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Motivation
Data fitting: Construct a continuous function that represents discrete data. 
Fundamental topic in Scientific Computing

We will study two types of data fitting
interpolation: fit the data points exactly
least-squares: minimize error in the fit 
(e.g. useful when there is experimental error)

Data fitting helps us to
interpret data: deduce hidden parameters, understand trends
process data: reconstructed function can be differentiated,
integrated, etc
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Motivation
Suppose we are given the following data points

Such data could represent
time series data (stock price, sales figures)
laboratory measurements (pressure, temperature)
astronomical observations (star light intensity)
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Motivation
We often need values between the data points

Easiest thing to do: “connect the dots” (piecewise linear interpolation)

Question: What if we want a smoother approximation?
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Motivation
We have 11 data points, we can use a degree 10 polynomial

However, a degree 10 interpolant doesn’t seem to capture 
the underlying pattern, has bumps and changes rapidly

y = 2.98 + 16.90x − 219.77x + 1198.07x − 3518.54x + 6194.09x2 3 4 5

− 6846.49x + 4787.40x − 2053.91x + 492.90x − 50.61x6 7 8 9 10
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Motivation
Let’s try linear regression: 
minimize the error in a linear approximation of the data

Best linear fit: 

Clearly not a good fit!

y = 2.94 + 0.25x
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Motivation
We can use least-squares fitting 
to generalize linear regression to higher-order polynomials

Best quadratic fit: 

Still not so good …

y = 3.22 − 0.68x + 0.47x2
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Motivation
Best cubic fit: 

Looks good! A “cubic model” captures this data well

In real-world problems it can be challenging 
to find the “right” model for experimental data

y = 2.97 + 1.32x − 2.16x +2 0.88x3
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Motivation
Data fitting is often performed 
with multi-dimensional data 

2D example: points  with feature 

See 

(x, y) z

[examples/unit1/fit_2d.py]
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Motivation: Summary
Interpolation is a fundamental tool in Scientific Computing, provides simple
representation of discrete data

Common to differentiate, integrate, optimize an interpolant

Least squares fitting is typically more useful for experimental data
Removes noise using a lower-order model

Data-fitting calculations are often performed with big datasets
Efficient and stable algorithms are very important
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Polynomial Interpolation
Let  denote the set of all polynomials of degree  on 

Polynomial  has the form

with coefficients 

P  n n R
p(⋅; b) ∈ P  n

p(x; b) = b  +0 b  x +1 b  x +2
2 … + b  xn

n

b = [b  , b  , … , b  ] ∈0 1 n
T Rn+1
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Polynomial Interpolation
Suppose we have data

where  are called interpolation points

Goal: Find a polynomial that passes through every data point in 

Therefore, we must have  for each  
   equations

For uniqueness, we should look for a polynomial with  parameters 
 look for 

S = {(x  , y  ), (x  , y  ), … , (x  , y  )}0 0 1 1 n n

x  ,x  , … ,x  0 1 n

S

p(x  ; b) =i y  i i = 0, … ,n
⟹ n + 1

n + 1
⟹ p ∈ P  n
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Polynomial Interpolation
This leads to the following system of  equations with  unknowns

The system is linear with respect to unknown coefficients 

n + 1 n + 1

b  + b  x  + b  x  + … + b  x0 1 0 2 0
2

n 0
n

b  + b  x  + b  x  + … + b  x0 1 1 2 1
2

n 1
n

b  + b  x  + b  x  + … + b  x0 1 n 2 n
2

n n
n

=

=

⋮

=

y0

y1

yn

b  , … , b  0 n
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Vandermonde Matrix
The same system in matrix form

with
unknown coefficients 
given values 
matrix  called the Vandermonde matrix

Vb = y

b = [b  , b  , … , b  ] ∈0 1 n
T Rn+1

y = [y  , y  , … , y ] ∈0 1 n
T Rn+1

V ∈ R(n+1)×(n+1)

       

1
1

⋮
1

x  0

x  1

⋮
x  n

x  0
2

x  1
2

⋮
x  n

2

⋯
⋯

⋱
⋯

x  0
n

x  1
n

⋮
x  n
n
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Existence and Uniqueness
Let’s prove that if the  interpolation points are distinct, 
then  has a unique solution

We know from linear algebra that for a square matrix : 
if , then  has a unique solution

If , then  has  distinct roots

Therefore we must have , or equivalently 

Hence  
so  has a unique solution for any 

n + 1
Vb = y

A

Az = 0 ⟹ z = 0 Ab = y

Vb = 0 p(⋅; b) ∈ P  n n + 1

p(⋅; b) = 0 b = 0

Vb = 0 ⟹ b = 0
Vb = y y ∈ Rn+1
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Vandermonde Matrix
This tells us that we can find the polynomial interpolant 
by solving the Vandermonde system 

However, this may be a bad idea since  is ill-conditioned

Vb = y

V
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Monomial Interpolation
The problem is that Vandermonde matrix corresponds 
to interpolation using the monomial basis

Monomial basis for  is 

As  increases, basis functions become increasingly indistinguishable, 
columns are more “linearly dependent”, the matrix is ill-conditioned

See , 
condition number of Vandermonde matrix

P  n {1,x,x , … ,x }2 n

n

[examples/unit1/vander_cond.py]
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Monomial Basis
Question: What is the practical consequence of this ill-conditioning?

