
Applied Mathematics 205
Unit 1. Data Fitting

Lecturer: Petr Karnakov

September 7, 2022

1

Motivation
Data fitting: Construct a continuous function that represents discrete data.
Fundamental topic in Scientific Computing

We will study two types of data fitting
interpolation: fit the data points exactly
least-squares: minimize error in the fit
(e.g. useful when there is experimental error)

Data fitting helps us to
interpret data: deduce hidden parameters, understand trends
process data: reconstructed function can be differentiated,
integrated, etc

2

Motivation
Suppose we are given the following data points

Such data could represent
time series data (stock price, sales figures)
laboratory measurements (pressure, temperature)
astronomical observations (star light intensity)

3

Motivation
We often need values between the data points

Easiest thing to do: “connect the dots” (piecewise linear interpolation)

Question: What if we want a smoother approximation?

4

Motivation
We have 11 data points, we can use a degree 10 polynomial

However, a degree 10 interpolant doesn’t seem to capture
the underlying pattern, has bumps and changes rapidly

y = 2.98 + 16.90x − 219.77x + 1198.07x − 3518.54x + 6194.09x2 3 4 5

− 6846.49x + 4787.40x − 2053.91x + 492.90x − 50.61x6 7 8 9 10

5

Motivation
Let’s try linear regression:
minimize the error in a linear approximation of the data

Best linear fit:

Clearly not a good fit!

y = 2.94 + 0.25x

6

Motivation
We can use least-squares fitting
to generalize linear regression to higher-order polynomials

Best quadratic fit:

Still not so good …

y = 3.22 − 0.68x + 0.47x2

7

Motivation
Best cubic fit:

Looks good! A “cubic model” captures this data well

In real-world problems it can be challenging
to find the “right” model for experimental data

y = 2.97 + 1.32x − 2.16x +2 0.88x3

8

Motivation
Data fitting is often performed
with multi-dimensional data

2D example: points with feature

See

(x, y) z

[examples/unit1/fit_2d.py]

9

https://github.com/pkarnakov/am205/tree/main/examples/unit1/fit_2d.py

Motivation: Summary
Interpolation is a fundamental tool in Scientific Computing, provides simple
representation of discrete data

Common to differentiate, integrate, optimize an interpolant

Least squares fitting is typically more useful for experimental data
Removes noise using a lower-order model

Data-fitting calculations are often performed with big datasets
Efficient and stable algorithms are very important

10

Polynomial Interpolation
Let denote the set of all polynomials of degree on

Polynomial has the form

with coefficients

P n n R
p(⋅; b) ∈ P n

p(x; b) = b +0 b x +1 b x +2
2 … + b xn

n

b = [b , b , … , b] ∈0 1 n
T Rn+1

11

Polynomial Interpolation
Suppose we have data

where are called interpolation points

Goal: Find a polynomial that passes through every data point in

Therefore, we must have for each
 equations

For uniqueness, we should look for a polynomial with parameters
 look for

S = {(x , y), (x , y), … , (x , y)}0 0 1 1 n n

x ,x , … ,x 0 1 n

S

p(x ; b) =i y i i = 0, … ,n
⟹ n + 1

n + 1
⟹ p ∈ P n

12

Polynomial Interpolation
This leads to the following system of equations with unknowns

The system is linear with respect to unknown coefficients

n + 1 n + 1

b + b x + b x + … + b x0 1 0 2 0
2

n 0
n

b + b x + b x + … + b x0 1 1 2 1
2

n 1
n

b + b x + b x + … + b x0 1 n 2 n
2

n n
n

=

=

⋮

=

y0

y1

yn

b , … , b 0 n

13

Vandermonde Matrix
The same system in matrix form

with
unknown coefficients
given values
matrix called the Vandermonde matrix

Vb = y

b = [b , b , … , b] ∈0 1 n
T Rn+1

y = [y , y , … , y] ∈0 1 n
T Rn+1

V ∈ R(n+1)×(n+1)

1
1

⋮
1

x 0

x 1

⋮
x n

x 0
2

x 1
2

⋮
x n

2

⋯
⋯

⋱
⋯

x 0
n

x 1
n

⋮
x n
n

14

Existence and Uniqueness
Let’s prove that if the interpolation points are distinct,
then has a unique solution

We know from linear algebra that for a square matrix :
if , then has a unique solution

If , then has distinct roots

Therefore we must have , or equivalently

Hence
so has a unique solution for any

n + 1
Vb = y

A

Az = 0 ⟹ z = 0 Ab = y

Vb = 0 p(⋅; b) ∈ P n n + 1

p(⋅; b) = 0 b = 0

Vb = 0 ⟹ b = 0
Vb = y y ∈ Rn+1

15

Vandermonde Matrix
This tells us that we can find the polynomial interpolant
by solving the Vandermonde system

However, this may be a bad idea since is ill-conditioned

Vb = y

V

16

Monomial Interpolation
The problem is that Vandermonde matrix corresponds
to interpolation using the monomial basis

Monomial basis for is

As increases, basis functions become increasingly indistinguishable,
columns are more “linearly dependent”, the matrix is ill-conditioned

See ,
condition number of Vandermonde matrix

P n {1,x,x , … ,x }2 n

n

[examples/unit1/vander_cond.py]

17

https://github.com/pkarnakov/am205/tree/main/examples/unit1/vander_cond.py

Monomial Basis
Question: What is the practical consequence of this ill-conditioning?

