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Motivation
Scientific Computing relies on Numerical Linear Algebra

We often reformulate problems as 

Examples from Unit 1:
interpolation (Vandermonde matrix) and linear least squares
(normal equations) are naturally expressed as linear systems
Gauss–Newton method involves approximating a nonlinear problem
with a sequence of linear systems

We will see more applications of linear systems

(Numerical Calculus, Optimization, Eigenvalue problems)

Ax = b
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Motivation
The goal of this Unit is to cover:

concepts from linear algebra relevant for Scientific Computing
stable and efficient algorithms for solving 
algorithms for computing factorizations of 

that are useful in many practical contexts (LU, QR)

First, we discuss some practical cases where 

arises directly in mathematical modeling of physical systems

Ax = b

A

Ax = b

3



Example: Electric Circuits
Linear systems describe circuits consisting

of voltage sources and resistors

Ohm’s law: Voltage drop  due to
current  through a resistor  is

Kirchoff’s law: Directed sum of the
voltages around any closed loop is zero

V

I R

V = IR
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Example: Electric Circuits
The circuit has three loops

Loop 1


Loop 2


Loop 3


R ​I ​ +1 1 R ​(I ​ +3 1 I ​) +2 R ​(I ​ +4 1 I ​) =3 V ​1

R ​I ​ +2 2 R ​(I ​ +3 1 I ​) +2 R ​(I ​ −5 2 I ​) =3 V ​2

R ​(I ​ −5 3 I ​) +2 R ​(I +4 3 I ​) +1 R ​I ​ =6 3 0
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Example: Electric Circuits
We obtain a linear system for unknown currents , , 

Note that the matrix is
symmetric, i.e. 
strictly diagonally dominant, i.e.  

(assuming )

Circuit simulators solve large linear systems of this type

I ​1 I ​2 I ​3

​ ​ ​ ​ =[
R ​ + R ​ + R ​1 3 4

R ​3

R ​4

R ​3

R ​ + R ​ + R ​2 3 5

−R ​5

R ​4

−R ​5

R ​ + R ​ + R ​4 5 6

] [
I ​1

I ​2

I ​3

] ​[
V ​1

V ​2

0
]

a ​ =ij a ​ji

∣a ​∣ >ii ​ ∣a ​∣∑j=i ij

R ​ >k 0
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Example: Electric Circuits
Another linear system corresponds to unknown resistances , 

Note that the matrix has full rank (assuming )

The system is underdetermined: 3 equations for 6 unknowns

R ​i i = 1, … , 6

​ ​ ​ ​ ​ ​ ​ ​ ​ =[
I ​1

0
0

0
I ​2

0

I ​ + I ​1 2

I ​2

0

I ​1

0
I ​ + I ​1 3

0
−I ​3

−I ​2

0
0
I ​3

]

R ​1

R ​2

R ​3

R ​4

R ​5

R ​6

​[
V ​1

V ​2

0
]

I ​ =k  0
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Example: Structural Analysis
Common in structural analysis is to use

a linear relationship between force and
displacement, Hooke’s law

Simplest case is the Hookean spring law

: spring constant (stiffness)
: applied load
: spring extension (displacement)

F = kx

k

F

x
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Example: Structural Analysis
This relationship can be generalized to structural systems in 2D and 3D,
which yields a linear system of the form

: “stiffness matrix”
: “load vector”
: “displacement vector”

Kx = F

K ∈ Rn×n

F ∈ Rn

x ∈ Rn
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Example: Structural Analysis
It is common engineering practice to use Hooke’s law

to simulate complex structures, which leads to large linear systems

(from SAP2000, structural analysis software)
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Example: Economics
Leontief awarded Nobel Prize in Economics in 1973 for developing

a linear input/output model for production/consumption of goods

Consider an economy in which  goods are produced and consumed
:  represents


the amount of good  required to produce a unit of good 
:  is number of units of good  produced
:  is consumer demand for good 

