial no longer fits the data well
- Example of interpolation using Vandermonde matrix [examples/unit1/vander_interp.py]

Interpolation

- We would like to avoid these kinds of sensitivities to perturbations ... How can we do better?
- Try to construct a basis such that the interpolation matrix is the identity matrix
- This gives a condition number of 1 , and we also avoid solving a linear system with a dense $(n+1) \times(n+1)$ matrix

Lagrange Interpolation

- Key idea: Construct basis $\left\{L_{k} \in \mathbb{P}_{n}, k=0, \ldots, n\right\}$ such that

$$
L_{k}\left(x_{i}\right)= \begin{cases}0, & i \neq k \\ 1, & i=k\end{cases}
$$

- The polynomials that achieve this are called Lagrange polynomials
- Lagrange polynomials are given by:

$$
L_{k}(x)=\prod_{j=0, j \neq k}^{n} \frac{x-x_{j}}{x_{k}-x_{j}}
$$

- Then the interpolant can be expressed as

$$
p(x)=\sum_{k=0}^{n} y_{k} L_{k}(x)
$$

Lagrange Interpolation

- Example: two Lagrange polynomials of degree 5 constructed on points $x \in\{-1,-0.6,-0.2,0.2,0.6,1\}$

Lagrange Interpolation

- Now we can use Lagrange polynomials to interpolate discrete data

- We have solved the problem of interpolating discrete data!

Algorithmic Complexity

- Exercise 1: How does the cost of evaluating a polynomial at one point x scale with n ?

$$
p(x)=b_{0}+b_{1} x+b_{2} x^{2}+\ldots+b_{n} x^{n}
$$

- Exercise 2: How does the cost of evaluating a Lagrange interpolant at one point x scale with n ?

$$
p(x)=\sum_{k=0}^{n} y_{k} \prod_{j=0, j \neq k}^{n} \frac{x-x_{j}}{x_{k}-x_{j}}
$$

Interpolation for Function Approximation

- We now turn to a different question:

Can we use interpolation to accurately approximate continuous functions?

- Suppose the interpolation data come from samples of a continuous function f on $[a, b] \subset \mathbb{R}$
- Then we'd like the interpolant to be "close to" f on $[a, b]$
- The error in this type of approximation can be quantified from the following theorem due to Cauchy

$$
f(x)-p_{n}(x)=\frac{f^{(n+1)}(\theta)}{(n+1)!}\left(x-x_{0}\right) \ldots\left(x-x_{n}\right)
$$

for some $\theta(x) \in(a, b)$

Polynomial Interpolation Error

- Here we prove this result in the case $n=1$
- Let $p_{1} \in \mathbb{P}_{1}$ interpolate $f \in C^{2}[a, b]$ at $\left\{x_{0}, x_{1}\right\}$
- For some $\lambda \in \mathbb{R}$, let

$$
q(x)=p_{1}(x)+\lambda\left(x-x_{0}\right)\left(x-x_{1}\right)
$$

here q is quadratic and interpolates f at $\left\{x_{0}, x_{1}\right\}$

- Fix an arbitrary point $\hat{x} \in\left(x_{0}, x_{1}\right)$ and require $q(\hat{x})=f(\hat{x})$ to get

$$
\lambda=\frac{f(\hat{x})-p_{1}(\hat{x})}{\left(\hat{x}-x_{0}\right)\left(\hat{x}-x_{1}\right)}
$$

- Goal: Get an expression for λ, and eventually for $f(\hat{x})-p_{1}(\hat{x})$

Polynomial Interpolation Error

- Denote the error $e(x)=f(x)-q(x)$
- $e(x)$ has 3 roots in $\left[x_{0}, x_{1}\right]$, i.e. $e\left(x_{0}\right)=e(\hat{x})=e\left(x_{1}\right)=0$
- Therefore, $e^{\prime}(x)$ has 2 roots in $\left(x_{0}, x_{1}\right)$ (by Rolle's theorem)
- Therefore, $e^{\prime \prime}(x)$ has 1 root in $\left(x_{0}, x_{1}\right)$ (by Rolle's theorem)
- Let $\theta(\hat{x}) \in\left(x_{0}, x_{1}\right)$ be such that $e^{\prime \prime}(\theta)=0$
- Then

$$
\begin{aligned}
0 & =e^{\prime \prime}(\theta)=f^{\prime \prime}(\theta)-q^{\prime \prime}(\theta) \\
& =f^{\prime \prime}(\theta)-p_{1}^{\prime \prime}(\theta)-\lambda \frac{\mathrm{d}^{2}}{\mathrm{~d} \theta^{2}}\left(\theta-x_{0}\right)\left(\theta-x_{1}\right) \\
& =f^{\prime \prime}(\theta)-2 \lambda
\end{aligned}
$$

- Hence $\lambda=\frac{1}{2} f^{\prime \prime}(\theta)$

Polynomial Interpolation Error

- Finally, we get

$$
f(\hat{x})-p_{1}(\hat{x})=\lambda\left(\hat{x}-x_{0}\right)\left(\hat{x}-x_{1}\right)=\frac{1}{2} f^{\prime \prime}(\theta)\left(\hat{x}-x_{0}\right)\left(\hat{x}-x_{1}\right)
$$

for any $\hat{x} \in\left(x_{0}, x_{1}\right)$

- This argument can be generalized to $n>1$ to give

$$
f(x)-p_{n}(x)=\frac{f^{(n+1)}(\theta)}{(n+1)!}\left(x-x_{0}\right) \ldots\left(x-x_{n}\right)
$$

for some $\theta(x) \in(a, b)$

Polynomial Interpolation Error

- For any $x \in[a, b]$, this theorem gives us the error bound

$$
\left|f(x)-p_{n}(x)\right| \leq \frac{M_{n+1}}{(n+1)!} \max _{x \in[a, b]}\left|\left(x-x_{0}\right) \ldots\left(x-x_{n}\right)\right|
$$

where $M_{n+1}=\max _{\theta \in[a, b]}\left|f^{n+1}(\theta)\right|$

- As n increases, if $(n+1)$! grows faster than $M_{n+1} \max _{x \in[a, b]}\left|\left(x-x_{0}\right) \ldots\left(x-x_{n}\right)\right|$ then p_{n} converges to f
- Unfortunately, this is not always the case!

