Applied Mathematics 205 Unit 1. Data Fitting

Lecturer: Petr Karnakov

September 7, 2022

- Data fitting: Construct a continuous function that represents discrete data. Fundamental topic in Scientific Computing
- We will study two types of data fitting
 - interpolation: fit the data points exactly
 - least-squares: minimize error in the fit

(e.g. useful when there is experimental error)

- Data fitting helps us to
 - interpret data: deduce hidden parameters, understand trends
 - process data: reconstructed function can be differentiated, integrated, etc

• Suppose we are given the following data points

- Such data could represent
 - time series data (stock price, sales figures)
 - laboratory measurements (pressure, temperature)
 - astronomical observations (star light intensity)

- We often need values between the data points
- Easiest thing to do: "connect the dots" (piecewise linear interpolation)

Question: What if we want a smoother approximation?

• We have 11 data points, we can use a degree 10 polynomial

 $y = 2.98 + 16.90x - 219.77x^2 + 1198.07x^3 - 3518.54x^4 + 6194.09x^5 \ - 6846.49x^6 + 4787.40x^7 - 2053.91x^8 + 492.90x^9 - 50.61x^{10}$

• However, a degree 10 interpolant doesn't seem to capture the underlying pattern, has bumps and changes rapidly

- Let's try linear regression: minimize the error in a linear approximation of the data
- Best linear fit: y = 2.94 + 0.25x

• Clearly not a good fit!

- We can use least-squares fitting to generalize linear regression to higher-order polynomials
- Best quadratic fit: $y = 3.22 0.68x + 0.47x^2$

• Still not so good ...

• Best cubic fit: $y = 2.97 + 1.32x - 2.16x^2 + 0.88x^3$

- Looks good! A "cubic model" captures this data well
- In real-world problems it can be challenging to find the "right" model for experimental data

- Data fitting is often performed with multi-dimensional data
- 2D example: points (x, y) with feature z

• See [examples/unit1/fit_2d.py]

Motivation: Summary

- Interpolation is a fundamental tool in Scientific Computing, provides simple representation of discrete data
 - Common to differentiate, integrate, optimize an interpolant
- Least squares fitting is typically more useful for experimental data
 - Removes noise using a lower-order model
- Data-fitting calculations are often performed with big datasets
 - Efficient and stable algorithms are very important

Polynomial Interpolation

- Let \mathbb{P}_n denote the set of all polynomials of degree n on \mathbb{R}
- Polynomial $p(\cdot;b)\in \mathbb{P}_n$ has the form

$$p(x;b) = b_0 + b_1 x + b_2 x^2 + \ldots + b_n x^n$$
 with coefficients $b = [b_0, b_1, \ldots, b_n]^T \in \mathbb{R}^{n+1}$

Polynomial Interpolation

• Suppose we have data

$$\mathcal{S}=\{(x_0,y_0),(x_1,y_1),\ldots,(x_n,y_n)\}$$

where x_0, x_1, \ldots, x_n are called interpolation points

- Goal: Find a polynomial that passes through every data point in ${\cal S}$
- Therefore, we must have $p(x_i;b) = y_i ext{ for each } i = 0,\ldots,n \implies n+1 ext{ equations}$
- For uniqueness, we should look for a polynomial with n+1 parameters \implies look for $p\in \mathbb{P}_n$

Polynomial Interpolation

• This leads to the following system of n + 1 equations with n + 1 unknowns

$$egin{array}{rll} b_0+b_1x_0+b_2x_0^2+\ldots+b_nx_0^n&=&y_0\ b_0+b_1x_1+b_2x_1^2+\ldots+b_nx_1^n&=&y_1\ &&dots\ b_0+b_1x_n+b_2x_n^2+\ldots+b_nx_n^n&=&y_n \end{array}$$

• The system is linear with respect to unknown coefficients b_0, \ldots, b_n

Vandermonde Matrix

• The same system in matrix form

$$Vb = y$$

with

- unknown coefficients $b = [b_0, b_1, \dots, b_n]^T \in \mathbb{R}^{n+1}$
- given values $y = [y_0, y_1, \dots, y_n]^T \in \mathbb{R}^{n+1}$
- matrix $V \in \mathbb{R}^{(n+1) imes (n+1)}$ called the Vandermonde matrix

Existence and Uniqueness

- Let's prove that if the n + 1 interpolation points are distinct, then Vb = y has a unique solution
- We know from linear algebra that for a square matrix A: if $Az = 0 \implies z = 0$, then Ab = y has a unique solution
- $\bullet \ \, \mathrm{If} \ \, Vb=0, \, \mathrm{then} \ \, p(\cdot;b)\in \mathbb{P}_n \ \mathrm{has} \ n+1 \ \mathrm{distinct \ roots} \\$
- Therefore we must have $p(\cdot; b) = 0$, or equivalently b = 0
- Hence $Vb = 0 \implies b = 0$

so Vb=y has a unique solution for any $y\in \mathbb{R}^{n+1}$

Vandermonde Matrix

- This tells us that we can find the polynomial interpolant by solving the Vandermonde system Vb = y
- However, this may be a bad idea since V is ill-conditioned

Monomial Interpolation

- The problem is that Vandermonde matrix corresponds to interpolation using the monomial basis
- Monomial basis for \mathbb{P}_n is $\{1, x, x^2, \dots, x^n\}$
- As n increases, basis functions become increasingly indistinguishable, columns are more "linearly dependent", the matrix is ill-conditioned
- See [examples/unit1/vander_cond.py], condition number of Vandermonde matrix

Monomial Basis

- Question: What is the practical consequence of this ill-conditioning?
- Answer:
 - We want to solve Vb = y
 - Finite precision arithmetic gives an approximation \hat{b}
 - Residual $\|V\hat{b} y\|$ will be small but $\|b \hat{b}\|$ can still be large! (will be discussed in Unit 2)
 - Similarly, small perturbation in b can give large perturbation in $V\!b$
 - Large perturbations in Vb can yield large ||Vb y||, hence a "perturbed interpolant" becomes a poor fit to the data