Answer:
We want to solve 
Finite precision arithmetic gives an approximation 
Residual  will be small but  can still be large! 
(will be discussed in Unit 2)
Similarly, small perturbation in  can give large perturbation in 
Large perturbations in  can yield large , 
hence a “perturbed interpolant” becomes a poor fit to the data

Vb = y

b̂

∥V −b̂ y∥ ∥b − ∥b̂

b Vb

Vb ∥Vb − y∥
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Monomial Basis
These sensitivities are directly analogous 
to what happens with an ill-conditioned basis in 

Consider a basis  of 

Let’s express two close vectors

in terms of this basis i.e.   and 

By solving a  linear system in each case, we get

The answer  is highly sensitive to perturbations in 

Rn

v  , v  1 2 R2

v  =1 [1, 0] , v  =T
2 [1, 0.0001]T

y = [1, 0] ,  =T y~ [1, 0.0005]T

y = b  v  +1 1 b  v  2 2  =y~  v  +b
~

1 1  v  b
~

2 2

2 × 2

b = [1, 0] , =T b
~

[−4, 5]T

b y
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Monomial Basis
The same happens with interpolation using a monomial basis

The answer (coefficients of polynomial) 
is highly sensitive to perturbations in the data

If we perturb  slightly, we can get a large perturbation in  
so the resulting polynomial no longer fits the data well

Example of interpolation using Vandermonde matrix 

b Vb

[examples/unit1/vander_interp.py]
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Interpolation
We would like to avoid these kinds of sensitivities to perturbations … 
How can we do better?

Try to construct a basis such that 
the interpolation matrix is the identity matrix

This gives a condition number of 1, and we also 
avoid solving a linear system with a dense  matrix(n + 1) × (n + 1)
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Lagrange Interpolation
Key idea: Construct basis  such that

The polynomials that achieve this are called Lagrange polynomials

Lagrange polynomials are given by:

Then the interpolant can be expressed as

{L  ∈k P  , k =n 0, … ,n}

L  (x  ) =k i  {
0, i = k
1, i = k

L  (x) =k   

j=0,j=k

∏
n

x  − x  k j

x − x  j

p(x) =  y  L  (x)
k=0

∑
n

k k
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Lagrange Interpolation
Example: two Lagrange polynomials of degree 5 
constructed on points x ∈ {−1, −0.6, −0.2, 0.2, 0.6, 1}
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Lagrange Interpolation
Now we can use Lagrange polynomials to interpolate discrete data

We have solved the problem of interpolating discrete data!
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Algorithmic Complexity
Exercise 1: How does the cost of evaluating a polynomial at one point  scale
with ?

Exercise 2: How does the cost of evaluating a Lagrange interpolant at one
point  scale with ?

x

n

p(x) = b  +0 b  x +1 b  x +2
2 … + b  xn

n

x n

p(x) =  y    

k=0

∑
n

k

j=0,j=k

∏
n

x  − x  k j

x − x  j
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Interpolation for Function Approximation
We now turn to a different question: 
Can we use interpolation to accurately approximate continuous functions?

Suppose the interpolation data come from samples of a continuous function 
 on 

Then we’d like the interpolant to be “close to”  on 

The error in this type of approximation can be quantified from the following
theorem due to Cauchy

for some 

f [a, b] ⊂ R
f [a, b]

f(x) − p  (x) =n  (x −
(n + 1)!
f (θ)(n+1)

x  ) … (x −0 x  )n

θ(x) ∈ (a, b)
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Polynomial Interpolation Error
Here we prove this result in the case 

Let  interpolate  at 

For some , let

here  is quadratic and interpolates  at 

Fix an arbitrary point  and require  to get

Goal: Get an expression for , and eventually for 

n = 1

p  ∈1 P  1 f ∈ C [a, b]2 {x  ,x  }0 1

λ ∈ R

q(x) = p  (x) +1 λ(x − x  )(x −0 x  ),1

q f {x  ,x  }0 1

∈x̂ (x  ,x  )0 1 q( ) =x̂ f( )x̂

λ =  

( − x  )( − x  )x̂ 0 x̂ 1

f( ) − p  ( )x̂ 1 x̂

λ f( ) −x̂ p  ( )1 x̂
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Polynomial Interpolation Error
Denote the error 

 has 3 roots in , i.e. 
Therefore,  has 2 roots in  (by Rolle’s theorem)
Therefore,  has 1 root in  (by Rolle’s theorem)

Let  be such that  

Then

Hence 

e(x) = f(x) − q(x)
e(x) [x  ,x  ]0 1 e(x  ) =0 e( ) =x̂ e(x  ) =1 0

e (x)′ (x  ,x  )0 1

e (x)′′ (x  ,x  )0 1

θ( ) ∈x̂ (x  ,x  )0 1 e (θ) =′′ 0

  

0 = e (θ) = f (θ) − q (θ)′′ ′′ ′′

= f (θ) − p  (θ) − λ  (θ − x  )(θ − x  )′′
1
′′

dθ2

d2

0 1

= f (θ) − 2λ′′

λ =  f (θ)2
1 ′′
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Polynomial Interpolation Error
Finally, we get

for any 

This argument can be generalized to  to give

for some 

f( ) − p  ( ) =x̂ 1 x̂ λ( −x̂ x  )( −0 x̂ x  ) =1  f (θ)( − x  )( − x  )
2
1 ′′ x̂ 0 x̂ 1

∈x̂ (x  ,x  )0 1

n > 1

f(x) − p  (x) =n  (x −
(n + 1)!
f (θ)(n+1)

x  ) … (x −0 x  )n

θ(x) ∈ (a, b)
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Polynomial Interpolation Error
For any , this theorem gives us the error bound

where 

As  increases, 
if  grows faster than  

then  converges to 

Unfortunately, this is not always the case!

x ∈ [a, b]

∣f(x) − p  (x)∣ ≤n   ∣(x −
(n + 1)!
M  n+1

x∈[a,b]
max x  ) … (x −0 x  )∣n

M  =n+1  ∣f (θ)∣
θ∈[a,b]
max n+1

n

(n + 1)! M   ∣(x −n+1
x∈[a,b]
max x  ) … (x −0 x  )∣n

p  n f
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Runge’s Phenomenon
A famous pathological example of the difficulty of interpolation 
at equally spaced points is Runge’s Phenomenon

Consider Runge’s function  for  

 

f(x) = 1/(1 + 25x )2 x ∈ [−1, 1]
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Runge’s Phenomenon
Reason: derivatives grow fast

f(x) = 1/(1 + 25x )2

f (x) =′ −50x/(1 + 25x )2 2

f (x) =′′ (3750x −2 50)/(((15625x +2 1875)x +2 75)x +2 1)
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Runge’s Phenomenon
Note that  is an interpolant, so it fits the evenly spaced samples exactly

But we are now also interested in the maximum error 
between  and its polynomial interpolant 

That is, we want  to be small!