Runge's Phenomenon

- A famous pathological example of the difficulty of interpolation at equally spaced points is Runge's Phenomenon
- Consider Runge's function $f(x)=1 /\left(1+25 x^{2}\right)$ for $x \in[-1,1]$

Runge's Phenomenon

- Reason: derivatives grow fast
- $f(x)=1 /\left(1+25 x^{2}\right)$
- $f^{\prime}(x)=-50 x /\left(1+25 x^{2}\right)^{2}$
- $f^{\prime \prime}(x)=\left(3750 x^{2}-50\right) /\left(\left(\left(15625 x^{2}+1875\right) x^{2}+75\right) x^{2}+1\right)$

Runge's Phenomenon

- Note that p_{n} is an interpolant, so it fits the evenly spaced samples exactly
- But we are now also interested in the maximum error between f and its polynomial interpolant p_{n}
- That is, we want $\max _{x \in[-1,1]}\left|f(x)-p_{n}(x)\right|$ to be small!
- This is called the "infinity norm" or the "max norm"

$$
\left\|f-p_{n}\right\|_{\infty}=\max _{x \in[-1,1]}\left|f(x)-p_{n}(x)\right|
$$

Runge's Phenomenon

- Note that Runge's function $f(x)=1 /\left(1+25 x^{2}\right)$ is smooth but interpolating Runge's function at evenly spaced points leads to exponential growth of the infinity norm error!
- We would like to construct an interpolant of f that avoids this kind of pathological behavior

Minimizing Interpolation Error

- To do this, we recall our error equation

$$
f(x)-p_{n}(x)=\frac{f^{n+1}(\theta)}{(n+1)!}\left(x-x_{0}\right) \ldots\left(x-x_{n}\right)
$$

- We focus our attention on the polynomial $\left(x-x_{0}\right) \ldots\left(x-x_{n}\right)$, since we can choose the interpolation points
- Intuitively, we should choose x_{0}, \ldots, x_{n} such that $\left\|\left(x-x_{0}\right) \ldots\left(x-x_{n}\right)\right\|_{\infty}$ is as small as possible

Chebyshev Polynomials

- Chebyshev polynomials are defined for $x \in[-1,1]$ by

$$
T_{n}(x)=\cos (n \arccos x), n=0,1,2, \ldots
$$

- Or, equivalently, through the recurrence relation

$$
\begin{aligned}
T_{0}(x) & =1 \\
T_{1}(x) & =x \\
T_{n+1}(x) & =2 x T_{n}(x)-T_{n-1}(x), \quad n=1,2,3, \ldots
\end{aligned}
$$

- Result from Approximation Theory:

The minimal value

$$
\min _{x_{0}, \ldots, x_{n}}\left\|\left(x-x_{0}\right) \ldots\left(x-x_{n}\right)\right\|_{\infty}=\frac{1}{2^{n}}
$$

is achieved by the polynomial $T_{n+1}(x) / 2^{n}$

Chebyshev Polynomials

- To set $\left(x-x_{0}\right) \ldots\left(x-x_{n}\right)=T_{n+1}(x) / 2^{n}$, we choose interpolation points to be the roots of T_{n+1}
- Chebyshev polynomials "equi-oscillate" (alternate) between -1 and 1 , so they minimize the infinity norm

- Exercise: Show that the roots of T_{n} are given by $x_{j}=\cos ((2 j-1) \pi / 2 n), j=1, \ldots, n$

Interpolation at Chebyshev Points

- Revisit Runge's function. Chebyshev interpolation is more accurate

- To interpolate on an arbitrary interval $[a, b]$, linearly map Chebyshev points from $[-1,1]$ to $[a, b]$

Interpolation at Chebyshev Points

- Note that convergence rates depend on smoothness of f
- In general, smoother $f \Longrightarrow$ faster convergence
- Convergence of Chebyshev interpolation of Runge's function (smooth) and $|x|$ (not smooth)

- Example of interpolation at Chebyshev points [examples/unit1/cheb_interp.py]

Another View on Interpolation Accuracy

- We have seen that the interpolation points we choose have an enormous effect on how well our interpolant approximates f
- The choice of Chebyshev interpolation points was motivated by our interpolation error formula for $f(x)-p_{n}(x)$
- But this formula depends on f - we would prefer to have a measure of interpolation accuracy that is independent of f
- This would provide a more general way to compare the quality of interpolation points ... This is provided by the Lebesgue constant

Lebesgue Constant

- Let \mathcal{X} denote a set of interpolation points, $\mathcal{X}=\left\{x_{0}, x_{1}, \ldots, x_{n}\right\} \subset[a, b]$
- A fundamental property of \mathcal{X} is its Lebesgue constant, $\Lambda_{n}(\mathcal{X})$,

$$
\Lambda_{n}(\mathcal{X})=\max _{x \in[a, b]} \sum_{k=0}^{n}\left|L_{k}(x)\right|
$$

- The $L_{k} \in \mathbb{P}_{n}$ are the Lagrange basis polynomials associated with \mathcal{X}, hence Λ_{n} is also a function of \mathcal{X}
- $\Lambda_{n}(\mathcal{X}) \geq 1$

Lebesgue Constant

- Think of polynomial interpolation as a map, \mathcal{I}_{n}, where $\mathcal{I}_{n}: C[a, b] \rightarrow \mathbb{P}_{n}[a, b]$
- $\mathcal{I}_{n}(f)$ is the degree n polynomial interpolant of $f \in C[a, b]$ at the interpolation points \mathcal{X}
- Exercise: Convince yourself that \mathcal{I}_{n} is linear (e.g. use the Lagrange interpolation formula)
- The reason that the Lebesgue constant is interesting is because it bounds the "operator norm" of \mathcal{I}_{n} :

$$
\sup _{f \in C[a, b]} \frac{\left\|\mathcal{I}_{n}(f)\right\|_{\infty}}{\|f\|_{\infty}} \leq \Lambda_{n}(\mathcal{X})
$$

Lebesgue Constant

- Proof

$$
\begin{aligned}
\left\|\mathcal{I}_{n}(f)\right\|_{\infty} & =\left\|\sum_{k=0}^{n} f\left(x_{k}\right) L_{k}\right\|_{\infty}=\max _{x \in[a, b]}\left|\sum_{k=0}^{n} f\left(x_{k}\right) L_{k}(x)\right| \\
& \leq \max _{x \in[a, b]} \sum_{k=0}^{n}\left|f\left(x_{k}\right) \| L_{k}(x)\right| \\
& \leq\left(\max _{k=0,1, \ldots, n}\left|f\left(x_{k}\right)\right|\right) \max _{x \in[a, b]} \sum_{k=0}^{n}\left|L_{k}(x)\right| \\
& \leq\|f\|_{\infty} \max _{x \in[a, b]} \sum_{k=0}^{n}\left|L_{k}(x)\right| \\
& =\|f\|_{\infty} \Lambda_{n}(\mathcal{X})
\end{aligned}
$$