Monomial Basis

- These sensitivities are directly analogous to what happens with an ill-conditioned basis in \mathbb{R}^n
- Consider a basis v_1, v_2 of \mathbb{R}^2

$$v_1 = [1,0]^T, \qquad v_2 = [1,0.0001]^T$$

• Let's express two close vectors

$$y = [1,0]^T, \qquad ilde{y} = [1,0.0005]^T$$

in terms of this basis i.e. $y=b_1v_1+b_2v_2$ and $ilde{y}= ilde{b}_1v_1+ ilde{b}_2v_2$

- By solving a 2×2 linear system in each case, we get

$$b = [1,0]^T, \qquad ilde{b} = [-4,5]^T$$

• The answer b is highly sensitive to perturbations in y

Monomial Basis

- The same happens with interpolation using a monomial basis
- The answer (coefficients of polynomial) is highly sensitive to perturbations in the data
- If we perturb b slightly, we can get a large perturbation in Vb so the resulting polynomial no longer fits the data well
- Example of interpolation using Vandermonde matrix [examples/unit1/vander_interp.py]

Interpolation

- We would like to avoid these kinds of sensitivities to perturbations ... How can we do better?
- Try to construct a basis such that the interpolation matrix is the identity matrix
- This gives a condition number of 1, and we also avoid solving a linear system with a dense $(n + 1) \times (n + 1)$ matrix

Lagrange Interpolation

• Key idea: Construct basis $\{L_k \in \mathbb{P}_n, k=0,\ldots,n\}$ such that

$$L_k(x_i) = \left\{egin{array}{cc} 0, & i
eq k\ 1, & i=k \end{array}
ight.$$

- The polynomials that achieve this are called Lagrange polynomials
- Lagrange polynomials are given by:

$$L_k(x) = \prod_{j=0, j
eq k}^n rac{x-x_j}{x_k-x_j}$$

• Then the interpolant can be expressed as

$$p(x) = \sum_{k=0}^n y_k L_k(x)$$

Lagrange Interpolation

• Example: two Lagrange polynomials of degree 5 constructed on points $x \in \{-1, -0.6, -0.2, 0.2, 0.6, 1\}$

Lagrange Interpolation

• Now we can use Lagrange polynomials to interpolate discrete data

• We have solved the problem of interpolating discrete data!

Algorithmic Complexity

• Exercise 1: How does the cost of evaluating a polynomial at one point x scale with n?

$$p(x) = b_0 + b_1 x + b_2 x^2 + \ldots + b_n x^n$$

• Exercise 2: How does the cost of evaluating a Lagrange interpolant at one point x scale with n?

$$p(x)=\sum_{k=0}^n y_k \prod_{j=0,j
eq k}^n rac{x-x_j}{x_k-x_j}$$

Interpolation for Function Approximation

• We now turn to a different question:

Can we use interpolation to accurately approximate continuous functions?

- Suppose the interpolation data come from samples of a continuous function f on $[a,b]\subset\mathbb{R}$
- Then we'd like the interpolant to be "close to" f on [a, b]
- The error in this type of approximation can be quantified from the following theorem due to Cauchy

$$f(x) - p_n(x) = rac{f^{(n+1)}(heta)}{(n+1)!} (x-x_0) \dots (x-x_n)$$

for some $heta(x)\in(a,b)$

- Here we prove this result in the case n = 1
- Let $p_1 \in \mathbb{P}_1$ interpolate $f \in C^2[a,b]$ at $\{x_0,x_1\}$
- $\bullet \ \ {\rm For \ some \ } \lambda \in \mathbb{R}, \, {\rm let}$

$$q(x)=p_1(x)+\lambda(x-x_0)(x-x_1),$$

here q is quadratic and interpolates f at $\{x_0, x_1\}$

- Fix an arbitrary point $\hat{x} \in (x_0, x_1)$ and require $q(\hat{x}) = f(\hat{x})$ to get

$$\lambda = rac{f(\hat{x}) - p_1(\hat{x})}{(\hat{x} - x_0)(\hat{x} - x_1)}$$

• Goal: Get an expression for λ , and eventually for $f(\hat{x}) - p_1(\hat{x})$

- Denote the error e(x) = f(x) q(x)
 - e(x) has 3 roots in $[x_0, x_1]$, i.e. $e(x_0) = e(\hat{x}) = e(x_1) = 0$
 - Therefore, e'(x) has 2 roots in (x_0, x_1) (by Rolle's theorem)
 - Therefore, e''(x) has 1 root in (x_0, x_1) (by Rolle's theorem)
- Let $heta(\hat{x})\in (x_0,x_1)$ be such that e''(heta)=0
- Then

$$egin{aligned} 0 &= e''(heta) = f''(heta) - q''(heta) \ &= f''(heta) - p_1''(heta) - \lambda rac{\mathrm{d}^2}{\mathrm{d} heta^2}(heta-x_0)(heta-x_1) \ &= f''(heta) - 2\lambda \end{aligned}$$

• Hence $\lambda = \frac{1}{2}f''(\theta)$

• Finally, we get

$$egin{aligned} f(\hat{x}) - p_1(\hat{x}) &= \lambda(\hat{x} - x_0)(\hat{x} - x_1) = rac{1}{2} f''(heta)(\hat{x} - x_0)(\hat{x} - x_1) \ \end{aligned}$$
 for any $\hat{x} \in (x_0, x_1)$

• This argument can be generalized to n > 1 to give

$$f(x) - p_n(x) = rac{f^{(n+1)}(heta)}{(n+1)!} (x-x_0) \dots (x-x_n)$$

for some $heta(x) \in (a,b)$

• For any $x \in [a, b]$, this theorem gives us the error bound

$$|f(x)-p_n(x)| \leq rac{M_{n+1}}{(n+1)!} \max_{x\in[a,b]} |(x-x_0)\dots(x-x_n)|$$
 where $M_{n+1} = \max_{ heta\in[a,b]} |f^{n+1}(heta)|$

• As *n* increases,

 $ext{if } (n+1)! ext{ grows faster than } M_{n+1} \max_{x \in [a,b]} |(x-x_0) \dots (x-x_n)|
onumber \ ext{then } p_n ext{ converges to } f$

• Unfortunately, this is not always the case!