This is called the “infinity norm” or the “max norm”

p  n

f p  n

 ∣f(x) −
x∈[−1,1]
max p  (x)∣n

∥f − p  ∥  =n ∞  ∣f(x) −
x∈[−1,1]
max p  (x)∣n
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Runge’s Phenomenon
Note that Runge’s function  is smooth 
but interpolating Runge’s function at evenly spaced points 
leads to exponential growth of the infinity norm error!

We would like to construct an interpolant of  
that avoids this kind of pathological behavior

f(x) = 1/(1 + 25x )2

f
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Minimizing Interpolation Error
To do this, we recall our error equation

We focus our attention on the polynomial , 
since we can choose the interpolation points

Intuitively, we should choose  
such that  is as small as possible

f(x) − p  (x) =n  (x −
(n + 1)!
f (θ)n+1

x  ) … (x −0 x  )n

(x − x  ) … (x −0 x  )n

x  , … ,x  0 n

∥(x − x  ) … (x −0 x  )∥  n ∞
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Chebyshev Polynomials
Chebyshev polynomials are defined for  by 

Or, equivalently, through the recurrence relation 

Result from Approximation Theory: 
The minimal value

is achieved by the polynomial 

x ∈ [−1, 1]

T  (x) = cos(n arccosx),n = 0, 1, 2, …n

T  (x)0

T  (x)1

T  (x)n+1

= 1,

= x,

= 2xT  (x) − T  (x), n = 1, 2, 3, …n n−1

 ∥(x −
x  ,…,x  0 n

min x  ) … (x −0 x )∥  =n ∞  

2n
1

T  (x)/2n+1
n
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Chebyshev Polynomials
To set , 
we choose interpolation points to be the roots of 

Chebyshev polynomials “equi-oscillate” (alternate) between  and , 
so they minimize the infinity norm

Exercise: Show that the roots of  
are given by , 

(x − x  ) … (x −0 x  ) =n T  (x)/2n+1
n

T  n+1

−1 1

T  n

x  =j cos((2j − 1)π/2n) j = 1, … ,n
37



Interpolation at Chebyshev Points
Revisit Runge’s function. Chebyshev interpolation is more accurate 

 

To interpolate on an arbitrary interval , 
linearly map Chebyshev points from  to 

[a, b]
[−1, 1] [a, b]
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Interpolation at Chebyshev Points
Note that convergence rates depend on smoothness of 

In general, smoother   faster convergence

Convergence of Chebyshev interpolation of 
Runge’s function (smooth) and  (not smooth)

Example of interpolation at Chebyshev points 

f

f ⟹

∣x∣

[examples/unit1/cheb_interp.py]
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Another View on Interpolation Accuracy
We have seen that the interpolation points we choose have an enormous
effect on how well our interpolant approximates 

The choice of Chebyshev interpolation points was motivated by our
interpolation error formula for 

But this formula depends on  — we would prefer to have a measure of
interpolation accuracy that is independent of 

This would provide a more general way to compare the quality of
interpolation points … This is provided by the Lebesgue constant

f

f(x) − p  (x)n

f

f

40



Lebesgue Constant
Let  denote a set of interpolation points, 

A fundamental property of  is its Lebesgue constant, ,

The  are the Lagrange basis polynomials associated with , 
hence  is also a function of 

X X = {x  ,x  , … ,x  } ⊂0 1 n [a, b]

X Λ  (X )n

Λ  (X ) =n   ∣L  (x)∣
x∈[a,b]
max

k=0

∑
n

k

L ∈k P  n X

Λ  n X

Λ  (X ) ≥n 1

41



Lebesgue Constant
Think of polynomial interpolation as a map, , where 

 is the degree  polynomial interpolant of  at the
interpolation points 

Exercise: Convince yourself that  is linear 
(e.g. use the Lagrange interpolation formula)

The reason that the Lebesgue constant is interesting is because it bounds the
“operator norm” of :

I  n I  :n C[a, b] → P  [a, b]n

I  (f)n n f ∈ C[a, b]
X

I  n

I  n

  ≤
f∈C[a,b]

sup
∥f∥  ∞

∥I  (f)∥  n ∞ Λ  (X )n
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Lebesgue Constant
Proof

Hence , so 

  

∥I  (f)∥  n ∞ = ∥  f(x  )L  ∥  =    f(x  )L  (x)  

k=0

∑
n

k k ∞
x∈[a,b]
max

k=0

∑
n

k k

≤   ∣f(x  )∣∣L  (x)∣
x∈[a,b]
max

k=0

∑
n

k k

≤  ∣f(x  )∣   ∣L  (x)∣(
k=0,1,…,n

max k )
x∈[a,b]
max

k=0

∑
n

k

≤ ∥f∥    ∣L  (x)∣∞
x∈[a,b]
max

k=0

∑
n

k

= ∥f∥  Λ  (X )∞ n

 ≤∥f∥  ∞

∥I  (f)∥n ∞ Λ  (X )n sup   ≤f∈C[a,b] ∥f∥  ∞

∥I  (f)∥  n ∞ Λ  (X )n
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Lebesgue Constant
The Lebesgue constant allows us to bound interpolation error in terms of the
smallest possible error from 

Let  denote the best infinity-norm approximation to 

for all 

Some facts about 
 as  for any continuous ! 