- Hence $\frac{\left\|\mathcal{I}_{n}(f)\right\|_{\infty}}{\|f\|_{\infty}} \leq \Lambda_{n}(\mathcal{X})$, so $\sup _{f \in C[a, b]} \frac{\left\|\mathcal{I}_{n}(f)\right\|_{\infty}}{\|f\|_{\infty}} \leq \Lambda_{n}(\mathcal{X})$

Lebesgue Constant

- The Lebesgue constant allows us to bound interpolation error in terms of the smallest possible error from \mathbb{P}_{n}
- Let $p_{n}^{*} \in \mathbb{P}_{n}$ denote the best infinity-norm approximation to f

$$
\left\|f-p_{n}^{*}\right\|_{\infty} \leq\|f-w\|_{\infty}
$$

for all $w \in \mathbb{P}_{n}$

- Some facts about p_{n}^{*}
- $\left\|p_{n}^{*}-f\right\|_{\infty} \rightarrow 0$ as $n \rightarrow \infty$ for any continuous f ! (Weierstrass approximation theorem)
- $p_{n}^{*} \in \mathbb{P}_{n}$ is unique (follows from the equi-oscillation theorem)
- In general, p_{n}^{*} is unknown

Lebesgue Constant

- Then, we can relate interpolation error to $\left\|f-p_{n}^{*}\right\|_{\infty}$

$$
\begin{aligned}
\left\|f-\mathcal{I}_{n}(f)\right\|_{\infty} & \leq\left\|f-p_{n}^{*}\right\|_{\infty}+\left\|p_{n}^{*}-\mathcal{I}_{n}(f)\right\|_{\infty} \\
& =\left\|f-p_{n}^{*}\right\|_{\infty}+\left\|\mathcal{I}_{n}\left(p_{n}^{*}\right)-\mathcal{I}_{n}(f)\right\|_{\infty} \\
& =\left\|f-p_{n}^{*}\right\|_{\infty}+\left\|\mathcal{I}_{n}\left(p_{n}^{*}-f\right)\right\|_{\infty} \\
& =\left\|f-p_{n}^{*}\right\|_{\infty}+\frac{\left\|\mathcal{I}_{n}\left(p_{n}^{*}-f\right)\right\|_{\infty}}{\left\|p_{n}^{*}-f\right\|_{\infty}}\left\|f-p_{n}^{*}\right\|_{\infty} \\
& \leq\left\|f-p_{n}^{*}\right\|_{\infty}+\Lambda_{n}(\mathcal{X})\left\|f-p_{n}^{*}\right\|_{\infty} \\
& =\left(1+\Lambda_{n}(\mathcal{X})\right)\left\|f-p_{n}^{*}\right\|_{\infty}
\end{aligned}
$$

Lebesgue Constant

- Small Lebesgue constant means that our interpolation
cannot be much worse than the best possible polynomial approximation!
- See [examples/unit1/lebesgue_const.py]
- Now let's compare Lebesgue constants for equispaced ($\mathcal{X}_{\text {equi }}$) and Chebyshev points $\left(\mathcal{X}_{\text {cheb }}\right)$

Lebesgue Constant

- Plot of $\sum_{k=0}^{10}\left|L_{k}(x)\right|$ for $\mathcal{X}_{\text {equi }}$ and $\mathcal{X}_{\text {cheb }}(11 \mathrm{pts}$ in $[-1,1])$

$$
\Lambda_{10}\left(\mathcal{X}_{\text {equi }}\right) \approx 29.9
$$

$\Lambda_{10}\left(\mathcal{X}_{\text {cheb }}\right) \approx 2.49$

Lebesgue Constant

- Plot of $\sum_{k=0}^{20}\left|L_{k}(x)\right|$ for $\mathcal{X}_{\text {equi }}$ and $\mathcal{X}_{\text {cheb }}(21 \mathrm{pts}$ in $[-1,1])$

$\Lambda_{20}\left(\mathcal{X}_{\text {equi }}\right) \approx 10987$

$\Lambda_{20}\left(\mathcal{X}_{\text {cheb }}\right) \approx 2.9$

Lebesgue Constant

- Plot of $\sum_{k=0}^{30}\left|L_{k}(x)\right|$ for $\mathcal{X}_{\text {equi }}$ and $\mathcal{X}_{\text {cheb }}(31$ pts in $[-1,1])$

$\Lambda_{30}\left(\mathcal{X}_{\text {equi }}\right) \approx 6600000$

$\Lambda_{30}\left(\mathcal{X}_{\text {cheb }}\right) \approx 3.15$

Lebesgue Constant

- The explosive growth of $\Lambda_{n}\left(\mathcal{X}_{\text {equi }}\right)$ is an explanation for Runge's phenomenon
- Asymptotic results as $n \rightarrow \infty$

$$
\begin{aligned}
\Lambda_{n}\left(\mathcal{X}_{\text {equi }}\right) & \sim \frac{2^{n}}{e n \log n} & & \text { exponential growth } \\
\Lambda_{n}\left(\mathcal{X}_{\text {cheb }}\right) & <\frac{2}{\pi} \log (n+1)+1 & & \text { logarithmic growth }
\end{aligned}
$$

- Open mathematical problem: Construct \mathcal{X} that minimizes $\Lambda_{n}(\mathcal{X})$

Summary

- Compare and contrast the two key topics considered so far
- Polynomial interpolation for fitting discrete data
- we get "zero error" regardless of the interpolation points, i.e. we're guaranteed to fit the discrete data
- Lagrange polynomial basis should be instead of the monomial basis as the number of points increases (diagonal system, well-conditioned)
- Polynomial interpolation for approximating continuous functions
- for a given set of interpolating points, uses same methodology as for discrete data
- but now interpolation points play a crucial role in determining the magnitude of the error $\left\|f-\mathcal{I}_{n}(f)\right\|_{\infty}$

Piecewise Polynomial Interpolation

Piecewise Polynomial Interpolation

- How to avoid explosive growth of error for non-smooth functions?
- Idea: Decompose domain into subdomains and apply polynomial interpolation on each subdomain
- Example: piecewise linear interpolation