- A famous pathological example of the difficulty of interpolation at equally spaced points is Runge's Phenomenon
- Consider Runge's function $f(x) = 1/(1+25x^2)$ for $x \in [-1,1]$

• Reason: derivatives grow fast

•
$$f(x) = 1/(1+25x^2)$$

- $f'(x) = -50x/(1+25x^2)^2$
- $f''(x) = (3750x^2 50)/(((15625x^2 + 1875)x^2 + 75)x^2 + 1)$

- Note that p_n is an interpolant, so it fits the evenly spaced samples exactly
- But we are now also interested in the maximum error between f and its polynomial interpolant p_n
- That is, we want $\max_{x\in [-1,1]} |f(x)-p_n(x)|$ to be small!
- This is called the "infinity norm" or the "max norm"

$$\|f-p_n\|_\infty = \max_{x\in [-1,1]} |f(x)-p_n(x)|$$

- Note that Runge's function $f(x) = 1/(1 + 25x^2)$ is smooth but interpolating Runge's function at evenly spaced points leads to exponential growth of the infinity norm error!
- We would like to construct an interpolant of f that avoids this kind of pathological behavior

Minimizing Interpolation Error

• To do this, we recall our error equation

$$f(x) - p_n(x) = rac{f^{n+1}(heta)}{(n+1)!} (x-x_0) \dots (x-x_n) \, ... \, (x-x_n)$$

- We focus our attention on the polynomial $(x-x_0)\ldots(x-x_n),$ since we can choose the interpolation points
- Intuitively, we should choose x_0,\ldots,x_n such that $\|(x-x_0)\ldots(x-x_n)\|_\infty$ is as small as possible

Chebyshev Polynomials

- Chebyshev polynomials are defined for $x \in [-1,1]$ by $T_n(x) = \cos(n \arccos x), n = 0,1,2,\ldots$
- Or, equivalently, through the recurrence relation

$$egin{aligned} T_0(x) &= 1, \ T_1(x) &= x, \ T_{n+1}(x) &= 2xT_n(x) - T_{n-1}(x), \quad n = 1, 2, 3, \ldots \end{aligned}$$

• Result from Approximation Theory: The minimal value

$$\min_{x_0,\ldots,x_n} \|(x-x_0)\ldots(x-x_n)\|_\infty = rac{1}{2^n}$$

is achieved by the polynomial $T_{n+1}(x)/2^n$
Chebyshev Polynomials

- To set $(x-x_0)\ldots(x-x_n)=T_{n+1}(x)/2^n,$ we choose interpolation points to be the roots of T_{n+1}
- Chebyshev polynomials "equi-oscillate" (alternate) between -1 and 1, so they minimize the infinity norm

• Exercise: Show that the roots of T_n are given by $x_j = \cos((2j-1)\pi/2n), \, j=1,\ldots,n$

Interpolation at Chebyshev Points

• Revisit Runge's function. Chebyshev interpolation is more accurate

To interpolate on an arbitrary interval [a, b],
 linearly map Chebyshev points from [-1, 1] to [a, b]

Interpolation at Chebyshev Points

- Note that convergence rates depend on smoothness of \boldsymbol{f}
- In general, smoother $f \implies$ faster convergence
- Convergence of Chebyshev interpolation of Runge's function (smooth) and |x| (not smooth)

• Example of interpolation at Chebyshev points [examples/unit1/cheb_interp.py]

Another View on Interpolation Accuracy

- We have seen that the interpolation points we choose have an enormous effect on how well our interpolant approximates f
- The choice of Chebyshev interpolation points was motivated by our interpolation error formula for $f(x) p_n(x)$
- But this formula depends on f we would prefer to have a measure of interpolation accuracy that is independent of f
- This would provide a more general way to compare the quality of interpolation points . . . This is provided by the Lebesgue constant

- Let $\mathcal X$ denote a set of interpolation points, $\mathcal X = \{x_0, x_1, \dots, x_n\} \subset [a,b]$
- A fundamental property of \mathcal{X} is its Lebesgue constant, $\Lambda_n(\mathcal{X})$,

$$\Lambda_n(\mathcal{X}) = \max_{x \in [a,b]} \sum_{k=0}^n |L_k(x)|$$

- The $L_k \in \mathbb{P}_n$ are the Lagrange basis polynomials associated with \mathcal{X} , hence Λ_n is also a function of \mathcal{X}
- $\Lambda_n(\mathcal{X}) \geq 1$

- Think of polynomial interpolation as a map, $\mathcal{I}_n,$ where $\mathcal{I}_n: C[a,b] o \mathbb{P}_n[a,b]$
- $\mathcal{I}_n(f)$ is the degree n polynomial interpolant of $f \in C[a,b]$ at the interpolation points \mathcal{X}
- Exercise: Convince yourself that \mathcal{I}_n is linear (e.g. use the Lagrange interpolation formula)
- The reason that the Lebesgue constant is interesting is because it bounds the "operator norm" of \mathcal{I}_n :

$$\sup_{F\in C[a,b]}rac{\|\mathcal{I}_n(f)\|_\infty}{\|f\|_\infty}\leq \Lambda_n(\mathcal{X})$$

• Proof

$$egin{aligned} \|\mathcal{I}_n(f)\|_\infty &= \|\sum_{k=0}^n f(x_k) L_k\|_\infty = \max_{x\in[a,b]} \left|\sum_{k=0}^n f(x_k) L_k(x)
ight| \ &\leq \max_{x\in[a,b]} \sum_{k=0}^n |f(x_k)| |L_k(x)| \ &\leq \left(\max_{k=0,1,\ldots,n} |f(x_k)|
ight) \max_{x\in[a,b]} \sum_{k=0}^n |L_k(x)| \ &\leq \|f\|_\infty \max_{x\in[a,b]} \sum_{k=0}^n |L_k(x)| \ &= \|f\|_\infty \Lambda_n(\mathcal{X}) \end{aligned}$$

• Hence
$$rac{\|\mathcal{L}_n(f)\|_\infty}{\|f\|_\infty} \leq \Lambda_n(\mathcal{X}), ext{ so sup}_{f \in C[a,b]} rac{\|\mathcal{L}_n(f)\|_\infty}{\|f\|_\infty} \leq \Lambda_n(\mathcal{X})$$