(Weierstrass approximation theorem)
 is unique 

(follows from the equi-oscillation theorem)
In general,  is unknown

P  n

p  ∈n
∗ P  n f

∥f − p  ∥  ≤n
∗

∞ ∥f − w∥  ∞

w ∈ P  n

p  n
∗

∥p  −n
∗ f∥  →∞ 0 n → ∞ f

p  ∈n
∗ P  n

p  n
∗
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Lebesgue Constant
Then, we can relate interpolation error to ∥f − p  ∥  n

∗
∞

∥f − I  (f)∥n ∞ ≤ ∥f − p ∥ + ∥p  − I  (f)∥  n
∗

∞ n
∗

n ∞

= ∥f − p ∥ + ∥I  (p  ) − I  (f)∥  n
∗

∞ n n
∗

n ∞

= ∥f − p ∥ + ∥I  (p  − f)∥  n
∗

∞ n n
∗

∞

= ∥f − p ∥ +  ∥f − p  ∥  n
∗

∞ ∥p  − f∥  n
∗

∞

∥I  (p  − f)∥  n n
∗

∞
n
∗

∞

≤ ∥f − p ∥ + Λ  (X )∥f − p  ∥  n
∗

∞ n n
∗

∞

= (1 + Λ  (X ))∥f − p  ∥  n n
∗

∞
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Lebesgue Constant
Small Lebesgue constant means that our interpolation
cannot be much worse than the best possible polynomial approximation!

See 

Now let’s compare Lebesgue constants for 
equispaced ( ) and Chebyshev points ( )

[examples/unit1/lebesgue_const.py]

X  equi X  cheb
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Lebesgue Constant

Plot of  for  and  (11 pts in ) ∣L  (x)∣∑k=0
10

k X  equi X  cheb [−1, 1]

Λ  (X  ) ≈10 equi 29.9 Λ  (X  ) ≈10 cheb 2.49

47



Lebesgue Constant

Plot of  for  and  (21 pts in ) ∣L  (x)∣∑k=0
20

k X  equi X  cheb [−1, 1]

Λ  (X  ) ≈20 equi 10 987 Λ  (X  ) ≈20 cheb 2.9
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Lebesgue Constant

Plot of  for  and  (31 pts in ) ∣L  (x)∣∑k=0
30

k X  equi X  cheb [−1, 1]

Λ  (X  ) ≈30 equi 6 600 000 Λ  (X  ) ≈30 cheb 3.15
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Lebesgue Constant
The explosive growth of  
is an explanation for Runge’s phenomenon

Asymptotic results as 

Open mathematical problem: Construct  that minimizes 

Λ  (X  )n equi

n → ∞

Λ  (X  )n equi

Λ  (X  )n cheb

∼  exponential growth
e n log n

2n

<  log(n + 1) + 1 logarithmic growth
π

2

X Λ  (X )n
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Summary
Compare and contrast the two key topics considered so far

Polynomial interpolation for fitting discrete data
we get “zero error” regardless of the interpolation points, 
i.e. we’re guaranteed to fit the discrete data
Lagrange polynomial basis should be instead of the monomial basis
as the number of points increases (diagonal system, well-conditioned)

Polynomial interpolation for approximating continuous functions
for a given set of interpolating points, uses same methodology as for
discrete data
but now interpolation points play a crucial role in determining the
magnitude of the error ∥f − I  (f)∥  n ∞
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Piecewise Polynomial Interpolation
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Piecewise Polynomial Interpolation
How to avoid explosive growth of error for non-smooth functions?

Idea: Decompose domain into subdomains and 
apply polynomial interpolation on each subdomain

Example: piecewise linear interpolation
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Splines
Splines are a popular type of piecewise polynomial interpolant

Interpolation points are now called knots

Splines have smoothness constraints to “glue” adjacent polynomials

Commonly used in computer graphics, font rendering, CAD software
Bezier splines
non-uniform rational basis spline (NURBS)
…

The name “spline” comes from 
“a flexible piece of wood or metal used in drawing curves”
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Splines
We focus on a popular type of spline: cubic spline

Piecewise cubic with continuous second derivatives

Example: cubic spline interpolation of Runge’s function
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Cubic Splines
Suppose we have  data points: 

A cubic interpolating spline is a function  that
is a cubic polynomial on each of  intervals  (  parameters)
passes through the data points (  conditions)

has continuous first derivative (  conditions)

has continuous second derivative (  conditions)

We have  equations for  unknowns

n + 1 (x  , y  ), (x  , y  ), … , (x  , y  )0 0 1 1 n n

s(x)
n [x  ,x  ]i−1 i 4n
2n

s(x  ) =i y  , i =i 0, … ,n

n − 1

s  (x  ) =−
′

i s  (x  ), i =+
′

i 1, … ,n − 1

n − 1

s  (x  ) =−
′′

i s  (x  ), i =+
′′

i 1, … ,n − 1

4n − 2 4n
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Cubic Splines
We are missing two conditions!

Many options to define them
natural cubic spline

clamped

“not-a-knot spline”

s (x  ) =′′
0 s (x  ) =′′

n 0

s (x  ) =′
0 s (x  ) =′

n 0

s  (x  ) =−
′′′

1 s  (x  ) and s  (x  ) =+
′′′

1 −
′′′

n−1 s  (x  )+
′′′

n−1
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Constructing a Cubic Spline
Denote  and 

Look for polynomials ,  in the form

with unknown  and , where 

Automatically satisfies interpolation conditions

Conditions on derivatives to make the first derivative continuous

New unknown parameters:  (  parameters)

Δx  =i x  −i x  i−1 Δy  =i y  −i y  i−1

p  ∈i P  3 i = 1, … ,n

p  (x) =i ty  + 1 − t y  +i ( ) i−1 t 1 − t αt + β 1 − t( ) ( ( ))