Splines

- Splines are a popular type of piecewise polynomial interpolant
- Interpolation points are now called knots
- Splines have smoothness constraints to "glue" adjacent polynomials
- Commonly used in computer graphics, font rendering, CAD software
- Bezier splines
- non-uniform rational basis spline (NURBS)
- . .
- The name "spline" comes from
"a flexible piece of wood or metal used in drawing curves"

Splines

- We focus on a popular type of spline: cubic spline
- Piecewise cubic with continuous second derivatives
- Example: cubic spline interpolation of Runge's function

Cubic Splines

- Suppose we have $n+1$ data points: $\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$
- A cubic interpolating spline is a function $s(x)$ that
- is a cubic polynomial on each of n intervals $\left[x_{i-1}, x_{i}\right]$ ($4 n$ parameters)
- passes through the data points ($2 n$ conditions)

$$
s\left(x_{i}\right)=y_{i}, \quad i=0, \ldots, n
$$

- has continuous first derivative ($n-1$ conditions)

$$
s_{-}^{\prime}\left(x_{i}\right)=s_{+}^{\prime}\left(x_{i}\right), \quad i=1, \ldots, n-1
$$

- has continuous second derivative ($n-1$ conditions)

$$
s_{-}^{\prime \prime}\left(x_{i}\right)=s_{+}^{\prime \prime}\left(x_{i}\right), \quad i=1, \ldots, n-1
$$

- We have $4 n-2$ equations for $4 n$ unknowns

Cubic Splines

- We are missing two conditions!
- Many options to define them
- natural cubic spline

$$
s^{\prime \prime}\left(x_{0}\right)=s^{\prime \prime}\left(x_{n}\right)=0
$$

- clamped

$$
s^{\prime}\left(x_{0}\right)=s^{\prime}\left(x_{n}\right)=0
$$

- "not-a-knot spline"

$$
s_{-}^{\prime \prime \prime}\left(x_{1}\right)=s_{+}^{\prime \prime \prime}\left(x_{1}\right) \quad \text { and } \quad s_{-}^{\prime \prime \prime}\left(x_{n-1}\right)=s_{+}^{\prime \prime \prime}\left(x_{n-1}\right)
$$

Constructing a Cubic Spline

- Denote $\Delta x_{i}=x_{i}-x_{i-1}$ and $\Delta y_{i}=y_{i}-y_{i-1}$
- Look for polynomials $p_{i} \in \mathbb{P}_{3}, \quad i=1, \ldots, n$ in the form

$$
p_{i}(x)=t y_{i}+(1-t) y_{i-1}+t(1-t)(\alpha t+\beta(1-t))
$$

with unknown α and β, where $t=\frac{x-x_{i-1}}{\Delta x_{i}}$

- Automatically satisfies interpolation conditions

$$
p_{i}\left(x_{i-1}\right)=y_{i-1} \quad p_{i}\left(x_{i}\right)=y_{i}
$$

- Conditions on derivatives to make the first derivative continuous

$$
\begin{aligned}
p_{i}^{\prime}\left(x_{i-1}\right)=k_{i-1} & p_{i}^{\prime}\left(x_{i}\right)=k_{i} \\
\Longrightarrow \alpha=y_{i}-y_{i-1}-\Delta x_{i} k_{i} & \beta=y_{i-1}-y_{i}+\Delta x_{i} k_{i-1}
\end{aligned}
$$

- New unknown parameters: $k_{0}, \ldots, k_{n}(n+1$ parameters $)$

Constructing a Cubic Spline

- Expressions for second derivatives

$$
\begin{aligned}
p_{i}^{\prime \prime}\left(x_{i-1}\right) & =\frac{-4 k_{i-1}-2 k_{i}}{\Delta x_{i}}+\frac{6 \Delta y_{i}}{\Delta x_{i}^{2}} \\
p_{i}^{\prime \prime}\left(x_{i}\right) & =\frac{2 k_{i-1}+4 k_{i}}{\Delta x_{i}}-\frac{6 \Delta y_{i}}{\Delta x_{i}^{2}}
\end{aligned}
$$

- Conditions on second derivatives: $p_{i}^{\prime \prime}\left(x_{i}\right)=p_{i+1}^{\prime \prime}\left(x_{i}\right) \quad i=1, \ldots, n-1$

$$
\begin{aligned}
& \frac{1}{\Delta x_{i}} k_{i-1}+\left(\frac{2}{\Delta x_{i}}+\frac{2}{\Delta x_{i+1}}\right) k_{i}+\frac{1}{\Delta x_{i+1}} k_{i+1}=\left(\frac{3 \Delta y_{i}}{\Delta x_{i}^{2}}+\frac{3 \Delta y_{i+1}}{\Delta x_{i+1}^{2}}\right) \\
& (n-1 \text { conditions })
\end{aligned}
$$

- Two more conditions from boundaries (natural, clamped, etc)
- Tridiagonal linear system of $n+1$ equations for $n+1$ unknowns k_{i}

Solving a Tridiagonal System

- Tridiagonal matrix algorithm (TDMA), also known as the Thomas algorithm
- Simplified form of Gaussian elimination to solve a tridiagonal system of $n+1$ equations for $n+1$ unknowns u_{i}

$$
\begin{aligned}
b_{0} u_{0}+c_{0} u_{1} & =d_{0} \\
a_{i} u_{i-1}+b_{i} u_{i}+c_{i} u_{i+1} & =d_{i}, \quad i=1, \ldots, n-1 \\
a_{n} u_{n-1}+b_{n} u_{n} & =d_{n}
\end{aligned}
$$

- TDMA has complexity $\mathcal{O}(n)$ while Gaussian elimination has $\mathcal{O}\left(n^{3}\right)$

Solving a Tridiagonal System

- Forward pass: for $i=1,2, \ldots, n$

$$
\begin{aligned}
& w=a_{i} / b_{i-1} \\
& b_{i} \leftarrow b_{i}-w c_{i-1} \\
& d_{i} \leftarrow d_{i}-w d_{i-1}
\end{aligned}
$$

- Backward pass:

$$
\begin{aligned}
u_{n} & =d_{n} / b_{n} \\
u_{i} & =\left(d_{i}-c_{i} u_{i+1}\right) / b_{i} \quad \text { for } i=n-1, \ldots, 0
\end{aligned}
$$

Example of Spline Interpolation

- See [examples/unit1/spline_tdma.py]
- Spline looks smooth and does not have bumps or rapid changes

degree 10 polynomial

cubic spline

Example: Move One Point

- How does the interpolant change after moving one data point?
- original data, perturbed data, normalized change Δ (a.u.)
- Look at the normalized change $\Delta=(\tilde{f}-f) /\|(\tilde{f}-f)\|_{\infty}$
- degree 10 polynomial: Δ remains constant
- cubic spline: Δ changes in a nonlinear way

degree 10 polynomial

cubic spline

Linear Least Squares

- Recall that it can be advantageous to not fit data points exactly (e.g. to remove noise), we don't want to "overfit"
- Suppose we want to fit a cubic polynomial to 11 data points

- Question: How do we do this?