- The Lebesgue constant allows us to bound interpolation error in terms of the smallest possible error from \mathbb{P}_n
- Let $p_n^* \in \mathbb{P}_n$ denote the best infinity-norm approximation to f

$$\|f-p_n^*\|_\infty \leq \|f-w\|_\infty$$

for all $w \in \mathbb{P}_n$

- Some facts about p_n^*
 - $\begin{array}{l} \bullet \ \|p_n^*-f\|_\infty \to 0 \text{ as } n \to \infty \text{ for any continuous } f! \\ \text{(Weierstrass approximation theorem)} \end{array}$
 - $p_n^* \in \mathbb{P}_n$ is unique

(follows from the equi-oscillation theorem)

• In general, p_n^* is unknown

• Then, we can relate interpolation error to $\|f - p_n^*\|_\infty$

$$egin{aligned} & f - \mathcal{I}_n(f) \|_\infty &\leq \|f - p_n^*\|_\infty + \|p_n^* - \mathcal{I}_n(f)\|_\infty \ &= \|f - p_n^*\|_\infty + \|\mathcal{I}_n(p_n^*) - \mathcal{I}_n(f)\|_\infty \ &= \|f - p_n^*\|_\infty + \|\mathcal{I}_n(p_n^* - f)\|_\infty \ &= \|f - p_n^*\|_\infty + rac{\|\mathcal{I}_n(p_n^* - f)\|_\infty}{\|p_n^* - f\|_\infty} \|f - p_n^*\|_\infty \ &\leq \|f - p_n^*\|_\infty + \Lambda_n(\mathcal{X}) \|f - p_n^*\|_\infty \ &= (1 + \Lambda_n(\mathcal{X})) \|f - p_n^*\|_\infty \end{aligned}$$

- Small Lebesgue constant means that our interpolation cannot be much worse than the best possible polynomial approximation!
- See [examples/unit1/lebesgue_const.py]
- Now let's compare Lebesgue constants for equispaced (\mathcal{X}_{equi}) and Chebyshev points (\mathcal{X}_{cheb})

• Plot of $\sum_{k=0}^{10} |L_k(x)|$ for $\mathcal{X}_{ ext{equi}}$ and $\mathcal{X}_{ ext{cheb}}$ (11 pts in [-1,1])

• Plot of $\sum_{k=0}^{20} |L_k(x)|$ for $\mathcal{X}_{ ext{equi}}$ and $\mathcal{X}_{ ext{cheb}}$ (21 pts in [-1,1])

• Plot of $\sum_{k=0}^{30} |L_k(x)|$ for $\mathcal{X}_{ ext{equi}}$ and $\mathcal{X}_{ ext{cheb}}$ (31 pts in [-1,1])

- The explosive growth of $\Lambda_n(\mathcal{X}_{equi})$ is an explanation for Runge's phenomenon
- Asymptotic results as $n \to \infty$

$$egin{aligned} &\Lambda_n(\mathcal{X}_{ ext{equi}}) \sim rac{2^n}{e\,n\log n} & ext{exponential growth} \ &\Lambda_n(\mathcal{X}_{ ext{cheb}}) < rac{2}{\pi}\log(n+1) + 1 & ext{logarithmic growth} \end{aligned}$$

• Open mathematical problem: Construct \mathcal{X} that minimizes $\Lambda_n(\mathcal{X})$

Summary

- Compare and contrast the two key topics considered so far
- Polynomial interpolation for fitting discrete data
 - we get "zero error" regardless of the interpolation points,
 i.e. we're guaranteed to fit the discrete data
 - Lagrange polynomial basis should be instead of the monomial basis as the number of points increases (diagonal system, well-conditioned)
- Polynomial interpolation for approximating continuous functions
 - for a given set of interpolating points, uses same methodology as for discrete data
 - but now interpolation points play a crucial role in determining the magnitude of the error $\|f-\mathcal{I}_n(f)\|_\infty$

Piecewise Polynomial Interpolation

Piecewise Polynomial Interpolation

- How to avoid explosive growth of error for non-smooth functions?
- Idea: Decompose domain into subdomains and apply polynomial interpolation on each subdomain
- Example: piecewise linear interpolation

Splines

- Splines are a popular type of piecewise polynomial interpolant
- Interpolation points are now called **knots**
- Splines have smoothness constraints to "glue" adjacent polynomials
- Commonly used in computer graphics, font rendering, CAD software
 - Bezier splines
 - non-uniform rational basis spline (NURBS)
 - • •
- The name "spline" comes from

"a flexible piece of wood or metal used in drawing curves"

Splines

- We focus on a popular type of spline: cubic spline
- Piecewise cubic with continuous second derivatives
- Example: cubic spline interpolation of Runge's function

Cubic Splines

- Suppose we have n+1 data points: $(x_0,y_0),(x_1,y_1),\ldots,(x_n,y_n)$
- A cubic interpolating spline is a function s(x) that
 - is a cubic polynomial on each of *n* intervals $[x_{i-1}, x_i]$ (4*n* parameters)
 - passes through the data points (2n conditions)

$$s(x_i)=y_i, \quad i=0,\ldots,n$$

• has continuous first derivative (n - 1 conditions)

$$s_-'(x_i)=s_+'(x_i), \quad i=1,\ldots,n-1$$

• has continuous second derivative (n - 1 conditions)

$$s''_-(x_i) = s''_+(x_i), \quad i=1,\ldots,n-1$$

• We have 4n - 2 equations for 4n unknowns

Cubic Splines

- We are missing two conditions!
- Many options to define them
 - natural cubic spline

$$s^{\prime\prime}(x_0)=s^{\prime\prime}(x_n)=0$$

clamped

$$s^{\prime}(x_{0})=s^{\prime}(x_{n})=0$$

"not-a-knot spline"

 $s_{-}^{\prime\prime\prime}(x_{1})=s_{+}^{\prime\prime\prime}(x_{1}) \quad ext{and} \quad s_{-}^{\prime\prime\prime}(x_{n-1})=s_{+}^{\prime\prime\prime}(x_{n-1})$

Constructing a Cubic Spline

- Denote $\Delta x_i = x_i x_{i-1}$ and $\Delta y_i = y_i y_{i-1}$
- Look for polynomials $p_i \in \mathbb{P}_3, \;\; i=1,\ldots,n$ in the form