In general , and  may be sparse

n

A ∈ Rn×n a ​ij

j i

x ∈ Rn x ​i i

d ∈ Rn d ​i i

a ​ =ii 0 A

11



Example: Economics
The total amount of  produced is given by the sum of

consumer demand  and the amount of  required to produce each 

Hence  or,

Solve for  to determine the required amount of production of each good

If we consider many goods (e.g. an entire economy),

then we get a large linear system

Can be used to predict the effect of disruptions in the supply chain

x ​i

d ​i x ​i x ​j

x ​ =i ​ +

production of other goods

​a ​x ​ + a ​x ​ + ⋯ + a ​x ​i1 1 i2 2 in n d ​i

x = Ax + d

(I − A)x = d

x
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Summary
Matrix computations are very common

Numerical Linear Algebra provides us with a toolbox

for performing these computations in an efficient and stable manner

In most cases, we can use these tools as a black box,

but it’s important to understand what they do

pick the right algorithm for a given situation

(e.g. exploit structure of a problem: symmetry, sparsity, etc)
understand how and when the algorithm fail
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Preliminaries
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Preliminaries
In this section we will focus on linear systems

with matrix , unknown vector 

and the right-hand side vector 

Recall that it is often helpful to think of matrix multiplication

as a linear combination of the columns of , where  are the coefficients

That is, we have

where  is the -th column of  and  are scalars

Ax = b

A ∈ Rn×n x ∈ Rn

b ∈ Rn

A x ​j

Ax = ​x ​a ​

j=1

∑
n

j (:,j)

a ​ ∈(:,j) Rn j A x ​j
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Preliminaries
This can be displayed schematically as

Ax = ​ ​ ​ ​ ​ ​ ​ ​ ​ =a ​(:,1) a ​(:,2) ⋯ a ​(:,n)

x ​1

x ​2

⋮
x ​n

= ​ ​ ​ ​ ​x ​1 a ​(:,1) + ⋯ +   x ​n a ​(:,n)
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Preliminaries
We therefore interpret  as:

“  is the vector of coordinates of  in the basis of columns of ”

Often this is a more helpful point of view than conventional

interpretation of “dot-product of matrix row with vector”

Now we see that  has a solution if

(this holds even for a non-square )

Denote

Ax = b

x b A

Ax = b

b ∈ span{a ​, a ​, ⋯ , a ​}(:,1) (:,2) (:,n)

A

image(A) = span{a ​, a ​, ⋯ , a ​}(:,1) (:,2) (:,n)
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Preliminaries
Existence and Uniqueness

If , then solution  exists
if solution  exists and the columns  are
linearly independent, then  is unique

(if  and  are both solutions, then , therefore )
if  is a solution and  is such that ,

then also  for any ,

so there are infinitely many solutions

If  then  has no solution

b ∈ image(A) x ∈ Rn

x {a ​, a ​, ⋯ , a }(:,1) (:,2) (:,n)

x

x y A(x − y) = 0 x = y

x z = 0 Az = 0
A(x + γz) = b γ ∈ R

b ∈ image(A) Ax = b
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Preliminaries
The inverse map  is well-defined
if and only if  has unique solution for any 

The inverse matrix  such that 

exists if any of the following equivalent conditions are satisfied

det
rank

 for any  (null space of  is )

 is nonsingular if  exists, and then 

 is singular if  does not exist

A : R →−1 n Rn

Ax = b b ∈ Rn

A ∈−1 Rn×n AA =−1 A A =−1 I

(A) = 0
(A) = n

Az = 0 z = 0 A {0}

A A−1 x = A b ∈−1 Rn

A A−1
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Norms
A norm  is a function on a vector space  that satisfies

positive definiteness,  and 
absolute homogeneity, , for 
triangle inequality, 

∥ ⋅ ∥ : V → R V

∥x∥ ≥ 0 ∥x∥ = 0 ⟹ x = 0
∥γx∥ = ∣γ∣∥x∥ γ ∈ R

∥x + y∥ ≤ ∥x∥ + ∥y∥
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Norms
The triangle inequality implies another helpful inequality:

the “reverse triangle inequality”

Proof:

Therefore 

​∥x∥ − ∥y∥ ​ ≤ ∥x − y∥

∥x∥ = ∥(x − y) + y∥ ≤ ∥x − y∥ + ∥y∥ ⟹ ∥x∥ − ∥y∥ ≤ ∥x − y∥

∥y∥ = ∥(y − x) + x∥ ≤ ∥y − x∥ + ∥x∥ ⟹ ∥y∥ − ∥x∥ ≤ ∥x − y∥

​∥x∥ − ∥y∥ ​ ≤ ∥x − y∥
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Vector Norms
Let’s now introduce some common norms on 