α β t =  Δx  i

x−x  i−1

p  (x  ) =i i−1 y  p  (x  ) =i−1 i i y  i

p  (x  ) =i
′

i−1 k  p  (x  ) =i−1 i
′

i k  i

⟹ α = y  −i y  −i−1 Δx  k  β =i i y  −i−1 y  +i Δx  k  i i−1

k  , … , k  0 n n + 1
58



Constructing a Cubic Spline
Expressions for second derivatives

Conditions on second derivatives: 

(  conditions)

Two more conditions from boundaries (natural, clamped, etc)

Tridiagonal linear system of  equations for  unknowns 

p  (x  ) =i
′′

i−1  +
Δx  i

−4k  − 2k  i−1 i
 

Δx  i
2

6Δy  i

p  (x  ) =i
′′

i  −
Δx  i

2k  + 4k  i−1 i
 

Δx  i
2

6Δy  i

p  (x  ) =i
′′

i p  (x  ) i =i+1
′′

i 1, … ,n − 1

 k  +
Δx  i

1
i−1  +  k  +(

Δx  i

2
Δx  i+1

2
) i  k  =

Δx  i+1

1
i+1  +  (

Δx  i
2

3Δy  i

Δx  i+1
2

3Δy  i+1 )

n − 1

n + 1 n + 1 k  i
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Solving a Tridiagonal System
Tridiagonal matrix algorithm (TDMA), 
also known as the Thomas algorithm

Simplified form of Gaussian elimination to solve 
a tridiagonal system of  equations for  unknowns 

TDMA has complexity  while Gaussian elimination has 

n + 1 n + 1 u  i

  

b  u  + c  u  0 0 0 1

a  u  + b  u  + c  u  i i−1 i i i i+1

a  u  + b  u  n n−1 n n

= d  0

= d  , i = 1, … ,n − 1i

= d  n

O(n) O(n )3
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Solving a Tridiagonal System
Forward pass: for 

Backward pass:

i = 1, 2, … ,n

w

bi

di

= a  /b  i i−1

← b  − wc  i i−1

← d  − wd  i i−1

un

ui

= d  /b  n n

= (d  − c  u  )/b  for i = n − 1, … , 0i i i+1 i
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Example of Spline Interpolation
See 

Spline looks smooth and does not have bumps or rapid changes

degree 10 polynomial cubic spline

[examples/unit1/spline_tdma.py]
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Example: Move One Point
How does the interpolant change after moving one data point?

original data, perturbed data, normalized change  (a.u.)

Look at the normalized change 
degree 10 polynomial:  remains constant
cubic spline:  changes in a nonlinear way

degree 10 polynomial cubic spline

Δ

Δ = (  −f
~

f)/∥(  −f
~

f)∥  ∞

Δ
Δ
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Linear Least Squares
Recall that it can be advantageous to not fit data points exactly 
(e.g. to remove noise), we don’t want to “overfit”

Suppose we want to fit a cubic polynomial to 11 data points

Question: How do we do this?

64



Linear Least Squares
Suppose we have  constraints and  parameters with  
(on previous slide,  and )

This is an overdetermined system , 
where  (basis functions),  (parameters),  (data)

m n m > n

m = 11 n = 4

Ab = y

A ∈ Rm×n b ∈ Rn y ∈ Rm

   =

          

A
 
b    

 

y
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Linear Least Squares
In general, cannot be solved exactly; 
instead our goal is to minimize the residual, 

A very effective approach for this is the method of least squares: 
Find parameter vector  that minimizes 

The 2-norm is convenient since it gives us a differentiable function

r(b) ∈ Rm

r(b) = y − Ab

b ∈ Rn ∥r(b)∥  2
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Normal Equations
Our goal is to minimize the objective function

In terms of , , and 

where last line follows from , since 

The minimum must exist since , 
but may be non-unique (e.g.  )

ϕ(b) =: ∥r(b)∥  =2
2

 r  (b)
i=1

∑
n

i
2

A b y

  

ϕ(b) = ∥r∥  = r r = (y − Ab) (y − Ab)2
2 T T

= y y − y Ab − b A y + b A AbT T T T T T

= y y − 2b A y + b A AbT T T T T

y Ab =T (y Ab)T T y Ab ∈T R
ϕ ≥ 0

f(b  , b  ) =1 2 b  1
2
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Normal Equations
To find minimum, set the derivative to zero ( )

Derivative

Rule for the first term

∇ = ∇  b

∇ϕ(b) = 0

∇ϕ(b) = −2∇(b A y) +T T ∇(b A Ab)T T

 b c =
∂bk

∂ T
  b  c  =

∂b  k

∂

i=1

∑
n

i i c  k

⟹ ∇(b c) =T c
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Normal Equations
Rule for the second term ( )M = (m  )i,j

 b Mb =   m  b  b  =  m   (b  b  ) =
∂b  k

∂ T

∂b  k

∂

i,j=1

∑
n

i,j i j

i,j=1

∑
n

i,j ∂b  k

∂
i j

=  m  (δ  b  + b  δ  ) =  m  b  +  m  b  = (Mb)  + (M b)
i,j=1

∑
n

i,j i,k j i j,k

j=1

∑
n

k,j j

i=1

∑
n

i,k i k
T

k

⟹ ∇(b Mb) =T Mb + M bT
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Normal Equations
Putting it all together, we obtain

We set , which is 
Finally, the linear least squares problem is equivalent to

This square  system is known as the normal equations

∇ϕ(b) = −2A y +T 2A AbT

∇ϕ(b) = 0 −2A y +T 2A Ab =T 0

A Ab =T A yT

n × n
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Normal Equations
For  with , 

 is singular if and only if 
 is rank-deficient (columns are linearly dependent) 

Proof
 Suppose  is singular.  such that . 

Hence , so that . 
Therefore  is rank-deficient.

 Suppose  is rank-deficient.  such that . 
Hence , so that  is singular.