Linear Least Squares

- Suppose we have m constraints and n parameters with $m>n$ (on previous slide, $m=11$ and $n=4$)
- This is an overdetermined system $A b=y$, where $A \in \mathbb{R}^{m \times n}$ (basis functions), $b \in \mathbb{R}^{n}$ (parameters), $y \in \mathbb{R}^{m}$ (data)

Linear Least Squares

- In general, cannot be solved exactly; instead our goal is to minimize the residual, $r(b) \in \mathbb{R}^{m}$

$$
r(b)=y-A b
$$

- A very effective approach for this is the method of least squares: Find parameter vector $b \in \mathbb{R}^{n}$ that minimizes $\|r(b)\|_{2}$
- The 2-norm is convenient since it gives us a differentiable function

Normal Equations

- Our goal is to minimize the objective function

$$
\phi(b):=\|r(b)\|_{2}^{2}=\sum_{i=1}^{n} r_{i}(b)^{2}
$$

- In terms of A, b, and y

$$
\begin{aligned}
\phi(b) & =\|r\|_{2}^{2}=r^{T} r=(y-A b)^{T}(y-A b) \\
& =y^{T} y-y^{T} A b-b^{T} A^{T} y+b^{T} A^{T} A b \\
& =y^{T} y-2 b^{T} A^{T} y+b^{T} A^{T} A b
\end{aligned}
$$

where last line follows from $y^{T} A b=\left(y^{T} A b\right)^{T}$, since $y^{T} A b \in \mathbb{R}$

- The minimum must exist since $\phi \geq 0$, but may be non-unique (e.g. $f\left(b_{1}, b_{2}\right)=b_{1}^{2}$)

Normal Equations

- To find minimum, set the derivative to zero $\left(\nabla=\nabla_{b}\right)$

$$
\nabla \phi(b)=0
$$

- Derivative

$$
\nabla \phi(b)=-2 \nabla\left(b^{T} A^{T} y\right)+\nabla\left(b^{T} A^{T} A b\right)
$$

- Rule for the first term

$$
\begin{gathered}
\frac{\partial}{\partial b_{k}} b^{T} c=\frac{\partial}{\partial b_{k}} \sum_{i=1}^{n} b_{i} c_{i}=c_{k} \\
\Longrightarrow \nabla\left(b^{T} c\right)=c
\end{gathered}
$$

Normal Equations

- Rule for the second term $\left(M=\left(m_{i, j}\right)\right)$

$$
\begin{gathered}
\frac{\partial}{\partial b_{k}} b^{T} M b=\frac{\partial}{\partial b_{k}} \sum_{i, j=1}^{n} m_{i, j} b_{i} b_{j}=\sum_{i, j=1}^{n} m_{i, j} \frac{\partial}{\partial b_{k}}\left(b_{i} b_{j}\right)= \\
=\sum_{i, j=1}^{n} m_{i, j}\left(\delta_{i, k} b_{j}+b_{i} \delta_{j, k}\right)=\sum_{j=1}^{n} m_{k, j} b_{j}+\sum_{i=1}^{n} m_{i, k} b_{i}=(M b)_{k}+\left(M^{T} b\right)_{k} \\
\Longrightarrow \nabla\left(b^{T} M b\right)=M b+M^{T} b
\end{gathered}
$$

Normal Equations

- Putting it all together, we obtain

$$
\nabla \phi(b)=-2 A^{T} y+2 A^{T} A b
$$

- We set $\nabla \phi(b)=0$, which is $-2 A^{T} y+2 A^{T} A b=0$
- Finally, the linear least squares problem is equivalent to

$$
A^{T} A b=A^{T} y
$$

- This square $n \times n$ system is known as the normal equations

Normal Equations

- For $A \in \mathbb{R}^{m \times n}$ with $m>n$,
$A^{T} A$ is singular if and only if
A is rank-deficient (columns are linearly dependent)
- Proof
- (\Rightarrow) Suppose $A^{T} A$ is singular. $\exists z \neq 0$ such that $A^{T} A z=0$. Hence $z^{T} A^{T} A z=\|A z\|_{2}^{2}=0$, so that $A z=0$. Therefore A is rank-deficient.
- (\Leftarrow) Suppose A is rank-deficient. $\exists z \neq 0$ such that $A z=0$. Hence $A^{T} A z=0$, so that $A^{T} A$ is singular.

Normal Equations

- Hence if A has full rank (i.e. $\operatorname{rank}(A)=n$) we can solve the normal equations to find the unique minimizer b
- However, in general it is a bad idea to solve the normal equations directly, because of condition-squaring (e.g. $\kappa\left(A^{T} A\right)=\kappa(A)^{2}$ for square matrices)
- We will consider more efficient methods later (e.g. singular value decomposition)

Example: Least-Squares Polynomial Fit

- Find a least-squares fit for degree 11 polynomial to 50 samples of $y=\cos (4 x)$ for $x \in[0,1]$
- Let's express the best-fit polynomial using the monomial basis

$$
p(x ; b)=\sum_{k=0}^{11} b_{k} x^{k}
$$

- The i th condition we'd like to satisfy is

$$
p\left(x_{i} ; b\right)=\cos \left(4 x_{i}\right)
$$

\Longrightarrow over-determined system with a 50×12 Vandermonde matrix

Example: Least-Squares Polynomial Fit

- See [examples/unit1/lstsq.py]
- Both methods give small residuals

$$
\begin{aligned}
\left\|r\left(b_{\text {lstsq }}\right)\right\|_{2} & =\left\|y-A b_{\text {lstsq }}\right\|_{2}=8.00 \times 10^{-9} \\
\left\|r\left(b_{\text {normal }}\right)\right\|_{2} & =\left\|y-A b_{\text {normal }}\right\|_{2}=1.09 \times 10^{-8}
\end{aligned}
$$

Non-Polynomial Fitting

- Least-squares fitting can be used with arbitrary basis functions
- We just need a model that linearly depends on the parameters
- Example: Approximate $f(x)=e^{-x} \cos 4 x$ using exponentials

$$
f_{n}(x ; b)=\sum_{k=-n}^{n} b_{k} e^{k x}
$$

- See [examples/unit1/nonpoly_fit.py]

Non-Polynomial Fitting

$$
f_{n}(x ; b)=b_{-n} e^{-n x}+b_{-n+1} e^{(-n+1) x}+\ldots+b_{0}+\ldots+b_{n} e^{n x}
$$

$$
\begin{gathered}
n=1 \\
\|r(b)\|_{2}=2.22
\end{gathered}
$$

$$
\begin{gathered}
n=2 \\
\|r(b)\|_{2}=0.89
\end{gathered}
$$

$$
\begin{gathered}
n=3 \\
\|r(b)\|_{2}=0.2
\end{gathered}
$$

Non-Polynomial Fitting

-Why use non-polynomial basis functions?