Answer:
We want to solve
Finite precision arithmetic gives an approximation
Residual will be small but can still be large!
(will be discussed in Unit 2)
Similarly, small perturbation in can give large perturbation in
Large perturbations in can yield large ,
hence a “perturbed interpolant” becomes a poor fit to the data

Vb = y

b̂

∥V −b̂ y∥ ∥b − ∥b̂

b Vb

Vb ∥Vb − y∥

18

Monomial Basis
These sensitivities are directly analogous
to what happens with an ill-conditioned basis in

Consider a basis of

Let’s express two close vectors

in terms of this basis i.e. and

By solving a linear system in each case, we get

The answer is highly sensitive to perturbations in

Rn

v , v 1 2 R2

v =1 [1, 0] , v =T
2 [1, 0.0001]T

y = [1, 0] , =T y~ [1, 0.0005]T

y = b v +1 1 b v 2 2 =y~ v +b
~

1 1 v b
~

2 2

2 × 2

b = [1, 0] , =T b
~

[−4, 5]T

b y

19

Monomial Basis
The same happens with interpolation using a monomial basis

The answer (coefficients of polynomial)
is highly sensitive to perturbations in the data

If we perturb slightly, we can get a large perturbation in
so the resulting polynomial no longer fits the data well

Example of interpolation using Vandermonde matrix

b Vb

[examples/unit1/vander_interp.py]

20

https://github.com/pkarnakov/am205/tree/main/examples/unit1/vander_interp.py

Interpolation
We would like to avoid these kinds of sensitivities to perturbations …
How can we do better?

Try to construct a basis such that
the interpolation matrix is the identity matrix

This gives a condition number of 1, and we also
avoid solving a linear system with a dense matrix(n + 1) × (n + 1)

21

Lagrange Interpolation
Key idea: Construct basis such that

The polynomials that achieve this are called Lagrange polynomials

Lagrange polynomials are given by:

Then the interpolant can be expressed as

{L ∈k P , k =n 0, … ,n}

L (x) =k i {
0, i = k
1, i = k

L (x) =k

j=0,j=k

∏
n

x − x k j

x − x j

p(x) = y L (x)
k=0

∑
n

k k

22

Lagrange Interpolation
Example: two Lagrange polynomials of degree 5
constructed on points x ∈ {−1, −0.6, −0.2, 0.2, 0.6, 1}

23

Lagrange Interpolation
Now we can use Lagrange polynomials to interpolate discrete data

We have solved the problem of interpolating discrete data!

24

Algorithmic Complexity
Exercise 1: How does the cost of evaluating a polynomial at one point scale
with ?

Exercise 2: How does the cost of evaluating a Lagrange interpolant at one
point scale with ?

x

n

p(x) = b +0 b x +1 b x +2
2 … + b xn

n

x n

p(x) = y

k=0

∑
n

k

j=0,j=k

∏
n

x − x k j

x − x j

25

Interpolation for Function Approximation
We now turn to a different question:
Can we use interpolation to accurately approximate continuous functions?

Suppose the interpolation data come from samples of a continuous function
 on

Then we’d like the interpolant to be “close to” on

The error in this type of approximation can be quantified from the following
theorem due to Cauchy

for some

f [a, b] ⊂ R
f [a, b]

f(x) − p (x) =n (x −
(n + 1)!
f (θ)(n+1)

x) … (x −0 x)n

θ(x) ∈ (a, b)

26

Polynomial Interpolation Error
Here we prove this result in the case

Let interpolate at

For some , let

here is quadratic and interpolates at

Fix an arbitrary point and require to get

Goal: Get an expression for , and eventually for

n = 1

p ∈1 P 1 f ∈ C [a, b]2 {x ,x }0 1

λ ∈ R

q(x) = p (x) +1 λ(x − x)(x −0 x),1

q f {x ,x }0 1

∈x̂ (x ,x)0 1 q() =x̂ f()x̂

λ =

(− x)(− x)x̂ 0 x̂ 1

f() − p ()x̂ 1 x̂

λ f() −x̂ p ()1 x̂

27

Polynomial Interpolation Error
Denote the error

 has 3 roots in , i.e.
Therefore, has 2 roots in (by Rolle’s theorem)
Therefore, has 1 root in (by Rolle’s theorem)

Let be such that

Then

Hence

e(x) = f(x) − q(x)
e(x) [x ,x]0 1 e(x) =0 e() =x̂ e(x) =1 0

e (x)′ (x ,x)0 1

e (x)′′ (x ,x)0 1

θ() ∈x̂ (x ,x)0 1 e (θ) =′′ 0

0 = e (θ) = f (θ) − q (θ)′′ ′′ ′′

= f (θ) − p (θ) − λ (θ − x)(θ − x)′′
1
′′

dθ2

d2

0 1

= f (θ) − 2λ′′

λ = f (θ)2
1 ′′

28

Polynomial Interpolation Error
Finally, we get

for any

This argument can be generalized to to give

for some

f() − p () =x̂ 1 x̂ λ(−x̂ x)(−0 x̂ x) =1 f (θ)(− x)(− x)
2
1 ′′ x̂ 0 x̂ 1

∈x̂ (x ,x)0 1

n > 1

f(x) − p (x) =n (x −
(n + 1)!
f (θ)(n+1)

x) … (x −0 x)n

θ(x) ∈ (a, b)

29

Polynomial Interpolation Error
For any , this theorem gives us the error bound

where

As increases,
if grows faster than

then converges to

Unfortunately, this is not always the case!

x ∈ [a, b]

∣f(x) − p (x)∣ ≤n ∣(x −
(n + 1)!
M n+1

x∈[a,b]
max x) … (x −0 x)∣n

M =n+1 ∣f (θ)∣
θ∈[a,b]
max n+1

n

(n + 1)! M ∣(x −n+1
x∈[a,b]
max x) … (x −0 x)∣n

p n f

30

Runge’s Phenomenon
A famous pathological example of the difficulty of interpolation
at equally spaced points is Runge’s Phenomenon

Consider Runge’s function for

f(x) = 1/(1 + 25x)2 x ∈ [−1, 1]

31

Runge’s Phenomenon
Reason: derivatives grow fast

f(x) = 1/(1 + 25x)2

f (x) =′ −50x/(1 + 25x)2 2

f (x) =′′ (3750x −2 50)/(((15625x +2 1875)x +2 75)x +2 1)

32

Runge’s Phenomenon
Note that is an interpolant, so it fits the evenly spaced samples exactly

But we are now also interested in the maximum error
between and its polynomial interpolant

That is, we want to be small!