Most common norm is the Euclidean norm (or -norm):

-norm is special case of the -norm for any :

Condition  is required for the triangle inequality

Norm  approaches  as 

Rn

2

∥x∥ ​ =2 ​​ x ​∑j=1
n

j
2

2 p p ≥ 1

∥x∥ ​ =p ​ ∣x ​∣(∑j=1
n

j
p)

1/p

p ≥ 1

∥x∥ ​p ∥x∥ ​∞ p → ∞

∥x∥ ​ =∞ ​ ∣x ​∣
1≤i≤n
max i
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Example: Limit of -norm

See 

For vector 

 (component of  with the largest magnitude)

Norm  approaches  as 

Bounds: 

p

[examples/unit2/norm_inf.py]

x = (1.2, 0.5, −0.1, 2.3, −1.05, −2.35) ∈T R6

∥x∥ ​ =∞ 2.35 x

∥x∥ ​p ∥x∥ ​∞ p → ∞

∥x∥ ​ ≤∞ ∥x∥ ​ ≤p n ∥x∥ ​

1/p
∞
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Vector Norms
We generally use whichever norm is most convenient/appropriate for a
given problem, e.g.  -norm for least-squares analysis

Different norms give different (but related) measures of size

An important fact is:

2

All norms on a finite dimensional space (such as ) are
equivalent

Rn
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Vector Norms
That is, let  and  be two norms on a finite dimensional space ,
then  such that for any 

Also, from above we have 

Hence if we can derive an inequality in one norm on ,

it applies (after appropriate scaling) in any other norm as well

∥ ⋅ ∥ ​a ∥ ⋅ ∥ ​b V

∃ c ​, c ​ >1 2 0 x ∈ V

c ​∥x∥ ​ ≤1 a ∥x∥ ​ ≤b c ​∥x∥ ​2 a

​ ∥x∥ ​ ≤
c ​2

1
b ∥x∥ ​ ≤a ​ ∥x∥ ​

c ​1

1
b

V
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Vector Norms
Norm  bounds norm 

Proof of 

Proof of . The Cauchy-Schwarz inequality


with  and  gives

∥x∥ ​2 ∥x∥ ​1

∥x∥ ​ ≤2 ∥x∥ ​ ≤1 ​∥x∥ ​n 2

∥x∥ ​ ≤2 ∥x∥ ​1

​

∥x∥ ​ = ( ​ ∣x ​∣) = ( ​ ∣x ​∣)( ​ ∣x ​∣) =1
2 ∑i=1

n
i

2
∑i=1

n
i ∑j=1

n
j

= ​ ​ ∣x ​∣ ∣x ​∣ ≥ ∣x ​∣ ∣x ​∣ = ​ ∣x ​∣ = ∥x∥ ​∑i=1
n ∑j=1

n
i j ∑i=1

n
i i ∑i=1

n
i

2
2
2

∥x∥ ​ ≤1 ​∥x∥ ​n 2

​ a ​b ​ ≤∑i=1
n

i i ( ​ a ​) ( ​ b ​)∑i=1
n

i
2 1/2

∑i=1
n

i
2 1/2

a ​ =i 1 b ​ =i ∣x ​∣i

∥x∥ ​ =1 ​ 1 ∣x ​∣ ≤
i=1

∑
n

i ( ​ 1 ) ( ​ ∣x ​∣ ) =
i=1

∑
n

2 1/2

i=1

∑ i
2 1/2

​ ∥x∥ ​n 2
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Vector Norms
Each norm produces a different unit circle

Norm  approaches  as 

Commonly used norms are , , and 

{x ∈ R :2 ∥x∥ ​ =p 1}

∥x∥ ​1 ∥x∥ ​2 ∥x∥ ​4 ∥x∥ ​∞

∥x∥ ​p ∥x∥ ​∞ p → ∞

∥x∥ ​1 ∥x∥ ​2 ∥x∥∞
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Matrix Norms
There are many ways to define norms on matrices