- recover properties of data (e.g. sine waves for periodic data)
- control smoothness
(e.g. splines correspond to a piecewise-polynomial basis)
- control asymptotic behavior (e.g. require that functions do not grow fast at infinity)

Equivariance

- A procedure is called equivariant to a transformation if applying the transformation to input (e.g. dataset) produces the same result as applying the transformation to output (e.g. fitted model)
- For example, consider a transformation $T(x)$ and find two models
- $f(\cdot ; b)$ that fits data $\left(x_{i}, y_{i}\right)$
- $f(\cdot ; \tilde{b})$ that fits data $\left(T x_{i}, y_{i}\right)$
- The fitting is equivariant to T if

$$
f(x ; b)=f(T x ; \tilde{b})
$$

- Does this hold for linear least squares? Depends on the basis
- (in common speech, used interchangeably with "invariance" but that actually stands for quantities not affected by transformations)

Example: Equivariance to Translation

$$
T(x)=x+\lambda
$$

1, x, x^{2}, x^{3}
equivariant to translation

$$
e^{-2 x}, e^{-x}, 1, e^{x}
$$

equivariant to translation

Example: Equivariance to Scaling

$$
T(x)=\lambda x
$$

$1, x, x^{2}, x^{3}$
equivariant to scaling

$$
e^{-2 x}, e^{-x}, 1, e^{x}
$$

not equivariant to scaling

Pseudoinverse

- Recall that from the normal equations we have:

$$
A^{T} A b=A^{T} y
$$

- This motivates the idea of the "pseudoinverse" for $A \in \mathbb{R}^{m \times n}$:

$$
A^{+}=\left(A^{T} A\right)^{-1} A^{T} \in \mathbb{R}^{n \times m}
$$

- Key point: A^{+}generalizes A^{-1}, i.e. if $A \in \mathbb{R}^{n \times n}$ is invertible, then $A^{+}=A^{-1}$
- Proof: $A^{+}=\left(A^{T} A\right)^{-1} A^{T}=A^{-1}\left(A^{T}\right)^{-1} A^{T}=A^{-1}$

Pseudoinverse

- Also:
- Even when A is not invertible we still have $A^{+} A=I$
- In general $A A^{+} \neq I$ (hence this is called a "left inverse")
- And it follows from our definition that $b=A^{+} y$, i.e. $A^{+} \in \mathbb{R}^{n \times m}$ gives the least-squares solution
- Note that we define the pseudoinverse differently in different contexts

Underdetermined Least Squares

- So far we have focused on overdetermined systems (more equations than parameters)
- But least-squares also applies to underdetermined systems: $A b=y$ with $A \in \mathbb{R}^{m \times n}, m<n$ A

Underdetermined Least Squares

- For $\phi(b)=\|r(b)\|_{2}^{2}=\|y-A b\|_{2}^{2}$, we can apply the same argument as before (i.e. set $\nabla \phi=0$) to again obtain

$$
A^{T} A b=A^{T} y
$$

- But in this case $A^{T} A \in \mathbb{R}^{n \times n}$ has rank at most m (where $m<n$), why?
- Therefore $A^{T} A$ must be singular!
- Typical case: There are infinitely many vectors b that give $r(b)=0$, we want to be able to select one of them

Underdetermined Least Squares

- First idea, pose a constrained optimization problem to find the feasible b with minimum 2-norm:

minimize	$b^{T} b$
subject to	$A b=y$

- This can be treated using Lagrange multipliers (discussed later in Unit 4)
- Idea is that the constraint restricts us to an $(n-m)$-dimensional hyperplane of \mathbb{R}^{n} on which $b^{T} b$ has a unique minimum

Underdetermined Least Squares

- We will show later that the Lagrange multiplier approach for the above problem gives:

$$
b=A^{T}\left(A A^{T}\right)^{-1} y
$$

- Therefore, in the underdetermined case the pseudoinverse is defined as

$$
A^{+}=A^{T}\left(A A^{T}\right)^{-1} \in \mathbb{R}^{n \times m}
$$

- Note that now $A A^{+}=I$, but $A^{+} A \neq I$ in general (i.e. this is a "right inverse")

Underdetermined Least Squares

- Here we consider an alternative approach for solving the underconstrained case
- Let's modify ϕ so that there is a unique minimum!
- For example, let

$$
\phi(b)=\|r(b)\|_{2}^{2}+\|S b\|_{2}^{2}
$$

where $S \in \mathbb{R}^{n \times n}$ is a scaling matrix

- This is called regularization: we make the problem well-posed ("more regular") by modifying the objective function

Underdetermined Least Squares

- Calculating $\nabla \phi=0$ in the same way as before leads to the system

$$
\left(A^{T} A+S^{T} S\right) b=A^{T} y
$$

- We need to choose S in some way to ensure $\left(A^{T} A+S^{T} S\right)$ is invertible
- Can be proved that if $S^{T} S$ is positive definite then $\left(A^{T} A+S^{T} S\right)$ is invertible
- Simplest positive definite regularizer:

$$
S=\mu \mathbf{I} \in \mathbb{R}^{n \times n}
$$

for $\mu>0, \mu \in \mathbb{R}$

Underdetermined Least Squares

- See [examples/unit1/under_lstsq.py]
- Find least-squares fit for degree 11 polynomial to 5 samples of $y=\cos (4 x)$ for $x \in[0,1]$
- 12 parameters, 5 constraints $\Longrightarrow A \in \mathbb{R}^{5 \times 12}$
- We express the polynomial using the monomial basis: A is a submatrix of a Vandermonde matrix
- Let's see what happens when we regularize the problem with some different choices of S

Underdetermined Least Squares

- Find least-squares fit for degree 11 polynomial to 5 samples of $y=\cos (4 x)$ for $x \in[0,1]$
- Try $S=0.001 \mathrm{I}$ (i.e. $\mu=0.001$)

- Fit is good since regularization term is small but condition number is still large

Underdetermined Least Squares

- Find least-squares fit for degree 11 polynomial to 5 samples of $y=\cos (4 x)$ for $x \in[0,1]$
- Try $S=0.5 \mathrm{I}$ (i.e. $\mu=0.5$)

$$
\begin{gathered}
\|r(b)\|_{2}=6.60 \times 10^{-1} \\
\operatorname{cond}\left(A^{T} A+S^{T} S\right)=62.3
\end{gathered}
$$

- Regularization term now dominates: small condition number and small $\|b\|_{2}$, but poor fit to the data!