This is called the “infinity norm” or the “max norm”

p n

f p n

 ∣f(x) −
x∈[−1,1]
max p (x)∣n

∥f − p ∥ =n ∞ ∣f(x) −
x∈[−1,1]
max p (x)∣n

33

Runge’s Phenomenon
Note that Runge’s function is smooth
but interpolating Runge’s function at evenly spaced points
leads to exponential growth of the infinity norm error!

We would like to construct an interpolant of
that avoids this kind of pathological behavior

f(x) = 1/(1 + 25x)2

f

34

Minimizing Interpolation Error
To do this, we recall our error equation

We focus our attention on the polynomial ,
since we can choose the interpolation points

Intuitively, we should choose
such that is as small as possible

f(x) − p (x) =n (x −
(n + 1)!
f (θ)n+1

x) … (x −0 x)n

(x − x) … (x −0 x)n

x , … ,x 0 n

∥(x − x) … (x −0 x)∥ n ∞

35

Chebyshev Polynomials
Chebyshev polynomials are defined for by

Or, equivalently, through the recurrence relation

Result from Approximation Theory:
The minimal value

is achieved by the polynomial

x ∈ [−1, 1]

T (x) = cos(n arccosx),n = 0, 1, 2, …n

T (x)0

T (x)1

T (x)n+1

= 1,

= x,

= 2xT (x) − T (x), n = 1, 2, 3, …n n−1

 ∥(x −
x ,…,x 0 n

min x) … (x −0 x)∥ =n ∞

2n
1

T (x)/2n+1
n

36

Chebyshev Polynomials
To set ,
we choose interpolation points to be the roots of

Chebyshev polynomials “equi-oscillate” (alternate) between and ,
so they minimize the infinity norm

Exercise: Show that the roots of
are given by ,

(x − x) … (x −0 x) =n T (x)/2n+1
n

T n+1

−1 1

T n

x =j cos((2j − 1)π/2n) j = 1, … ,n
37

Interpolation at Chebyshev Points
Revisit Runge’s function. Chebyshev interpolation is more accurate

To interpolate on an arbitrary interval ,
linearly map Chebyshev points from to

[a, b]
[−1, 1] [a, b]

38

Interpolation at Chebyshev Points
Note that convergence rates depend on smoothness of

In general, smoother faster convergence

Convergence of Chebyshev interpolation of
Runge’s function (smooth) and (not smooth)

Example of interpolation at Chebyshev points

f

f ⟹

∣x∣

[examples/unit1/cheb_interp.py]
39

https://github.com/pkarnakov/am205/tree/main/examples/unit1/cheb_interp.py

Another View on Interpolation Accuracy
We have seen that the interpolation points we choose have an enormous
effect on how well our interpolant approximates

The choice of Chebyshev interpolation points was motivated by our
interpolation error formula for

But this formula depends on — we would prefer to have a measure of
interpolation accuracy that is independent of

This would provide a more general way to compare the quality of
interpolation points … This is provided by the Lebesgue constant

f

f(x) − p (x)n

f

f

40

Lebesgue Constant
Let denote a set of interpolation points,

A fundamental property of is its Lebesgue constant, ,

The are the Lagrange basis polynomials associated with ,
hence is also a function of

X X = {x ,x , … ,x } ⊂0 1 n [a, b]

X Λ (X)n

Λ (X) =n ∣L (x)∣
x∈[a,b]
max

k=0

∑
n

k

L ∈k P n X

Λ n X

Λ (X) ≥n 1

41

Lebesgue Constant
Think of polynomial interpolation as a map, , where

 is the degree polynomial interpolant of at the
interpolation points

Exercise: Convince yourself that is linear
(e.g. use the Lagrange interpolation formula)

The reason that the Lebesgue constant is interesting is because it bounds the
“operator norm” of :

I n I :n C[a, b] → P [a, b]n

I (f)n n f ∈ C[a, b]
X

I n

I n

 ≤
f∈C[a,b]

sup
∥f∥ ∞

∥I (f)∥ n ∞ Λ (X)n

42

Lebesgue Constant
Proof

Hence , so

∥I (f)∥ n ∞ = ∥ f(x)L ∥ = f(x)L (x)

k=0

∑
n

k k ∞
x∈[a,b]
max

k=0

∑
n

k k

≤ ∣f(x)∣∣L (x)∣
x∈[a,b]
max

k=0

∑
n

k k

≤ ∣f(x)∣ ∣L (x)∣(
k=0,1,…,n

max k)
x∈[a,b]
max

k=0

∑
n

k

≤ ∥f∥ ∣L (x)∣∞
x∈[a,b]
max

k=0

∑
n

k

= ∥f∥ Λ (X)∞ n

 ≤∥f∥ ∞

∥I (f)∥n ∞ Λ (X)n sup ≤f∈C[a,b] ∥f∥ ∞

∥I (f)∥ n ∞ Λ (X)n

43

Lebesgue Constant
The Lebesgue constant allows us to bound interpolation error in terms of the
smallest possible error from

Let denote the best infinity-norm approximation to

for all

Some facts about
 as for any continuous !