For example, the Frobenius norm is defined as

If we think of  as a vector in ,

then Frobenius is equivalent to the vector -norm of 

∥A∥ ​ =F ( ​ ​ ∣a ​∣ )
i=1

∑
n

j=1

∑
n

ij
2

1/2

A Rn2

2 A

28



Matrix Norms
Matrix norms induced by vector norms are most useful

Here, matrix -norm is induced by vector -norm

This definition implies the useful property


since

p p

∥A∥ ​ =p ​ ​ =
x=0

max
∥x∥ ​p

∥Ax∥ ​p
​ ∥Ax∥ ​

∥x∥ ​=1p

max p

∥Ax∥ ​ ≤p ∥A∥ ​∥x∥ ​p p

∥Ax∥ ​ =p ​ ∥x∥ ​ ≤
∥x∥ ​p

∥Ax∥ ​p
p ​ ​ ∥x∥ ​ =(

v=0
max

∥v∥ ​p

∥Av∥ ​p ) p ∥A∥ ​∥x∥ ​p p
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Matrix Norms
The -norm and -norm can be calculated straightforwardly:

Later we will see how to compute the -norm of a matrix

1 ∞

​ ​ ​

∥A∥ ​1

∥A∥ ​∞

= ​ ∥a ​∥ ​

1≤j≤n
max (:,j) 1

= ​ ∥a ​∥ ​

1≤i≤n
max (i,:) 1

 (max column sum)

 (max row sum)

2
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Example: Matrix Norm Using Monte Carlo
How to compute the matrix norm induced by a “black box” vector norm?

One approach is the Monte-Carlo method

that solves problems using repeated random sampling

Recall the definition of a matrix norm induced by vector norm

See 

Warning: Common norms can be computed with more efficient methods!

∥A∥ = ​ ​

x=0
max

∥x∥
∥Ax∥

[examples/unit2/norm_monte_carlo.py]

31
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Condition Number
Recall from Unit 0 that the condition number of  is defined as

The value of  depends on which norm we use

numpy.linalg.cond computes the condition number for various norms

If  is a singular square matrix, then by convention 

A ∈ Rn×n

κ(A) = ∥A∥ ∥A ∥−1

κ(A)

A κ(A) = ∞

32



Residual
Recall that the residual 

was crucial in least-squares problems

It is also crucial in assessing the accuracy

of a proposed solution ( ) to a linear system 

Key point: The residual  is straightforward to compute,

while the error  is not (without knowing the exact solution)

r(x) = b − Ax

x̂ Ax = b

r( )x̂
Δx = x − x̂

33



Residual
We have that  if and only if 

However, small residual doesn’t necessarily imply small 

Observe that

Hence

∥Δx∥ = ∥x − ∥ =x̂ 0 ∥r( )∥ =x̂ 0

∥Δx∥

∥Δx∥ = ∥x − ∥ =x̂ ∥A (b −−1 A )∥ =x̂ ∥A r( )∥ ≤−1 x̂ ∥A ∥∥r( )∥−1 x̂

​ ≤
∥ ∥x̂

∥Δx∥
​ =

∥ ∥x̂
∥A ∥∥r( )∥−1 x̂

​ =
∥A∥∥ ∥x̂

∥A∥∥A ∥∥r( )∥−1 x̂
κ(A) ​ (∗)

∥A∥∥ ∥x̂
∥r( )∥x̂
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Residual
Define the relative residual as

Then our inequality  states that

“relative error is bounded by condition number times the relative residual”

This is just like our condition number relationship from Unit 0:

The reason  and  are related is that

the residual measures the input pertubation ( ) in 

To see this, let’s consider  to be a map 

​

∥A∥∥ ∥x̂
∥r( )∥x̂

(∗)

κ(A) ≥ ​ , i.e. ​ ≤
∥Δb∥/∥b∥
∥Δx∥/∥x∥

∥x∥
∥Δx∥

κ(A) ​ (∗∗)
∥b∥

∥Δb∥

(∗) (∗∗)
Δb Ax = b

Ax = b b ∈ R →n x ∈ Rn
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Residual
Then we can consider  to be the exact solution

for some perturbed input 

The residual associated with  is

i.e. 