 $p_i(x) = ty_i + \left(1-t
ight)y_{i-1} + t\left(1-t
ight)\left(lpha t + eta\left(1-t
ight)
ight)$

with unknown α and β , where $t = \frac{x - x_{i-1}}{\Delta x_i}$

• Automatically satisfies interpolation conditions

 $p_i(x_{i-1})=y_{i-1}$ $p_i(x_i)=y_i$

• Conditions on derivatives to make the first derivative continuous

 $p_i'(x_{i-1}) = k_{i-1} \qquad p_i'(x_i) = k_i \ \Longrightarrow \ lpha = y_i - y_{i-1} - \Delta x_i k_i \qquad eta = y_{i-1} - y_i + \Delta x_i k_{i-1}$

• New unknown parameters: k_0, \ldots, k_n (n + 1 parameters)

Constructing a Cubic Spline

• Expressions for second derivatives

$$p_i''(x_{i-1}) = rac{-4k_{i-1}-2k_i}{\Delta x_i} + rac{6\Delta y_i}{\Delta x_i^2}
onumber \ p_i''(x_i) = rac{2k_{i-1}+4k_i}{\Delta x_i} - rac{6\Delta y_i}{\Delta x_i^2}
onumber \ p_i''(x_i) = rac{2k_{i-1}+4k_i}{\Delta x_i} - rac{6\Delta y_i}{\Delta x_i^2}$$

• Conditions on second derivatives: $p_i''(x_i) = p_{i+1}''(x_i)$ $i=1,\ldots,n-1$

$$egin{aligned} &rac{1}{\Delta x_i}k_{i-1} + \left(rac{2}{\Delta x_i} + rac{2}{\Delta x_{i+1}}
ight)k_i + rac{1}{\Delta x_{i+1}}k_{i+1} = \left(rac{3\Delta y_i}{\Delta x_i^2} + rac{3\Delta y_{i+1}}{\Delta x_{i+1}^2}
ight)\ &(n-1 ext{ conditions}) \end{aligned}$$

- Two more conditions from boundaries (natural, clamped, etc)
- Tridiagonal linear system of n + 1 equations for n + 1 unknowns k_i

Solving a Tridiagonal System

- Tridiagonal matrix algorithm (TDMA), also known as the Thomas algorithm
- Simplified form of Gaussian elimination to solve a tridiagonal system of n + 1 equations for n + 1 unknowns u_i

$$egin{aligned} & b_0 u_0 + c_0 u_1 = d_0 \ & a_i u_{i-1} + b_i u_i + c_i u_{i+1} = d_i, \quad i = 1, \dots, n-1 \ & a_n u_{n-1} + b_n u_n = d_n \end{aligned}$$

• TDMA has complexity $\mathcal{O}(n)$ while Gaussian elimination has $\mathcal{O}(n^3)$

Solving a Tridiagonal System

• Forward pass: for $i = 1, 2, \ldots, n$

$$egin{array}{l} w = a_i/b_{i-1} \ b_i \leftarrow b_i - wc_{i-1} \ d_i \leftarrow d_i - wd_{i-1} \end{array}$$

• Backward pass:

$$egin{aligned} u_n &= d_n/b_n \ u_i &= (d_i - c_i u_{i+1})/b_i \quad ext{for} \; i = n-1, \dots, 0 \end{aligned}$$

Example of Spline Interpolation

- See [examples/unit1/spline_tdma.py]
- Spline looks smooth and does not have bumps or rapid changes

Example: Move One Point

- How does the interpolant change after moving one data point?
- original data, perturbed data, normalized change Δ (a.u.)
- Look at the normalized change $\Delta = (ilde{f} f) / \| (ilde{f} f) \|_\infty$
 - degree 10 polynomial: Δ remains constant
 - cubic spline: Δ changes in a nonlinear way

Linear Least Squares

- Recall that it can be advantageous to not fit data points exactly (e.g. to remove noise), we don't want to "overfit"
- Suppose we want to fit a cubic polynomial to 11 data points

• Question: How do we do this?

Linear Least Squares

- Suppose we have m constraints and n parameters with m > n(on previous slide, m = 11 and n = 4)
- This is an overdetermined system Ab = y, where $A \in \mathbb{R}^{m imes n}$ (basis functions), $b \in \mathbb{R}^n$ (parameters), $y \in \mathbb{R}^m$ (data)

Linear Least Squares

• In general, cannot be solved exactly; instead our goal is to minimize the residual, $r(b) \in \mathbb{R}^m$

$$r(b) = y - Ab$$

- A very effective approach for this is the method of least squares: Find parameter vector $b \in \mathbb{R}^n$ that minimizes $\|r(b)\|_2$
- The 2-norm is convenient since it gives us a differentiable function

• Our goal is to minimize the objective function

$$\phi(b)\coloneqq \|r(b)\|_2^2 = \sum_{i=1}^n r_i(b)^2$$

• In terms of A, b, and y

$$egin{aligned} \phi(b) &= \|r\|_2^2 = r^T r = (y - Ab)^T (y - Ab) \ &= y^T y - y^T Ab - b^T A^T y + b^T A^T Ab \ &= y^T y - 2b^T A^T y + b^T A^T Ab \end{aligned}$$

where last line follows from $y^TAb = (y^TAb)^T$, since $y^TAb \in \mathbb{R}$

 $egin{array}{lll} egin{array}{lll} egin{arra$

• To find minimum, set the derivative to zero $(\nabla = \nabla_b)$

$$abla \phi(b) = 0$$

• Derivative

$$abla \phi(b) = -2
abla (b^T A^T y) +
abla (b^T A^T A b)$$

• Rule for the first term

$$egin{aligned} &rac{\partial}{\partial b_k} b^T c = rac{\partial}{\partial b_k} \sum_{i=1}^n b_i c_i = c_k \ & \Longrightarrow \ igarpi (b^T c) = c \end{aligned}$$

• Rule for the second term $(M = (m_{i,j}))$

$$egin{aligned} &rac{\partial}{\partial b_k} b^T M b = rac{\partial}{\partial b_k} \sum_{i,j=1}^n m_{i,j} b_i b_j = \sum_{i,j=1}^n m_{i,j} rac{\partial}{\partial b_k} (b_i b_j) = \ &= \sum_{i,j=1}^n m_{i,j} (\delta_{i,k} b_j + b_i \delta_{j,k}) = \sum_{j=1}^n m_{k,j} b_j + \sum_{i=1}^n m_{i,k} b_i = (Mb)_k + (M^T b)_k \ & \Longrightarrow \ oldsymbol{
aligned}
onumber \langle b^T M b \rangle = M b + M^T b \end{aligned}$$