(Weierstrass approximation theorem)
 is unique

(follows from the equi-oscillation theorem)
In general, is unknown

P n

p ∈n
∗ P n f

∥f − p ∥ ≤n
∗

∞ ∥f − w∥ ∞

w ∈ P n

p n
∗

∥p −n
∗ f∥ →∞ 0 n → ∞ f

p ∈n
∗ P n

p n
∗

44

Lebesgue Constant
Then, we can relate interpolation error to ∥f − p ∥ n

∗
∞

∥f − I (f)∥n ∞ ≤ ∥f − p ∥ + ∥p − I (f)∥ n
∗

∞ n
∗

n ∞

= ∥f − p ∥ + ∥I (p) − I (f)∥ n
∗

∞ n n
∗

n ∞

= ∥f − p ∥ + ∥I (p − f)∥ n
∗

∞ n n
∗

∞

= ∥f − p ∥ + ∥f − p ∥ n
∗

∞ ∥p − f∥ n
∗

∞

∥I (p − f)∥ n n
∗

∞
n
∗

∞

≤ ∥f − p ∥ + Λ (X)∥f − p ∥ n
∗

∞ n n
∗

∞

= (1 + Λ (X))∥f − p ∥ n n
∗

∞

45

Lebesgue Constant
Small Lebesgue constant means that our interpolation
cannot be much worse than the best possible polynomial approximation!

See

Now let’s compare Lebesgue constants for
equispaced () and Chebyshev points ()

[examples/unit1/lebesgue_const.py]

X equi X cheb

46

https://github.com/pkarnakov/am205/tree/main/examples/unit1/lebesgue_const.py

Lebesgue Constant

Plot of for and (11 pts in) ∣L (x)∣∑k=0
10

k X equi X cheb [−1, 1]

Λ (X) ≈10 equi 29.9 Λ (X) ≈10 cheb 2.49

47

Lebesgue Constant

Plot of for and (21 pts in) ∣L (x)∣∑k=0
20

k X equi X cheb [−1, 1]

Λ (X) ≈20 equi 10 987 Λ (X) ≈20 cheb 2.9

48

Lebesgue Constant

Plot of for and (31 pts in) ∣L (x)∣∑k=0
30

k X equi X cheb [−1, 1]

Λ (X) ≈30 equi 6 600 000 Λ (X) ≈30 cheb 3.15

49

Lebesgue Constant
The explosive growth of
is an explanation for Runge’s phenomenon

Asymptotic results as

Open mathematical problem: Construct that minimizes

Λ (X)n equi

n → ∞

Λ (X)n equi

Λ (X)n cheb

∼ exponential growth
e n log n

2n

< log(n + 1) + 1 logarithmic growth
π

2

X Λ (X)n

50

Summary
Compare and contrast the two key topics considered so far

Polynomial interpolation for fitting discrete data
we get “zero error” regardless of the interpolation points,
i.e. we’re guaranteed to fit the discrete data
Lagrange polynomial basis should be instead of the monomial basis
as the number of points increases (diagonal system, well-conditioned)

Polynomial interpolation for approximating continuous functions
for a given set of interpolating points, uses same methodology as for
discrete data
but now interpolation points play a crucial role in determining the
magnitude of the error ∥f − I (f)∥ n ∞

51

Piecewise Polynomial Interpolation

52

Piecewise Polynomial Interpolation
How to avoid explosive growth of error for non-smooth functions?

Idea: Decompose domain into subdomains and
apply polynomial interpolation on each subdomain

Example: piecewise linear interpolation

53

Splines
Splines are a popular type of piecewise polynomial interpolant

Interpolation points are now called knots

Splines have smoothness constraints to “glue” adjacent polynomials

Commonly used in computer graphics, font rendering, CAD software
Bezier splines
non-uniform rational basis spline (NURBS)
…

The name “spline” comes from
“a flexible piece of wood or metal used in drawing curves”

54

Splines
We focus on a popular type of spline: cubic spline

Piecewise cubic with continuous second derivatives

Example: cubic spline interpolation of Runge’s function

55

Cubic Splines
Suppose we have data points:

A cubic interpolating spline is a function that
is a cubic polynomial on each of intervals (parameters)
passes through the data points (conditions)

has continuous first derivative (conditions)

has continuous second derivative (conditions)

We have equations for unknowns

n + 1 (x , y), (x , y), … , (x , y)0 0 1 1 n n

s(x)
n [x ,x]i−1 i 4n
2n

s(x) =i y , i =i 0, … ,n

n − 1

s (x) =−
′

i s (x), i =+
′

i 1, … ,n − 1

n − 1

s (x) =−
′′

i s (x), i =+
′′

i 1, … ,n − 1

4n − 2 4n

56

Cubic Splines
We are missing two conditions!