In general, a (backward) stable algorithm gives us

the exact solution to a slightly perturbed problem, i.e. a small residual

This is a reasonable expectation for a stable algorithm:

rounding error doesn’t accumulate, so effective input perturbation is small

x̂

=b̂ b + Δb

A =x̂ b̂

x̂

r( ) =x̂ b − A =x̂ b − =b̂ −Δb

∥r( )∥ =x̂ ∥Δb∥
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Example: Residual vs. Error
From Heath’s book (Example 2.8)

Consider a  example to clearly demonstrate

the difference between residual and error

The exact solution is given by 

Suppose we compute two different approximate solutions

2 × 2

Ax = ​ ​ ​ =[
0.913
0.457

0.659
0.330 ] [

x ​1

x ​2
] ​ =[

0.254
0.127 ] b

x = [1, −1]T

=x̂(1)
​ , =[

−0.0827
0.5

] x̂(2)
​[

0.999
−1.001

]
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Example: Residual vs. Error
Then,

but

In this case,  is better solution, but has larger residual!

This is possible here because  is quite large

( )

∥r( )∥ ​ =x̂(1)
1 2.1 × 10 , ∥r( )∥ ​ =−4 x̂(2)

1 2.4 × 10−2

∥x − ∥ ​ =x̂(1)
1 2.58, ∥x − ∥ =x̂(2)

1 0.002

x̂(2)

κ(A) = 1.25 × 104

relative error ≤ 1.25 × 10 ×4 relative residual
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Solving Ax = b
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Solving 

upper triangular lower triangular 

Familiar idea for solving  is to use Gaussian elimination

to transform  to a triangular system

What is a triangular system?

Question: Why triangular?

Answer: Because triangular systems are easy to solve!

Ax = b

Ax = b

Ax = b

U ∈ Rn×n

 for u ​ =ij 0 i > j

U = ​ ​ ​ ​ ​

u ​11

0
0

u ​12

u ​22

0

u ​13

u ​23

u ​33

L ∈ Rn×n

 for ℓ ​ =ij 0 i < j

L = ​ ​ ​ ​ ​

l ​11

l ​21

l ​31

0
l ​22

l ​32

0
0
l ​33

40



Solving 

For an upper-triangular system ,

we can use backward substitution









Ax = b

Ux = b

x ​ =n b ​/u ​n nn

x ​ =n−1 (b ​ −n−1 u ​x ​)/u ​n−1,n n n−1,n−1

…

x ​ =j b ​ − ​ u ​x ​ /u ​( j ∑k=j+1
n

jk k) jj
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Solving 

For a lower triangular system ,

we can use forward substitution









Ax = b

Lx = b

x ​ =1 b ​/ℓ ​1 11

x ​ =2 (b ​ −2 ℓ ​x ​)/ℓ ​21 1 22

…

x ​ =j b ​ − ​ ℓ ​x ​ /ℓ ​( j ∑k=1
j−1

jk k) jj
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Asymptotic Notation
To simplify the cost estimation for an algorithm, we analyze its

asymptotic behavior as the size of the problem increases ( )

Notation  refers to asymptotic equivalence

Notation  refers to an asymptotic upper bound

for all , where  and 

If , then . The opposite is not true!

We prefer “ ” since it indicates the scaling factor of the leading term

For example, if , then , whereas 

n → ∞

f(n) ∼ g(n)

​ ​ =
n→∞
lim

g(n)
f(n)

1

f(n) = O(g(n))

∣f(n)∣ ≤ M ∣g(n)∣

n ≥ N M > 0 N > 0

f(n) ∼ g(n) f(n) = O(g(n))

∼

f(n) = n /4 +2 n f(n) = O(n )2 f(n) ∼ n /42
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Solving 

Backward (and forward) substitution

can be implemented with a double nested loop

It requires just one pass through the matrix!

The computational work is dominated by evaluating the sum

which takes  additions and multiplications for each 

So the total number of floating point operations is asymptotically

Ax = b

​ ℓ ​x ​ j =
k=1

∑
j−1

jk k 1, … ,n

j − 1 j

2 ​j =
j=1

∑
n

​ ∼
2

2n(n + 1)
n2

44



Solving 

How can we transform  to a triangular system?

Observation: If we multiply  by a nonsingular matrix ,

then the new system  has the same solution

We can devise a sequence of matrices

such that  and  is upper triangular

Gaussian elimination provides such a sequence

and gives the transformed system 

Ax = b

Ax = b

Ax = b M

MAx = Mb

M ​,M ​, … ,M ​1 2 n−1

M = M ​ …M ​n−1 1 U = MA

Ux = Mb

45



LU Factorization
We will show shortly that if ,

then  is lower triangular

Therefore, we obtain that the matrix factorizes into

a product of lower ( ) and upper ( ) triangular matrices

This is the LU factorization of 

MA = U

L = M−1

A = M U = LU−1

L U

A

46



LU Factorization
LU factorization is a common way of solving linear systems!