A ∈ Rm×n m > n

A AT

A

(⇒) A AT ∃z = 0 A Az =T 0
z A Az =T T ∥Az∥  =2

2 0 Az = 0
A

(⇐) A ∃z = 0 Az = 0
A Az =T 0 A AT
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Normal Equations
Hence if  has full rank (i.e.  ) 
we can solve the normal equations to find the unique minimizer 

However, in general it is a bad idea to solve the normal equations directly, 
because of condition-squaring (e.g.   for square matrices)

We will consider more efficient methods later 
(e.g. singular value decomposition)

A rank(A) = n

b

κ(A A) =T κ(A)2

72



Example: Least-Squares Polynomial Fit
Find a least-squares fit for degree 11 polynomial 
to 50 samples of  for 

Let’s express the best-fit polynomial using the monomial basis

The th condition we’d like to satisfy is

 over-determined system with a  Vandermonde matrix

y = cos(4x) x ∈ [0, 1]

p(x; b) =  b  x

k=0

∑
11

k
k

i

p(x  ; b) =i cos(4x  )i

⟹ 50 × 12
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Example: Least-Squares Polynomial Fit
See 

Both methods give small residuals

[examples/unit1/lstsq.py]

∥r(b  )∥  =lstsq 2 ∥y − Ab  ∥  =lstsq 2 8.00 × 10−9

∥r(b  )∥  =normal 2 ∥y − Ab  ∥  =normal 2 1.09 × 10−8
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Non-Polynomial Fitting
Least-squares fitting can be used with arbitrary basis functions

We just need a model that linearly depends on the parameters

Example: Approximate  using exponentials 

See 

f(x) = e cos 4x−x

f  (x; b) =n  b  e

k=−n

∑
n

k
kx

[examples/unit1/nonpoly_fit.py]
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Non-Polynomial Fitting

   

f  (x; b) =n b  e +−n
−nx b  e +−n+1

(−n+1)x … + b  +0 … + b  en
nx

n = 1
∥r(b)∥  =2 2.22

n = 2
∥r(b)∥  =2 0.89

n = 3
∥r(b)∥  =2 0.2
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Non-Polynomial Fitting
Why use non-polynomial basis functions?

recover properties of data 
(e.g. sine waves for periodic data)
control smoothness 
(e.g. splines correspond to a piecewise-polynomial basis)
control asymptotic behavior 
(e.g. require that functions do not grow fast at infinity)
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Equivariance
A procedure is called equivariant to a transformation 
if applying the transformation to input (e.g. dataset) produces 
the same result as applying the transformation to output (e.g. fitted model)

For example, consider a transformation  and find two models
 that fits data 
 that fits data 

The fitting is equivariant to  if

Does this hold for linear least squares? Depends on the basis

(in common speech, used interchangeably with “invariance” 
but that actually stands for quantities not affected by transformations)

T (x)
f(⋅ ; b) (x  , y  )i i

f(⋅ ; )b
~

(Tx  , y  )i i

T

f(x; b) = f(Tx; )b
~
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Example: Equivariance to Translation

  
equivariant to translation

  
equivariant to translation

T (x) = x + λ

1, x, x , x2 3 e , e , 1, e−2x −x x
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Example: Equivariance to Scaling

  
equivariant to scaling

  
not equivariant to scaling

T (x) = λx

1, x, x , x2 3 e , e , 1, e−2x −x x
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Pseudoinverse
Recall that from the normal equations we have:

This motivates the idea of the “pseudoinverse” for :

Key point:  generalizes , i.e. if  is invertible, then 

Proof: 

A Ab =T A yT

A ∈ Rm×n

A = (A A) A ∈ R+ T −1 T n×m

A+ A−1 A ∈ Rn×n A =+ A−1

A =+ (A A) A =T −1 T A (A ) A =−1 T −1 T A−1
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Pseudoinverse
Also:

Even when  is not invertible we still have 
In general  (hence this is called a “left inverse”)

And it follows from our definition that , 
i.e.   gives the least-squares solution

Note that we define the pseudoinverse differently in different contexts

A A A =+ I

AA =+  I

b = A y+

A ∈+ Rn×m
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Underdetermined Least Squares
So far we have focused on overdetermined systems 
(more equations than parameters)

But least-squares also applies to underdetermined systems: 
 with , Ab = y A ∈ Rm×n m < n

      =
                                

               A                
                                

 

b    

 
y
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Underdetermined Least Squares
For , we can apply the same argument as before
(i.e. set ) to again obtain

But in this case  has rank at most  (where ), why?

Therefore  must be singular!

Typical case: There are infinitely many vectors  that give , 
we want to be able to select one of them

ϕ(b) = ∥r(b)∥  =2
2 ∥y − Ab∥  2

2

∇ϕ = 0

A Ab =T A yT

A A ∈T Rn×n m m < n

A AT

b r(b) = 0
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Underdetermined Least Squares
First idea, pose a constrained optimization 
problem to find the feasible  with minimum 2-norm:

minimize

subject to

This can be treated using Lagrange multipliers (discussed later in Unit 4)

Idea is that the constraint restricts us to an -dimensional 
hyperplane of  on which  has a unique minimum

b

b bT

Ab = y

(n − m)
Rn b bT
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Underdetermined Least Squares
We will show later that the Lagrange multiplier approach 
for the above problem gives:

Therefore, in the underdetermined case the pseudoinverse is defined as

Note that now , but  in general 
(i.e. this is a “right inverse”)

b = A (AA ) yT T −1

A =+ A (AA ) ∈T T −1 Rn×m

AA =+ I A A =+  I
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Underdetermined Least Squares
Here we consider an alternative approach 
for solving the underconstrained case

Let’s modify  so that there is a unique minimum!