Many options to define them
natural cubic spline

clamped

“not-a-knot spline”

s (x) =′′
0 s (x) =′′

n 0

s (x) =′
0 s (x) =′

n 0

s (x) =−
′′′

1 s (x) and s (x) =+
′′′

1 −
′′′

n−1 s (x)+
′′′

n−1

57

Constructing a Cubic Spline
Denote and

Look for polynomials , in the form

with unknown and , where

Automatically satisfies interpolation conditions

Conditions on derivatives to make the first derivative continuous

New unknown parameters: (parameters)

Δx =i x −i x i−1 Δy =i y −i y i−1

p ∈i P 3 i = 1, … ,n

p (x) =i ty + 1 − t y +i () i−1 t 1 − t αt + β 1 − t() (())

α β t = Δx i

x−x i−1

p (x) =i i−1 y p (x) =i−1 i i y i

p (x) =i
′

i−1 k p (x) =i−1 i
′

i k i

⟹ α = y −i y −i−1 Δx k β =i i y −i−1 y +i Δx k i i−1

k , … , k 0 n n + 1
58

Constructing a Cubic Spline
Expressions for second derivatives

Conditions on second derivatives:

(conditions)

Two more conditions from boundaries (natural, clamped, etc)

Tridiagonal linear system of equations for unknowns

p (x) =i
′′

i−1 +
Δx i

−4k − 2k i−1 i

Δx i
2

6Δy i

p (x) =i
′′

i −
Δx i

2k + 4k i−1 i

Δx i
2

6Δy i

p (x) =i
′′

i p (x) i =i+1
′′

i 1, … ,n − 1

 k +
Δx i

1
i−1 + k +(

Δx i

2
Δx i+1

2
) i k =

Δx i+1

1
i+1 + (

Δx i
2

3Δy i

Δx i+1
2

3Δy i+1)

n − 1

n + 1 n + 1 k i

59

Solving a Tridiagonal System
Tridiagonal matrix algorithm (TDMA),
also known as the Thomas algorithm

Simplified form of Gaussian elimination to solve
a tridiagonal system of equations for unknowns

TDMA has complexity while Gaussian elimination has

n + 1 n + 1 u i

b u + c u 0 0 0 1

a u + b u + c u i i−1 i i i i+1

a u + b u n n−1 n n

= d 0

= d , i = 1, … ,n − 1i

= d n

O(n) O(n)3

60

Solving a Tridiagonal System
Forward pass: for

Backward pass:

i = 1, 2, … ,n

w

bi

di

= a /b i i−1

← b − wc i i−1

← d − wd i i−1

un

ui

= d /b n n

= (d − c u)/b for i = n − 1, … , 0i i i+1 i

61

Example of Spline Interpolation
See

Spline looks smooth and does not have bumps or rapid changes

degree 10 polynomial cubic spline

[examples/unit1/spline_tdma.py]

62

https://github.com/pkarnakov/am205/tree/main/examples/unit1/spline_tdma.py

Example: Move One Point
How does the interpolant change after moving one data point?

original data, perturbed data, normalized change (a.u.)

Look at the normalized change
degree 10 polynomial: remains constant
cubic spline: changes in a nonlinear way

degree 10 polynomial cubic spline

Δ

Δ = (−f
~

f)/∥(−f
~

f)∥ ∞

Δ
Δ

63

Linear Least Squares
Recall that it can be advantageous to not fit data points exactly
(e.g. to remove noise), we don’t want to “overfit”

Suppose we want to fit a cubic polynomial to 11 data points

Question: How do we do this?

64

Linear Least Squares
Suppose we have constraints and parameters with
(on previous slide, and)

This is an overdetermined system ,
where (basis functions), (parameters), (data)

m n m > n

m = 11 n = 4

Ab = y

A ∈ Rm×n b ∈ Rn y ∈ Rm

 =

A

b

y

65

Linear Least Squares
In general, cannot be solved exactly;
instead our goal is to minimize the residual,

A very effective approach for this is the method of least squares:
Find parameter vector that minimizes

The 2-norm is convenient since it gives us a differentiable function

r(b) ∈ Rm

r(b) = y − Ab

b ∈ Rn ∥r(b)∥ 2

66

Normal Equations
Our goal is to minimize the objective function

In terms of , , and

where last line follows from , since

The minimum must exist since ,
but may be non-unique (e.g.)

ϕ(b) =: ∥r(b)∥ =2
2

 r (b)
i=1

∑
n

i
2

A b y

ϕ(b) = ∥r∥ = r r = (y − Ab) (y − Ab)2
2 T T

= y y − y Ab − b A y + b A AbT T T T T T

= y y − 2b A y + b A AbT T T T T

y Ab =T (y Ab)T T y Ab ∈T R
ϕ ≥ 0

f(b , b) =1 2 b 1
2

67

Normal Equations
To find minimum, set the derivative to zero ()

Derivative

Rule for the first term

∇ = ∇ b

∇ϕ(b) = 0

∇ϕ(b) = −2∇(b A y) +T T ∇(b A Ab)T T

 b c =
∂bk

∂ T
 b c =

∂b k

∂

i=1

∑
n

i i c k

⟹ ∇(b c) =T c

68

Normal Equations
Rule for the second term ()M = (m)i,j

 b Mb = m b b = m (b b) =
∂b k

∂ T

∂b k

∂

i,j=1

∑
n

i,j i j

i,j=1

∑
n

i,j ∂b k

∂
i j

= m (δ b + b δ) = m b + m b = (Mb) + (M b)
i,j=1

∑
n

i,j i,k j i j,k

j=1

∑
n

k,j j

i=1

∑
n

i,k i k
T

k

⟹ ∇(b Mb) =T Mb + M bT

69

Normal Equations
Putting it all together, we obtain

We set , which is
Finally, the linear least squares problem is equivalent to

This square system is known as the normal equations

∇ϕ(b) = −2A y +T 2A AbT

∇ϕ(b) = 0 −2A y +T 2A Ab =T 0

A Ab =T A yT

n × n

70

Normal Equations
For with ,

 is singular if and only if
 is rank-deficient (columns are linearly dependent)

Proof
 Suppose is singular. such that .

Hence , so that .
Therefore is rank-deficient.

 Suppose is rank-deficient. such that .
Hence , so that is singular.