Once a factorization  is known, the system

is solved in two steps
lower triangular: 
upper triangular: 

A = LU

LUx = b

Ly = b

Ux = y

47



LU Factorization
Next question: How can we find ?

We need to be able to annihilate selected entries of 

below the diagonal in order to obtain an upper-triangular matrix

To do this, we use elementary elimination matrices

Let  denote -th elimination matrix

From now on, we denote them  rather than 

since elimination matrices are lower triangular

M ​,M ​, ⋯ ,M ​1 2 n−1

A

L ​j j

L ​j Mj

48



LU Factorization
Here we describe how to proceed from step  to step 

Let  denote the matrix at the start of step ,

and  denote column  of 

j − 1 j

X = L ​L ​ ⋯L ​Aj−1 j−2 1 j

x ​ ∈(:,k) Rn k X

X = ​ ​ ​ ​ ​ ​ ​ ​ ​

x ​11

⋮
0
0
0

⋮
0

⋯

⋱
⋯
⋯
⋯

⋱
⋯

x ​1,j−1

⋮
x ​j−1,j−1

0
0

⋮
0

x ​1j

⋮
x ​j−1,j

x ​jj

x ​j+1,j

⋮
x ​nj

x ​1,j+1

⋮
x ​j−1,j+1

x ​j,j+1

x ​j+1,j+1

⋮
x ​n,j+1

⋯

⋱
⋯
⋯
⋯

⋱
⋯

x ​1n

⋮
x ​j−1,n

x ​jn

x ​j+1,n

⋮
x ​nn
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LU Factorization
We are looking for a matrix  such that multiplication 

eliminates elements below the diagonal in 
does not modify columns  for 

Let’s define  such that

L ​j L ​Xj
x ​(:,j)

x ​(:,k) k = 1, … , j − 1

L ​j

L ​x ​ =j (:,j) ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ =

1

⋮
0
0

⋮
0

⋯

⋱
⋯
⋯

⋱
⋯

0

⋮
1

−x ​/x ​j+1,j jj

⋮
−x ​/x ​nj jj

0

⋮
0
1

⋮
0

⋯

⋱
⋯
⋯

⋱
⋯

0

⋮
0
0

⋮
1

x ​1j

⋮
x ​jj

x ​j+1,j

⋮
x ​nj

​ ​ ​

x ​1j

⋮
x ​jj

0

⋮
0
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LU Factorization
For brevity, we denote  and defineℓ ​ =ij x ​/x ​ij jj

L ​ =j ​ ​ ​ ​ ​ ​ ​ ​

1

⋮
0
0

⋮
0

⋯

⋱
⋯
⋯

⋱
⋯

0

⋮
1

−ℓ ​j+1,j

⋮
−ℓ ​nj

0

⋮
0
1

⋮
0

⋯

⋱
⋯
⋯

⋱
⋯

0

⋮
0
0

⋮
1
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LU Factorization
Using elementary elimination matrices,

we can reduce  to an upper triangular form, one column at a time

Schematically, for a  matrix, we have

Key point:  does not modify columns  of 

A

4 × 4

∗
∗
∗
∗

∗
∗
∗
∗

∗
∗
∗
∗

∗
∗
∗
∗

A

L ​1

∗
0
0
0

∗
∗
∗
∗

∗
∗
∗
∗

∗
∗
∗
∗

L ​A1

L ​2

∗
0
0
0

∗
∗
0
0

∗
∗
∗
∗

∗
∗
∗
∗

L ​L ​A2 1

L ​j 1, … , j − 1 L ​L ​ ⋯L ​Aj−1 j−2 1
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LU Factorization
After  steps, we obtain an upper triangular matrix
n − 1

U = L ​ ⋯L ​L ​A =n−1 2 1 ​ ​ ​ ​ ​ ​

∗
0
0
0

∗
∗
0
0

∗
∗
∗
0

∗
∗
∗
∗
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LU Factorization
We have 