• Putting it all together, we obtain

 $abla \phi(b) = -2A^Ty + 2A^TAb$

- We set $abla \phi(b) = 0$, which is $-2A^Ty + 2A^TAb = 0$
- Finally, the linear least squares problem is equivalent to

 $A^T A b = A^T y$

• This square $n \times n$ system is known as the normal equations

- $egin{aligned} & ext{For}\ A \in \mathbb{R}^{m imes n} ext{ with } m > n, \ & A^T A ext{ is singular if and only if} \ & A ext{ is rank-deficient} ext{ (columns are linearly dependent)} \end{aligned}$
- Proof
 - (\Rightarrow) Suppose $A^T A$ is singular. $\exists z \neq 0$ such that $A^T A z = 0$. Hence $z^T A^T A z = ||Az||_2^2 = 0$, so that Az = 0. Therefore A is rank-deficient.
 - (\Leftarrow) Suppose A is rank-deficient. $\exists z \neq 0$ such that Az = 0. Hence $A^T A z = 0$, so that $A^T A$ is singular.

- Hence if A has full rank (i.e. rank(A) = n) we can solve the normal equations to find the unique minimizer b
- However, in general it is a bad idea to solve the normal equations directly, because of condition-squaring (e.g. $\kappa(A^T A) = \kappa(A)^2$ for square matrices)
- We will consider more efficient methods later (e.g. singular value decomposition)
Example: Least-Squares Polynomial Fit

- Find a least-squares fit for degree 11 polynomial to 50 samples of $y=\cos(4x)$ for $x\in[0,1]$
- Let's express the best-fit polynomial using the monomial basis

$$p(x;b)=\sum_{k=0}^{11}b_kx^k$$

• The ith condition we'd like to satisfy is

$$p(x_i;b) = \cos(4x_i)$$

 \implies over-determined system with a 50 \times 12 Vandermonde matrix

Example: Least-Squares Polynomial Fit

- See [examples/unit1/lstsq.py]
- Both methods give small residuals

$$egin{aligned} \|r(b_{ ext{lstsq}})\|_2 &= \|y-Ab_{ ext{lstsq}}\|_2 = 8.00 imes 10^{-9} \ \|r(b_{ ext{normal}})\|_2 &= \|y-Ab_{ ext{normal}}\|_2 = 1.09 imes 10^{-8} \end{aligned}$$

Non-Polynomial Fitting

- Least-squares fitting can be used with arbitrary basis functions
- We just need a model that linearly depends on the parameters
- Example: Approximate $f(x) = e^{-x} \cos 4x$ using exponentials

$$f_n(x;b) = \sum_{k=-n}^n b_k e^{kx}$$

• See [examples/unit1/nonpoly_fit.py]

Non-Polynomial Fitting

$$f_n(x;b) = b_{-n}e^{-nx} + b_{-n+1}e^{(-n+1)x} + \ldots + b_0 + \ldots + b_ne^{nx}$$

$$egin{array}{lll} n=1 & n=2 & n=3 \ \|r(b)\|_2=2.22 & \|r(b)\|_2=0.89 & \|r(b)\|_2=0.2 \end{array}$$

Non-Polynomial Fitting

- Why use non-polynomial basis functions?
 - recover properties of data
 - (e.g. sine waves for periodic data)
 - control smoothness
 - (e.g. splines correspond to a piecewise-polynomial basis)
 - control asymptotic behavior
 - (e.g. require that functions do not grow fast at infinity)

Equivariance

- A procedure is called equivariant to a transformation if applying the transformation to input (e.g. dataset) produces the same result as applying the transformation to output (e.g. fitted model)
- For example, consider a transformation T(x) and find two models
 - $f(\cdot; b)$ that fits data (x_i, y_i)
 - $f(\cdot; \tilde{b})$ that fits data (Tx_i, y_i)
- The fitting is equivariant to ${\cal T}$ if

$$f(x;b)=f(Tx; ilde{b})$$

- Does this hold for linear least squares? Depends on the basis
- (in common speech, used interchangeably with "invariance" but that actually stands for quantities not affected by transformations)

Example: Equivariance to Translation $T(x) = x + \lambda$

Example: Equivariance to Scaling $T(x) = \lambda x$

Pseudoinverse

• Recall that from the normal equations we have:

$$A^T A b = A^T y$$

• This motivates the idea of the "pseudoinverse" for $A \in \mathbb{R}^{m imes n}$:

 $A^+ = (A^TA)^{-1}A^T \in \mathbb{R}^{n imes m}$

- Key point: A^+ generalizes A^{-1} , i.e. if $A \in \mathbb{R}^{n \times n}$ is invertible, then $A^+ = A^{-1}$
- Proof: $A^+ = (A^T A)^{-1} A^T = A^{-1} (A^T)^{-1} A^T = A^{-1}$

Pseudoinverse

- Also:
 - Even when A is not invertible we still have $A^+A = I$
 - In general $AA^+ \neq I$ (hence this is called a "left inverse")
- And it follows from our definition that $b=A^+y,$ i.e. $A^+\in \mathbb{R}^{n imes m}$ gives the least-squares solution
- Note that we define the pseudoinverse differently in different contexts

- So far we have focused on overdetermined systems (more equations than parameters)
- But least-squares also applies to underdetermined systems: $Ab = y ext{ with } A \in \mathbb{R}^{m imes n}, \, m < n$

• For $\phi(b) = ||r(b)||_2^2 = ||y - Ab||_2^2$, we can apply the same argument as before (i.e. set $\nabla \phi = 0$) to again obtain

$$A^T A b = A^T y$$

- But in this case $A^T A \in \mathbb{R}^{n imes n}$ has rank at most m (where m < n), why?
- Therefore $A^T A$ must be singular!
- Typical case: There are infinitely many vectors b that give r(b) = 0, we want to be able to select one of them

• First idea, pose a constrained optimization problem to find the feasible *b* with minimum 2-norm:

minimize $b^T b$

subject to Ab = y

- This can be treated using Lagrange multipliers (discussed later in Unit 4)
- Idea is that the constraint restricts us to an (n m)-dimensional hyperplane of \mathbb{R}^n on which $b^T b$ has a unique minimum