A ∈ Rm×n m > n

A AT

A

(⇒) A AT ∃z = 0 A Az =T 0
z A Az =T T ∥Az∥ =2

2 0 Az = 0
A

(⇐) A ∃z = 0 Az = 0
A Az =T 0 A AT

71

Normal Equations
Hence if has full rank (i.e.)
we can solve the normal equations to find the unique minimizer

However, in general it is a bad idea to solve the normal equations directly,
because of condition-squaring (e.g. for square matrices)

We will consider more efficient methods later
(e.g. singular value decomposition)

A rank(A) = n

b

κ(A A) =T κ(A)2

72

Example: Least-Squares Polynomial Fit
Find a least-squares fit for degree 11 polynomial
to 50 samples of for

Let’s express the best-fit polynomial using the monomial basis

The th condition we’d like to satisfy is

 over-determined system with a Vandermonde matrix

y = cos(4x) x ∈ [0, 1]

p(x; b) = b x

k=0

∑
11

k
k

i

p(x ; b) =i cos(4x)i

⟹ 50 × 12

73

Example: Least-Squares Polynomial Fit
See

Both methods give small residuals

[examples/unit1/lstsq.py]

∥r(b)∥ =lstsq 2 ∥y − Ab ∥ =lstsq 2 8.00 × 10−9

∥r(b)∥ =normal 2 ∥y − Ab ∥ =normal 2 1.09 × 10−8

74

https://github.com/pkarnakov/am205/tree/main/examples/unit1/lstsq.py

Non-Polynomial Fitting
Least-squares fitting can be used with arbitrary basis functions

We just need a model that linearly depends on the parameters

Example: Approximate using exponentials

See

f(x) = e cos 4x−x

f (x; b) =n b e

k=−n

∑
n

k
kx

[examples/unit1/nonpoly_fit.py]

75

https://github.com/pkarnakov/am205/tree/main/examples/unit1/nonpoly_fit.py

Non-Polynomial Fitting

f (x; b) =n b e +−n
−nx b e +−n+1

(−n+1)x … + b +0 … + b en
nx

n = 1
∥r(b)∥ =2 2.22

n = 2
∥r(b)∥ =2 0.89

n = 3
∥r(b)∥ =2 0.2

76

Non-Polynomial Fitting
Why use non-polynomial basis functions?

recover properties of data
(e.g. sine waves for periodic data)
control smoothness
(e.g. splines correspond to a piecewise-polynomial basis)
control asymptotic behavior
(e.g. require that functions do not grow fast at infinity)

77

Equivariance
A procedure is called equivariant to a transformation
if applying the transformation to input (e.g. dataset) produces
the same result as applying the transformation to output (e.g. fitted model)

For example, consider a transformation and find two models
 that fits data
 that fits data

The fitting is equivariant to if

Does this hold for linear least squares? Depends on the basis

(in common speech, used interchangeably with “invariance”
but that actually stands for quantities not affected by transformations)

T (x)
f(⋅ ; b) (x , y)i i

f(⋅ ;)b
~

(Tx , y)i i

T

f(x; b) = f(Tx;)b
~

78

Example: Equivariance to Translation

equivariant to translation

equivariant to translation

T (x) = x + λ

1, x, x , x2 3 e , e , 1, e−2x −x x

79

Example: Equivariance to Scaling

equivariant to scaling

not equivariant to scaling

T (x) = λx

1, x, x , x2 3 e , e , 1, e−2x −x x

80

Pseudoinverse
Recall that from the normal equations we have:

This motivates the idea of the “pseudoinverse” for :

Key point: generalizes , i.e. if is invertible, then

Proof:

A Ab =T A yT

A ∈ Rm×n

A = (A A) A ∈ R+ T −1 T n×m

A+ A−1 A ∈ Rn×n A =+ A−1

A =+ (A A) A =T −1 T A (A) A =−1 T −1 T A−1

81

Pseudoinverse
Also:

Even when is not invertible we still have
In general (hence this is called a “left inverse”)

And it follows from our definition that ,
i.e. gives the least-squares solution

Note that we define the pseudoinverse differently in different contexts

A A A =+ I

AA =+ I

b = A y+

A ∈+ Rn×m

82

Underdetermined Least Squares
So far we have focused on overdetermined systems
(more equations than parameters)

But least-squares also applies to underdetermined systems:
 with , Ab = y A ∈ Rm×n m < n

 =

 A

b

y

83

Underdetermined Least Squares
For , we can apply the same argument as before
(i.e. set) to again obtain

But in this case has rank at most (where), why?

Therefore must be singular!

Typical case: There are infinitely many vectors that give ,
we want to be able to select one of them

ϕ(b) = ∥r(b)∥ =2
2 ∥y − Ab∥ 2

2

∇ϕ = 0

A Ab =T A yT

A A ∈T Rn×n m m < n

A AT

b r(b) = 0

84

Underdetermined Least Squares
First idea, pose a constrained optimization
problem to find the feasible with minimum 2-norm:

minimize

subject to

This can be treated using Lagrange multipliers (discussed later in Unit 4)

Idea is that the constraint restricts us to an -dimensional
hyperplane of on which has a unique minimum

b

b bT

Ab = y

(n − m)
Rn b bT

85

Underdetermined Least Squares
We will show later that the Lagrange multiplier approach
for the above problem gives:

Therefore, in the underdetermined case the pseudoinverse is defined as

Note that now , but in general
(i.e. this is a “right inverse”)

b = A (AA) yT T −1

A =+ A (AA) ∈T T −1 Rn×m

AA =+ I A A =+ I

86

Underdetermined Least Squares
Here we consider an alternative approach
for solving the underconstrained case

Let’s modify so that there is a unique minimum!