Underdetermined Least Squares

- Find least-squares fit for degree 11 polynomial to 5 samples of $y=\cos (4 x)$ for $x \in[0,1]$
- Try $S=\operatorname{diag}(0.1,0.1,0.1,10,10 \ldots, 10)$

$$
\begin{gathered}
\|r(b)\|_{2}=4.78 \times 10^{-1} \\
\operatorname{cond}\left(A^{T} A+S^{T} S\right)=5.90 \times 10^{3}
\end{gathered}
$$

- We strongly penalize $b_{3}, b_{4}, \ldots, b_{11}$, hence the fit is close to parabolic

Underdetermined Least Squares

- Find least-squares fit for degree 11 polynomial to 5 samples of $y=\cos (4 x)$ for $x \in[0,1]$
- Use numpy.lstsq

- Python routine uses Lagrange multipliers, hence satisfies the constraints to machine precision

Nonlinear Least Squares

- So far we have looked at finding a "best fit" solution to a linear system (linear least-squares)
- A more difficult situation is when we consider least-squares for nonlinear systems
- Key point: Linear least-squares fitting of model $f(x ; b)$ refers to linearity in the parameters b, while the model can be a nonlinear function of x (e.g. a polynomial $f(x ; b)=b_{0}+\ldots+b_{n} x^{n}$ is linear in b but nonlinear in x)
- In nonlinear least squares, we fit models that are nonlinear in the parameters

Nonlinear Least Squares: Motivation

- Consider a linear least-squares fit of $f(x)=\sqrt{|x-0.25|}$

basis: $1,|x+0.5|,|x-0.5|$
$0.07+0.28|x+0.5|+0.71|x-0.5|$

Nonlinear Least Squares: Motivation

- We can improve the accuracy using "adaptive" basis functions, but now the model is nonlinear in λ

basis: $1,|x+0.5|,|x-\lambda|$

$$
\begin{gathered}
-0.3-0.03|x+0.5|+0.78|x-\lambda| \\
\lambda=0.23
\end{gathered}
$$

Nonlinear Least Squares: Example

- Example: Suppose we have a radio transmitter at $\hat{b}=\left(\hat{b}_{1}, \hat{b}_{2}\right)$ somewhere in $[0,1]^{2}(\times)$
- Suppose that we have 10 receivers at locations $\left(x_{1}^{1}, x_{2}^{1}\right),\left(x_{1}^{2}, x_{2}^{2}\right), \ldots,\left(x_{1}^{10}, x_{2}^{10}\right) \in[0,1]^{2}(\bullet)$
- Receiver i returns the distance y_{i} to the transmitter, but there is some error/noise (ϵ)

Nonlinear Least Squares: Example

- Let b be a candidate location for the transmitter
- The distance from b to $\left(x_{1}^{i}, x_{2}^{i}\right)$ is

$$
d_{i}(b)=\sqrt{\left(b_{1}-x_{1}^{i}\right)^{2}+\left(b_{2}-x_{2}^{i}\right)^{2}}
$$

- We want to choose b to match the data as well as possible, hence minimize the residual $r(b) \in \mathbb{R}^{10}$ where $r_{i}(b)=y_{i}-d_{i}(b)$

Nonlinear Least Squares: Example

- In this case, $r_{i}(\alpha+\beta) \neq r_{i}(\alpha)+r_{i}(\beta)$, hence nonlinear least-squares!
- Define the objective function

$$
\phi(b)=\frac{1}{2}\|r(b)\|_{2}^{2}
$$

where $r(b) \in \mathbb{R}^{10}$ is the residual vector

- The $\frac{1}{2}$ factor has no effect on the minimizing b, but leads to slightly cleaner formulas later on

Nonlinear Least Squares

- As in the linear case, we seek to minimize ϕ by finding b such that $\nabla \phi=0$
- We have $\phi(b)=\frac{1}{2} \sum_{j=1}^{m}\left(r_{j}(b)\right)^{2}$
- Hence for the i-component of the gradient vector, we have

$$
\frac{\partial \phi}{\partial b_{i}}=\frac{\partial}{\partial b_{i}} \frac{1}{2} \sum_{j=1}^{m} r_{j}^{2}=\sum_{j=1}^{m} r_{j} \frac{\partial r_{j}}{\partial b_{i}}
$$

Nonlinear Least Squares

- This is equivalent to $\nabla \phi=J_{r}(b)^{T} r(b)$ where $J_{r}(b) \in \mathbb{R}^{m \times n}$ is the Jacobian matrix of the residual

$$
\left\{J_{r}(b)\right\}_{i j}=\frac{\partial r_{i}(b)}{\partial b_{j}}
$$

- Exercise: Show that $J_{r}(b)^{T} r(b)=0$ reduces to the normal equations when the residual is linear

Nonlinear Least Squares

- Hence we seek $b \in \mathbb{R}^{n}$ such that:

$$
J_{r}(b)^{T} r(b)=0
$$

- This has n equations, n unknowns
- In general, this is a nonlinear system that we have to solve iteratively
- A common situation is that linear systems can be solved in "one shot", while nonlinear generally requires iteration
- We will briefly introduce Newton's method for solving this system and defer detailed discussion until Unit 4

Nonlinear Least Squares

- Recall Newton's method for a function of one variable: find $x \in \mathbb{R}$ such that $f(x)=0$
- Let x_{k} be our current guess, and $x_{k}+\Delta x=x$, then Taylor expansion gives

$$
0=f\left(x_{k}+\Delta x\right)=f\left(x_{k}\right)+\Delta x f^{\prime}\left(x_{k}\right)+O\left((\Delta x)^{2}\right)
$$