For example, let

where  is a scaling matrix

This is called regularization: we make the problem well-posed 
(“more regular”) by modifying the objective function

ϕ

ϕ(b) = ∥r(b)∥  +2
2 ∥Sb∥  2

2

S ∈ Rn×n
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Underdetermined Least Squares
Calculating  in the same way as before leads to the system

We need to choose  in some way to ensure  is invertible
Can be proved that if  is positive definite 
then  is invertible

Simplest positive definite regularizer:

for , 

∇ϕ = 0

(A A +T S S)b =T A yT

S (A A +T S S)T

S ST

(A A +T S S)T

S = μI ∈ Rn×n

μ > 0 μ ∈ R
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Underdetermined Least Squares
See 

Find least-squares fit for degree 11 polynomial 
to 5 samples of  for 

12 parameters, 5 constraints  

We express the polynomial using the monomial basis: 
 is a submatrix of a Vandermonde matrix

Let’s see what happens when we regularize the problem 
with some different choices of 

[examples/unit1/under_lstsq.py]

y = cos(4x) x ∈ [0, 1]

⟹ A ∈ R5×12

A

S
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Underdetermined Least Squares
Find least-squares fit for degree 11 polynomial 
to 5 samples of  for 

Try  (i.e.  )

Fit is good since regularization term is small 
but condition number is still large

y = cos(4x) x ∈ [0, 1]

S = 0.001I μ = 0.001

∥r(b)∥  =2 1.07 × 10−4

cond(A A +T S S) =T 1.54 × 107
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Underdetermined Least Squares
Find least-squares fit for degree 11 polynomial 
to 5 samples of  for 

Try  (i.e.  )

Regularization term now dominates: small condition number 
and small , but poor fit to the data!

y = cos(4x) x ∈ [0, 1]

S = 0.5I μ = 0.5

∥r(b)∥  =2 6.60 × 10−1

cond(A A +T S S) =T 62.3

∥b∥  2
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Underdetermined Least Squares
Find least-squares fit for degree 11 polynomial 
to 5 samples of  for 

Try 

We strongly penalize , 
hence the fit is close to parabolic

y = cos(4x) x ∈ [0, 1]

S = diag(0.1, 0.1, 0.1, 10, 10 … , 10)

∥r(b)∥  =2 4.78 × 10−1

cond(A A +T S S) =T 5.90 × 103

b  , b  , … , b  3 4 11
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Underdetermined Least Squares
Find least-squares fit for degree 11 polynomial 
to 5 samples of  for 

Use numpy.lstsq

Python routine uses Lagrange multipliers, 
hence satisfies the constraints to machine precision

y = cos(4x) x ∈ [0, 1]

∥r(b)∥  =2 4.56 × 10−15
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Nonlinear Least Squares
So far we have looked at finding a “best fit” solution 
to a linear system (linear least-squares)

A more difficult situation is when we consider 
least-squares for nonlinear systems

Key point: Linear least-squares fitting of model  
refers to linearity in the parameters , 
while the model can be a nonlinear function of  
(e.g. a polynomial  
is linear in  but nonlinear in )

In nonlinear least squares, we fit models 
that are nonlinear in the parameters

f(x; b)
b

x

f(x; b) = b  +0 … + b  xn
n

b x
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Nonlinear Least Squares: Motivation

basis: , , 

Consider a linear least-squares fit of f(x) =  ∣x − 0.25∣

1 ∣x + 0.5∣ ∣x − 0.5∣ 0.07 + 0.28 ∣x + 0.5∣ + 0.71 ∣x − 0.5∣
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Nonlinear Least Squares: Motivation

basis: , ,  

We can improve the accuracy using “adaptive” basis functions, 
but now the model is nonlinear in λ

1 ∣x + 0.5∣ ∣x − λ∣ −0.3 − 0.03 ∣x + 0.5∣ + 0.78 ∣x − λ∣
λ = 0.23
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Nonlinear Least Squares: Example
Example: Suppose we have a radio transmitter 
at  somewhere in  ( )

Suppose that we have 10 receivers at locations 
 ( )

Receiver  returns the distance  to the transmitter, 
but there is some error/noise 

=b̂ (  ,  )b̂1 b̂2 [0, 1]2 ×

(x  ,x  ), (x  ,x  ), … , (x  ,x  ) ∈1
1

2
1

1
2

2
2

1
10

2
10 [0, 1]2 ∙

i y  i

(ϵ)
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Nonlinear Least Squares: Example
Let  be a candidate location for the transmitter

The distance from  to  is

We want to choose  to match the data as well as possible, 
hence minimize the residual  where 

b

b (x  ,x  )1
i

2
i

d  (b) =i  (b  − x  ) + (b  − x  )1 1
i 2

2 2
i 2

b

r(b) ∈ R10 r  (b) = y  − d  (b)i i i
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Nonlinear Least Squares: Example
In this case, , 
hence nonlinear least-squares!

Define the objective function

where  is the residual vector

The  factor has no effect on the minimizing , 
but leads to slightly cleaner formulas later on

r  (α +i β) = r (α) +i r  (β)i

ϕ(b) =  ∥r(b)∥  

2
1

2
2

r(b) ∈ R10

 2
1 b
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Nonlinear Least Squares
As in the linear case, we seek to minimize  
by finding  such that 

We have 

Hence for the -component of the gradient vector, we have

ϕ

b ∇ϕ = 0

ϕ(b) =   (r  (b))2
1 ∑j=1

m
j

2

i

 =
∂b  i

∂ϕ
   r  =

∂b  i

∂
2
1

j=1

∑
m

j
2

 r   

j=1

∑
m

j ∂b  i

∂r  j
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Nonlinear Least Squares
This is equivalent to  
where  is the Jacobian matrix of the residual

Exercise: Show that  reduces 
to the normal equations when the residual is linear

∇ϕ = J  (b) r(b)r
T

J  (b) ∈r Rm×n

J  (b)  ={ r }ij  

∂b  j

∂r  (b)i

J  (b) r(b) =r
T 0
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Nonlinear Least Squares
Hence we seek  such that:

This has  equations,  unknowns

In general, this is a nonlinear system that we have to solve iteratively

A common situation is that linear systems can be solved in “one shot”, 
while nonlinear generally requires iteration

We will briefly introduce Newton’s method for solving this system 
and defer detailed discussion until Unit 4

b ∈ Rn

J  (b) r(b) =r
T 0

n n
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Nonlinear Least Squares
Recall Newton’s method for a function of one variable: 
find  such that 

Let  be our current guess, and , then Taylor expansion gives

It follows that  
(approx. since we neglect the higher order terms)

This motivates Newton’s method:

where 

x ∈ R f(x) = 0

x  k x  +k Δx = x

0 = f(x +k Δx) = f(x  ) +k Δxf (x  ) +′
k O((Δx) )2

f (x  )Δx ≈′
k −f(x  )k

f (x  )Δx  =′
k k −f(x  )k

x  =k+1 x  +k Δx  k
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Nonlinear Least Squares
This argument generalizes directly to functions of several variables

For example, suppose , then find  s.t.  by

where  is the Jacobian of , , 

F : R →n Rn x F (x) = 0

J  (x  )Δx  =F k k −F (x  )k

J  F F Δx  ∈k Rn x  =k+1 x  +k Δx  k
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Nonlinear Least Squares
In the case of nonlinear least squares, 
to find a stationary point of  we need to find  such that

That is, we want to solve  for 

We apply Newton’s Method, hence need to find the Jacobian  
of the function 

ϕ b

J  (b) r(b) =r
T 0

F (b) = 0 F (b) = J  (b) r(b)r
T

J  F

F : R →n Rn
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Nonlinear Least Squares
Consider  (this will be the  entry of ): ∂b  j

∂F  i ij JF

 

∂b  j

∂F  i =  J  (b) r(b)  

∂b  j

∂
( r

T )
i

=    r  

∂b  j

∂

k=1

∑
m

∂b  i

∂r  k
k

=    +   r  

k=1

∑
m

∂b  i

∂r  k

∂bj

∂r  k

k=1

∑
m

∂b  ∂b  i j

∂ r  

2
k

k
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Gauss–Newton Method
It is generally difficult to deal with the second derivatives in the previous
formula (numerical sensitivity, cost, complex derivation)

Key observation: As we approach a good fit to the data, 
the residual values , , should be small

Hence we omit the term .

r  (b)k 1 ≤ k ≤ m

 r   ∑k=1
m

k ∂b  ∂b  i j

∂ r  

2
k
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Gauss–Newton Method
Note that , 
so that when the residual is small 

Then putting all the pieces together, we obtain the iteration

where 

This is known as the Gauss–Newton Algorithm 
for nonlinear least squares

   =∑k=1
m

∂b  j

∂r  k

∂b  i

∂r  k (J  (b) J  (b))  r
T

r ij

J  (b) ≈F J  (b) J  (b)r
T

r

J  (b  ) J  (b  )Δb  =r k
T

r k k −J  (b  ) r(b  )r k
T

k

b  =k+1 b  +k Δb  k
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Gauss–Newton Method
This looks similar to Normal Equations at each iteration, 
except now the matrix  comes from linearizing the residual

Gauss–Newton is equivalent to solving the linear least squares 
problem at each iteration

This is a common approach: 
replace a nonlinear problem with a sequence of linearized problems

J  (b  )r k

J  (b  )Δb  =r k k −r(b  )k
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Computing the Jacobian
To use Gauss–Newton in practice, we need to be able to compute the
Jacobian matrix  for any 

We can do this “by hand”, 
e.g. in our transmitter/receiver problem we would have:

Differentiating by hand is feasible in this case, 
but it can become impractical if  is more complicated

Or perhaps our mapping  is a “black box”

J  (b  )r k b  ∈k Rn

[J  (b)]  =r ij −   

∂b  j

∂
(b  − x  ) + (b  − x  )1 1

i 2
2 2

i 2

r(b)

b → y
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Computing the Jacobian
Alternative approaches

Finite difference approximation 

(requires only function evaluations, but prone to rounding errors)
Symbolic computations 
Rule-based computation of derivatives (e.g. SymPy in Python)
Automatic differentiation 
Carry information about derivatives through every operation 
(e.g. use TensorFlow or PyTorch)

[J  (b  )]  ≈r k ij  

h

r  (b  + e  h) − r  (b  )i k j i k
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Gauss–Newton Method
We derived the Gauss–Newton algorithm method in a natural way:

apply Newton’s method to solve 
neglect the second derivative terms that arise

However, Gauss–Newton is not widely used in 
practice since it doesn’t always converge reliably

∇ϕ = 0
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Levenberg–Marquardt Method
A more robust variation of Gauss–Newton is 
the Levenberg–Marquardt Algorithm, which uses the update

where  or , and some heuristics to choose 

This looks like our “regularized” underdetermined linear least squares
formulation!

[J (b  )J(b  ) +T
k k μ  diag(S S)]Δb =k

T −J(b  ) r(b  )k
T

k

S = I S = J(b  )k μ  k
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Levenberg–Marquardt Method
Key point: The regularization term  
improves the reliability of the algorithm in practice

Levenberg–Marquardt is available SciPy

We need to pass the residual to the routine, 
and we can also pass the Jacobian matrix or ask to use finite-differences

Now let’s solve our transmitter/receiver problem

μ  diag(S S)k
T
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Nonlinear Least Squares: Example
See [examples/unit1/nonlin_lstsq.py]
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Nonlinear Least Squares: Example
Levenberg–Marquardt minimizes 

The minimized objective is even lower than for the true location 
(because of the noise)

 is our best-fit to the data,  is the true transmitter location

ϕ(b)

ϕ(×) = 0.0044 < 0.0089 = ϕ(×)

× ×
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