For example, let

where is a scaling matrix

This is called regularization: we make the problem well-posed
(“more regular”) by modifying the objective function

ϕ

ϕ(b) = ∥r(b)∥ +2
2 ∥Sb∥ 2

2

S ∈ Rn×n

87

Underdetermined Least Squares
Calculating in the same way as before leads to the system

We need to choose in some way to ensure is invertible
Can be proved that if is positive definite
then is invertible

Simplest positive definite regularizer:

for ,

∇ϕ = 0

(A A +T S S)b =T A yT

S (A A +T S S)T

S ST

(A A +T S S)T

S = μI ∈ Rn×n

μ > 0 μ ∈ R

88

Underdetermined Least Squares
See

Find least-squares fit for degree 11 polynomial
to 5 samples of for

12 parameters, 5 constraints

We express the polynomial using the monomial basis:
 is a submatrix of a Vandermonde matrix

Let’s see what happens when we regularize the problem
with some different choices of

[examples/unit1/under_lstsq.py]

y = cos(4x) x ∈ [0, 1]

⟹ A ∈ R5×12

A

S

89

https://github.com/pkarnakov/am205/tree/main/examples/unit1/under_lstsq.py

Underdetermined Least Squares
Find least-squares fit for degree 11 polynomial
to 5 samples of for

Try (i.e.)

Fit is good since regularization term is small
but condition number is still large

y = cos(4x) x ∈ [0, 1]

S = 0.001I μ = 0.001

∥r(b)∥ =2 1.07 × 10−4

cond(A A +T S S) =T 1.54 × 107

90

Underdetermined Least Squares
Find least-squares fit for degree 11 polynomial
to 5 samples of for

Try (i.e.)

Regularization term now dominates: small condition number
and small , but poor fit to the data!

y = cos(4x) x ∈ [0, 1]

S = 0.5I μ = 0.5

∥r(b)∥ =2 6.60 × 10−1

cond(A A +T S S) =T 62.3

∥b∥ 2

91

Underdetermined Least Squares
Find least-squares fit for degree 11 polynomial
to 5 samples of for

Try

We strongly penalize ,
hence the fit is close to parabolic

y = cos(4x) x ∈ [0, 1]

S = diag(0.1, 0.1, 0.1, 10, 10 … , 10)

∥r(b)∥ =2 4.78 × 10−1

cond(A A +T S S) =T 5.90 × 103

b , b , … , b 3 4 11

92

Underdetermined Least Squares
Find least-squares fit for degree 11 polynomial
to 5 samples of for

Use numpy.lstsq

Python routine uses Lagrange multipliers,
hence satisfies the constraints to machine precision

y = cos(4x) x ∈ [0, 1]

∥r(b)∥ =2 4.56 × 10−15

93

Nonlinear Least Squares
So far we have looked at finding a “best fit” solution
to a linear system (linear least-squares)

A more difficult situation is when we consider
least-squares for nonlinear systems

Key point: Linear least-squares fitting of model
refers to linearity in the parameters ,
while the model can be a nonlinear function of
(e.g. a polynomial
is linear in but nonlinear in)

In nonlinear least squares, we fit models
that are nonlinear in the parameters

f(x; b)
b

x

f(x; b) = b +0 … + b xn
n

b x

94

Nonlinear Least Squares: Motivation

basis: , ,

Consider a linear least-squares fit of f(x) = ∣x − 0.25∣

1 ∣x + 0.5∣ ∣x − 0.5∣ 0.07 + 0.28 ∣x + 0.5∣ + 0.71 ∣x − 0.5∣

95

Nonlinear Least Squares: Motivation

basis: , ,

We can improve the accuracy using “adaptive” basis functions,
but now the model is nonlinear in λ

1 ∣x + 0.5∣ ∣x − λ∣ −0.3 − 0.03 ∣x + 0.5∣ + 0.78 ∣x − λ∣
λ = 0.23

96

Nonlinear Least Squares: Example
Example: Suppose we have a radio transmitter
at somewhere in ()

Suppose that we have 10 receivers at locations
 ()

Receiver returns the distance to the transmitter,
but there is some error/noise

=b̂ (,)b̂1 b̂2 [0, 1]2 ×

(x ,x), (x ,x), … , (x ,x) ∈1
1

2
1

1
2

2
2

1
10

2
10 [0, 1]2 ∙

i y i

(ϵ)

97

Nonlinear Least Squares: Example
Let be a candidate location for the transmitter

The distance from to is

We want to choose to match the data as well as possible,
hence minimize the residual where

b

b (x ,x)1
i

2
i

d (b) =i (b − x) + (b − x)1 1
i 2

2 2
i 2

b

r(b) ∈ R10 r (b) = y − d (b)i i i

98

Nonlinear Least Squares: Example
In this case, ,
hence nonlinear least-squares!

Define the objective function

where is the residual vector

The factor has no effect on the minimizing ,
but leads to slightly cleaner formulas later on

r (α +i β) = r (α) +i r (β)i

ϕ(b) = ∥r(b)∥

2
1

2
2

r(b) ∈ R10

 2
1 b

99

Nonlinear Least Squares
As in the linear case, we seek to minimize
by finding such that

We have

Hence for the -component of the gradient vector, we have

ϕ

b ∇ϕ = 0

ϕ(b) = (r (b))2
1 ∑j=1

m
j

2

i

 =
∂b i

∂ϕ
 r =

∂b i

∂
2
1

j=1

∑
m

j
2

 r

j=1

∑
m

j ∂b i

∂r j

100

Nonlinear Least Squares
This is equivalent to
where is the Jacobian matrix of the residual

Exercise: Show that reduces
to the normal equations when the residual is linear

∇ϕ = J (b) r(b)r
T

J (b) ∈r Rm×n

J (b) ={ r }ij

∂b j

∂r (b)i

J (b) r(b) =r
T 0

101

Nonlinear Least Squares
Hence we seek such that:

This has equations, unknowns

In general, this is a nonlinear system that we have to solve iteratively

A common situation is that linear systems can be solved in “one shot”,
while nonlinear generally requires iteration

We will briefly introduce Newton’s method for solving this system
and defer detailed discussion until Unit 4

b ∈ Rn

J (b) r(b) =r
T 0

n n

102

Nonlinear Least Squares
Recall Newton’s method for a function of one variable:
find such that

Let be our current guess, and , then Taylor expansion gives

It follows that
(approx. since we neglect the higher order terms)

This motivates Newton’s method:

where

x ∈ R f(x) = 0

x k x +k Δx = x

0 = f(x +k Δx) = f(x) +k Δxf (x) +′
k O((Δx))2

f (x)Δx ≈′
k −f(x)k

f (x)Δx =′
k k −f(x)k

x =k+1 x +k Δx k

103

Nonlinear Least Squares
This argument generalizes directly to functions of several variables

For example, suppose , then find s.t. by

where is the Jacobian of , ,

F : R →n Rn x F (x) = 0

J (x)Δx =F k k −F (x)k

J F F Δx ∈k Rn x =k+1 x +k Δx k

104

Nonlinear Least Squares
In the case of nonlinear least squares,
to find a stationary point of we need to find such that

That is, we want to solve for

We apply Newton’s Method, hence need to find the Jacobian
of the function

ϕ b

J (b) r(b) =r
T 0

F (b) = 0 F (b) = J (b) r(b)r
T

J F

F : R →n Rn

105

Nonlinear Least Squares
Consider (this will be the entry of): ∂b j

∂F i ij JF

∂b j

∂F i = J (b) r(b)

∂b j

∂
(r

T)
i

= r

∂b j

∂

k=1

∑
m

∂b i

∂r k
k

= + r

k=1

∑
m

∂b i

∂r k

∂bj

∂r k

k=1

∑
m

∂b ∂b i j

∂ r

2
k

k

106

Gauss–Newton Method
It is generally difficult to deal with the second derivatives in the previous
formula (numerical sensitivity, cost, complex derivation)

Key observation: As we approach a good fit to the data,
the residual values , , should be small

Hence we omit the term .

r (b)k 1 ≤ k ≤ m

 r ∑k=1
m

k ∂b ∂b i j

∂ r

2
k

107

Gauss–Newton Method
Note that ,
so that when the residual is small

Then putting all the pieces together, we obtain the iteration

where

This is known as the Gauss–Newton Algorithm
for nonlinear least squares

 =∑k=1
m

∂b j

∂r k

∂b i

∂r k (J (b) J (b)) r
T

r ij

J (b) ≈F J (b) J (b)r
T

r

J (b) J (b)Δb =r k
T

r k k −J (b) r(b)r k
T

k

b =k+1 b +k Δb k

108

Gauss–Newton Method
This looks similar to Normal Equations at each iteration,
except now the matrix comes from linearizing the residual

Gauss–Newton is equivalent to solving the linear least squares
problem at each iteration

This is a common approach:
replace a nonlinear problem with a sequence of linearized problems

J (b)r k

J (b)Δb =r k k −r(b)k

109

Computing the Jacobian
To use Gauss–Newton in practice, we need to be able to compute the
Jacobian matrix for any

We can do this “by hand”,
e.g. in our transmitter/receiver problem we would have:

Differentiating by hand is feasible in this case,
but it can become impractical if is more complicated

Or perhaps our mapping is a “black box”

J (b)r k b ∈k Rn

[J (b)] =r ij −

∂b j

∂
(b − x) + (b − x)1 1

i 2
2 2

i 2

r(b)

b → y

110

Computing the Jacobian
Alternative approaches

Finite difference approximation

(requires only function evaluations, but prone to rounding errors)
Symbolic computations
Rule-based computation of derivatives (e.g. SymPy in Python)
Automatic differentiation
Carry information about derivatives through every operation
(e.g. use TensorFlow or PyTorch)

[J (b)] ≈r k ij

h

r (b + e h) − r (b)i k j i k

111

Gauss–Newton Method
We derived the Gauss–Newton algorithm method in a natural way:

apply Newton’s method to solve
neglect the second derivative terms that arise

However, Gauss–Newton is not widely used in
practice since it doesn’t always converge reliably

∇ϕ = 0

112

Levenberg–Marquardt Method
A more robust variation of Gauss–Newton is
the Levenberg–Marquardt Algorithm, which uses the update

where or , and some heuristics to choose

This looks like our “regularized” underdetermined linear least squares
formulation!

[J (b)J(b) +T
k k μ diag(S S)]Δb =k

T −J(b) r(b)k
T

k

S = I S = J(b)k μ k

113

Levenberg–Marquardt Method
Key point: The regularization term
improves the reliability of the algorithm in practice

Levenberg–Marquardt is available SciPy

We need to pass the residual to the routine,
and we can also pass the Jacobian matrix or ask to use finite-differences

Now let’s solve our transmitter/receiver problem

μ diag(S S)k
T

114

Nonlinear Least Squares: Example
See [examples/unit1/nonlin_lstsq.py]

115

https://github.com/pkarnakov/am205/tree/main/examples/unit1/nonlin_lstsq.py

Nonlinear Least Squares: Example
Levenberg–Marquardt minimizes

The minimized objective is even lower than for the true location
(because of the noise)

 is our best-fit to the data, is the true transmitter location

ϕ(b)

ϕ(×) = 0.0044 < 0.0089 = ϕ(×)

× ×
116