• We will show later that the Lagrange multiplier approach for the above problem gives:

$$b = A^T (AA^T)^{-1} y$$

• Therefore, in the underdetermined case the pseudoinverse is defined as

$$A^+ = A^T (AA^T)^{-1} \in \mathbb{R}^{n imes m}$$

• Note that now $AA^+ = I$, but $A^+A \neq I$ in general (i.e. this is a "right inverse")

- Here we consider an alternative approach for solving the underconstrained case
- Let's modify ϕ so that there is a unique minimum!
- For example, let

$$\phi(b) = \|r(b)\|_2^2 + \|Sb\|_2^2$$

where $S \in \mathbb{R}^{n \times n}$ is a scaling matrix

• This is called regularization: we make the problem well-posed ("more regular") by modifying the objective function

- Calculating $abla \phi = 0$ in the same way as before leads to the system

$$(A^TA + S^TS)b = A^Ty$$

- We need to choose S in some way to ensure $(A^T A + S^T S)$ is invertible
- Can be proved that if $S^T S$ is positive definite then $(A^T A + S^T S)$ is invertible
- Simplest positive definite regularizer:

$$S=\mu \mathrm{I}\in \mathbb{R}^{n imes n}$$

for $\mu > 0, \, \mu \in \mathbb{R}$

- See [examples/unit1/under_lstsq.py]
- Find least-squares fit for degree 11 polynomial to 5 samples of $y = \cos(4x)$ for $x \in [0, 1]$
- 12 parameters, 5 constraints $\implies A \in \mathbb{R}^{5 \times 12}$
- We express the polynomial using the monomial basis: A is a submatrix of a Vandermonde matrix
- Let's see what happens when we regularize the problem with some different choices of ${\cal S}$

- Find least-squares fit for degree 11 polynomial to 5 samples of $y = \cos(4x)$ for $x \in [0, 1]$
- Try S = 0.001I (i.e. $\mu = 0.001$)

• Fit is good since regularization term is small but condition number is still large

- Find least-squares fit for degree 11 polynomial to 5 samples of $y = \cos(4x)$ for $x \in [0, 1]$
- Try S = 0.5I (i.e. $\mu = 0.5$)

• Regularization term now dominates: small condition number and small $||b||_2$, but poor fit to the data!

- Find least-squares fit for degree 11 polynomial to 5 samples of $y = \cos(4x)$ for $x \in [0, 1]$
- Try $S = \texttt{diag}(0.1, 0.1, 0.1, 10, 10 \dots, 10)$

• We strongly penalize b_3, b_4, \ldots, b_{11} , hence the fit is close to parabolic

- Find least-squares fit for degree 11 polynomial to 5 samples of $y = \cos(4x)$ for $x \in [0, 1]$
- Use numpy.lstsq

• Python routine uses Lagrange multipliers, hence satisfies the constraints to machine precision

- So far we have looked at finding a "best fit" solution to a linear system (linear least-squares)
- A more difficult situation is when we consider least-squares for nonlinear systems
- Key point: Linear least-squares fitting of model f(x; b) refers to linearity in the parameters b, while the model can be a nonlinear function of x (e.g. a polynomial f(x; b) = b₀ + ... + b_nxⁿ is linear in b but nonlinear in x)
- In nonlinear least squares, we fit models that are nonlinear in the parameters

Nonlinear Least Squares: Motivation

• Consider a linear least-squares fit of $f(x) = \sqrt{|x - 0.25|}$

basis: 1, |x + 0.5|, |x - 0.5| = 0.07 + 0.28 |x + 0.5| + 0.71 |x - 0.5|

Nonlinear Least Squares: Motivation

• We can improve the accuracy using "adaptive" basis functions, but now the model is nonlinear in λ

 $ext{ basis: 1, } |x+0.5|, |x-\lambda| = -0.3 - 0.03 \, |x+0.5| + 0.78 \, |x-\lambda|$ $\lambda = 0.23$

Nonlinear Least Squares: Example

- Example: Suppose we have a radio transmitter at $\hat{b} = (\hat{b}_1, \hat{b}_2)$ somewhere in $[0, 1]^2$ (×)
- Suppose that we have 10 receivers at locations $(x_1^1, x_2^1), (x_1^2, x_2^2), \dots, (x_1^{10}, x_2^{10}) \in [0, 1]^2$ (•)
- Receiver *i* returns the distance y_i to the transmitter, but there is some error/noise (ϵ)

Nonlinear Least Squares: Example

- Let b be a candidate location for the transmitter
- The distance from b to (x_1^i, x_2^i) is

$$d_i(b) = \sqrt{(b_1 - x_1^i)^2 + (b_2 - x_2^i)^2}$$

• We want to choose b to match the data as well as possible, hence minimize the residual $r(b) \in \mathbb{R}^{10}$ where $r_i(b) = y_i - d_i(b)$

Nonlinear Least Squares: Example

- In this case, $r_i(\alpha + \beta) \neq r_i(\alpha) + r_i(\beta)$, hence nonlinear least-squares!
- Define the objective function

$$\phi(b) = rac{1}{2} \|r(b)\|_2^2$$

where $r(b) \in \mathbb{R}^{10}$ is the residual vector

• The $\frac{1}{2}$ factor has no effect on the minimizing b, but leads to slightly cleaner formulas later on

- As in the linear case, we seek to minimize ϕ by finding b such that $\nabla \phi = 0$

• We have
$$\phi(b) = rac{1}{2} \sum_{j=1}^m (r_j(b))^2$$

• Hence for the i-component of the gradient vector, we have

$$rac{\partial \phi}{\partial b_i} = rac{\partial}{\partial b_i} rac{1}{2} \sum_{j=1}^m r_j^2 = \sum_{j=1}^m r_j rac{\partial r_j}{\partial b_i}$$

• This is equivalent to $abla \phi = J_r(b)^T r(b)$ where $J_r(b) \in \mathbb{R}^{m imes n}$ is the Jacobian matrix of the residual

$$\left\{J_r(b)
ight\}_{ij} = rac{\partial r_i(b)}{\partial b_j}$$

• Exercise: Show that $J_r(b)^T r(b) = 0$ reduces to the normal equations when the residual is linear