- It follows that $f^{\prime}\left(x_{k}\right) \Delta x \approx-f\left(x_{k}\right)$
(approx. since we neglect the higher order terms)
- This motivates Newton's method:

$$
f^{\prime}\left(x_{k}\right) \Delta x_{k}=-f\left(x_{k}\right)
$$

where $x_{k+1}=x_{k}+\Delta x_{k}$

Nonlinear Least Squares

- This argument generalizes directly to functions of several variables
- For example, suppose $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$, then find x s.t. $F(x)=0$ by

$$
J_{F}\left(x_{k}\right) \Delta x_{k}=-F\left(x_{k}\right)
$$

where J_{F} is the Jacobian of $F, \Delta x_{k} \in \mathbb{R}^{n}, x_{k+1}=x_{k}+\Delta x_{k}$

Nonlinear Least Squares

- In the case of nonlinear least squares, to find a stationary point of ϕ we need to find b such that

$$
J_{r}(b)^{T} r(b)=0
$$

- That is, we want to solve $F(b)=0$ for $F(b)=J_{r}(b)^{T} r(b)$
- We apply Newton's Method, hence need to find the Jacobian J_{F} of the function $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$

Nonlinear Least Squares

- Consider $\frac{\partial F_{i}}{\partial b_{j}}$ (this will be the $i j$ entry of J_{F}):

$$
\begin{aligned}
\frac{\partial F_{i}}{\partial b_{j}} & =\frac{\partial}{\partial b_{j}}\left(J_{r}(b)^{T} r(b)\right)_{i} \\
& =\frac{\partial}{\partial b_{j}} \sum_{k=1}^{m} \frac{\partial r_{k}}{\partial b_{i}} r_{k} \\
& =\sum_{k=1}^{m} \frac{\partial r_{k}}{\partial b_{i}} \frac{\partial r_{k}}{\partial b_{j}}+\sum_{k=1}^{m} \frac{\partial^{2} r_{k}}{\partial b_{i} \partial b_{j}} r_{k}
\end{aligned}
$$

Gauss-Newton Method

- It is generally difficult to deal with the second derivatives in the previous formula (numerical sensitivity, cost, complex derivation)
- Key observation: As we approach a good fit to the data, the residual values $r_{k}(b), 1 \leq k \leq m$, should be small
- Hence we omit the term $\sum_{k=1}^{m} r_{k} \frac{\partial^{2} r_{k}}{\partial b_{i} \partial b_{j}}$.

Gauss-Newton Method

- Note that $\sum_{k=1}^{m} \frac{\partial r_{k}}{\partial b_{j}} \frac{\partial r_{k}}{\partial b_{i}}=\left(J_{r}(b)^{T} J_{r}(b)\right)_{i j}$, so that when the residual is small $J_{F}(b) \approx J_{r}(b)^{T} J_{r}(b)$
- Then putting all the pieces together, we obtain the iteration

$$
J_{r}\left(b_{k}\right)^{T} J_{r}\left(b_{k}\right) \Delta b_{k}=-J_{r}\left(b_{k}\right)^{T} r\left(b_{k}\right)
$$

where $b_{k+1}=b_{k}+\Delta b_{k}$

- This is known as the Gauss-Newton Algorithm for nonlinear least squares

Gauss-Newton Method

- This looks similar to Normal Equations at each iteration, except now the matrix $J_{r}\left(b_{k}\right)$ comes from linearizing the residual
- Gauss-Newton is equivalent to solving the linear least squares problem at each iteration

$$
J_{r}\left(b_{k}\right) \Delta b_{k}=-r\left(b_{k}\right)
$$

- This is a common approach:

Computing the Jacobian

- To use Gauss-Newton in practice, we need to be able to compute the Jacobian matrix $J_{r}\left(b_{k}\right)$ for any $b_{k} \in \mathbb{R}^{n}$
- We can do this "by hand", e.g. in our transmitter/receiver problem we would have:

$$
\left[J_{r}(b)\right]_{i j}=-\frac{\partial}{\partial b_{j}} \sqrt{\left(b_{1}-x_{1}^{i}\right)^{2}+\left(b_{2}-x_{2}^{i}\right)^{2}}
$$

- Differentiating by hand is feasible in this case, but it can become impractical if $r(b)$ is more complicated
- Or perhaps our mapping $b \rightarrow y$ is a "black box"

Computing the Jacobian

- Alternative approaches
- Finite difference approximation

$$
\left[J_{r}\left(b_{k}\right)\right]_{i j} \approx \frac{r_{i}\left(b_{k}+e_{j} h\right)-r_{i}\left(b_{k}\right)}{h}
$$

(requires only function evaluations, but prone to rounding errors)

- Symbolic computations

Rule-based computation of derivatives (e.g. SymPy in Python)

- Automatic differentiation

Carry information about derivatives through every operation (e.g. use TensorFlow or PyTorch)

Gauss-Newton Method

- We derived the Gauss-Newton algorithm method in a natural way:
- apply Newton's method to solve $\nabla \phi=0$
- neglect the second derivative terms that arise
- However, Gauss-Newton is not widely used in practice since it doesn't always converge reliably

Levenberg-Marquardt Method

- A more robust variation of Gauss-Newton is the Levenberg-Marquardt Algorithm, which uses the update

$$
\left[J^{T}\left(b_{k}\right) J\left(b_{k}\right)+\mu_{k} \operatorname{diag}\left(S^{T} S\right)\right] \Delta b=-J\left(b_{k}\right)^{T} r\left(b_{k}\right)
$$

where $S=\mathrm{I}$ or $S=J\left(b_{k}\right)$, and some heuristics to choose μ_{k}

- This looks like our "regularized" underdetermined linear least squares formulation!

Levenberg-Marquardt Method

- Key point: The regularization term $\mu_{k} \operatorname{diag}\left(S^{T} S\right)$ improves the reliability of the algorithm in practice
- Levenberg-Marquardt is available SciPy
- We need to pass the residual to the routine, and we can also pass the Jacobian matrix or ask to use finite-differences
- Now let's solve our transmitter/receiver problem

Nonlinear Least Squares: Example

- See [examples/unit1/nonlin_lstsq.py]

Nonlinear Least Squares: Example

- Levenberg-Marquardt minimizes $\phi(b)$

- The minimized objective is even lower than for the true location (because of the noise)

$$
\phi(\times)=0.0044<0.0089=\phi(\times)
$$

\times is our best-fit to the data, \times is the true transmitter location