• Hence we seek $b \in \mathbb{R}^n$ such that:

$$J_r(b)^T r(b) = 0$$

- This has n equations, n unknowns
- In general, this is a nonlinear system that we have to solve iteratively
- A common situation is that linear systems can be solved in "one shot", while nonlinear generally requires iteration
- We will briefly introduce Newton's method for solving this system and defer detailed discussion until Unit 4

- Recall Newton's method for a function of one variable: find $x \in \mathbb{R}$ such that f(x) = 0
- Let x_k be our current guess, and $x_k + \Delta x = x$, then Taylor expansion gives

$$0=f(x_k+\Delta x)=f(x_k)+\Delta x f'(x_k)+O((\Delta x)^2)$$

- It follows that $f'(x_k)\Delta x \approx -f(x_k)$ (approx. since we neglect the higher order terms)
- This motivates Newton's method:

$$f'(x_k)\Delta x_k = -f(x_k)$$

where $x_{k+1} = x_k + \Delta x_k$

- This argument generalizes directly to functions of several variables
- For example, suppose $F:\mathbb{R}^n o \mathbb{R}^n,$ then find x s.t. F(x)=0 by

 $J_F(x_k)\Delta x_k = -F(x_k)$

where J_F is the Jacobian of $F, \Delta x_k \in \mathbb{R}^n, x_{k+1} = x_k + \Delta x_k$

• In the case of nonlinear least squares, to find a stationary point of ϕ we need to find b such that

$$J_r(b)^T r(b) = 0$$

- That is, we want to solve F(b) = 0 for $F(b) = J_r(b)^T r(b)$
- We apply Newton's Method, hence need to find the Jacobian J_F of the function $F: \mathbb{R}^n \to \mathbb{R}^n$

• Consider $\frac{\partial F_i}{\partial b_j}$ (this will be the ij entry of J_F):

$$egin{aligned} rac{\partial F_i}{\partial b_j} &= rac{\partial}{\partial b_j} \left(J_r(b)^T r(b)
ight)_i \ &= rac{\partial}{\partial b_j} \sum_{k=1}^m rac{\partial r_k}{\partial b_i} r_k \ &= \sum_{k=1}^m rac{\partial r_k}{\partial b_i} rac{\partial r_k}{\partial b_j} + \sum_{k=1}^m rac{\partial^2 r_k}{\partial b_i \partial b_j} r_k \end{aligned}$$

Gauss–Newton Method

- It is generally difficult to deal with the second derivatives in the previous formula (numerical sensitivity, cost, complex derivation)
- Key observation: As we approach a good fit to the data, the residual values $r_k(b), 1 \le k \le m$, should be small
- Hence we omit the term $\sum_{k=1}^{m} r_k \frac{\partial^2 r_k}{\partial b_i \partial b_j}$.

Gauss-Newton Method

- Note that $\sum_{k=1}^{m} \frac{\partial r_k}{\partial b_j} \frac{\partial r_k}{\partial b_i} = (J_r(b)^T J_r(b))_{ij}$, so that when the residual is small $J_F(b) \approx J_r(b)^T J_r(b)$
- Then putting all the pieces together, we obtain the iteration

$$J_r(b_k)^T J_r(b_k) \Delta b_k = -J_r(b_k)^T r(b_k)$$

where $b_{k+1} = b_k + \Delta b_k$

• This is known as the Gauss–Newton Algorithm for nonlinear least squares
Gauss-Newton Method

- This looks similar to Normal Equations at each iteration, except now the matrix $J_r(b_k)$ comes from linearizing the residual
- Gauss–Newton is equivalent to solving the linear least squares problem at each iteration

$$J_r(b_k)\Delta b_k = -r(b_k)$$

• This is a common approach:

replace a nonlinear problem with a sequence of linearized problems

Computing the Jacobian

- To use Gauss–Newton in practice, we need to be able to compute the Jacobian matrix $J_r(b_k)$ for any $b_k \in \mathbb{R}^n$
- We can do this "by hand", e.g. in our transmitter/receiver problem we would have:

$$[J_r(b)]_{ij} = -rac{\partial}{\partial b_j} \sqrt{(b_1 - x_1^i)^2 + (b_2 - x_2^i)^2}$$

- Differentiating by hand is feasible in this case, but it can become impractical if r(b) is more complicated
- Or perhaps our mapping b o y is a "black box"

Computing the Jacobian

- Alternative approaches
 - Finite difference approximation

$$[J_r(b_k)]_{ij}pprox rac{r_i(b_k+e_jh)-r_i(b_k)}{h}$$

(requires only function evaluations, but prone to rounding errors)

Symbolic computations

Rule-based computation of derivatives (e.g. SymPy in Python)

Automatic differentiation

Carry information about derivatives through every operation (e.g. use TensorFlow or PyTorch)

Gauss-Newton Method

- We derived the Gauss–Newton algorithm method in a natural way:
 - apply Newton's method to solve $\nabla \phi = 0$
 - neglect the second derivative terms that arise
- However, Gauss–Newton is not widely used in practice since it doesn't always converge reliably

Levenberg–Marquardt Method

• A more robust variation of Gauss–Newton is the Levenberg–Marquardt Algorithm, which uses the update

$$[J^T(b_k)J(b_k)+\mu_k\operatorname{diag}(S^TS)]\Delta b=-J(b_k)^Tr(b_k)$$

where S = I or $S = J(b_k)$, and some heuristics to choose μ_k

• This looks like our "regularized" underdetermined linear least squares formulation!

Levenberg-Marquardt Method

- Key point: The regularization term $\mu_k \operatorname{diag}(S^T S)$ improves the reliability of the algorithm in practice
- $\bullet\,$ Levenberg–Marquardt is available SciPy
- We need to pass the residual to the routine, and we can also pass the Jacobian matrix or ask to use finite-differences
- Now let's solve our transmitter/receiver problem

Nonlinear Least Squares: Example

• See [examples/unit1/nonlin_lstsq.py]

Nonlinear Least Squares: Example

• Levenberg–Marquardt minimizes $\phi(b)$

• The minimized objective is even lower than for the true location (because of the noise)

$$\phi(imes) = 0.0044 < 0.0089 = \phi(imes)$$

 \times is our best-fit to the data, \times is the true transmitter location