To form a factorization ,

we need 

First observation:

 is obtained by negating the subdiagonal elements of 

L ​ ⋯L ​L ​A =n−1 2 1 U

A = LU

L = (L ​ ⋯L ​L ​) =n−1 2 1
−1 L ​L ​ ⋯L ​1

−1
2
−1

n−1
−1

L ​j
−1 L ​j

L ​ =j ​ ​ ​ ​ ​ ​ ​ ​ L ​ =

1

⋮
0
0

⋮
0

⋯

⋱
⋯
⋯

⋱
⋯

0

⋮
1

−ℓ ​j+1,j

⋮
−ℓ ​nj

0

⋮
0
1

⋮
0

⋯

⋱
⋯
⋯

⋱
⋯

0

⋮
0
0

⋮
1

j
−1

​ ​ ​ ​ ​ ​ ​ ​

1

⋮
0
0

⋮
0

⋯

⋱
⋯
⋯

⋱
⋯

0

⋮
1

ℓ ​j+1,j

⋮
ℓ ​nj

0

⋮
0
1

⋮
0

⋯

⋱
⋯
⋯

⋱
⋯

0

⋮
0
0

⋮
1
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LU Factorization

multiplication  subtracts

a scaled component 

so the inverse should add it
back (  itself is unchanged)

 can be verified directly by multiplication

Intuitive explanation

L ​L ​ =j j
−1 I

L ​vj
v ​j

L ​ ​ ​ ​ =j

v ​1

⋮
v ​j

v ​j+1

⋮
v ​n

​ ​ ​

v ​1

⋮
v ​j

v ​ − ℓ ​v ​j+1 j+1,j j

⋮
v ​ − ℓ ​v ​n nj j

v ​j

L ​ ​ ​ ​ =j
−1

v ​1

⋮
v ​j

v ​j+1

⋮
v ​n

​ ​ ​

v ​1

⋮
v ​j

v ​ + ℓ ​v ​j+1 j+1,j j

⋮
v ​ + ℓ ​v ​n nj j
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LU Factorization
Second observation: consider L ​L ​j−1

−1
j
−1

​ ​ =

L ​j−1
−1

​
​ ​ ​ ​ ​ ​ ​ ​ ​

1

⋮
0
0
0

⋮
0

⋯

⋱
⋯
⋯
⋯

⋱
⋯

0

⋮
1

ℓ ​j,j−1

ℓ ​j+1,j−1

⋮
ℓ ​n,j−1

0

⋮
0
1
0

⋮
0

0

⋮
0
0
1

⋮
0

⋯

⋱
⋯
⋯
⋯

⋱
⋯

0

⋮
0
0
0

⋮
1

L ​j
−1

​
​ ​ ​ ​ ​ ​ ​ ​ ​

1

⋮
0
0
0

⋮
0

⋯

⋱
⋯
⋯
⋯

⋱
⋯

0

⋮
1
0
0

⋮
0

0

⋮
0
1

ℓ ​j+1,j

⋮
ℓ ​nj

0

⋮
0
0
1

⋮
0

⋯

⋱
⋯
⋯
⋯

⋱
⋯

0

⋮
0
0
0

⋮
1

​ ​ ​ ​ ​ ​ ​ ​ ​

1

⋮
0
0
0

⋮
0

⋯

⋱
⋯
⋯
⋯

⋱
⋯

0

⋮
1

ℓ ​j,j−1

ℓ ​j+1,j−1

⋮
ℓ ​n,j−1

0

⋮
0
1

ℓ ​j+1,j

⋮
ℓ ​nj

0

⋮
0
0
1

⋮
0

⋯

⋱
⋯
⋯
⋯

⋱
⋯

0

⋮
0
0
0

⋮
1
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LU Factorization
Therefore, by generalizing to all  matrices

So we simply collect the subdiagonal terms

from all steps of factorization

n − 1

L = L ​L ​ ⋯L ​ =1
−1

2
−1

n−1
−1

​ ​ ​ ​ ​ ​ ​

1
ℓ ​21

ℓ ​31

⋮
ℓ ​n1

1
ℓ ​32

⋮
ℓ ​n2

1

⋱
⋯

⋱
ℓ ​n,n−1 1

57



LU Factorization
Therefore, basic LU factorization algorithm is

1: , 

2: for  do

3: for  do

4: 

5: for  do

6: 

7: end for

8: end for

9: end for

Note that the entries of  are updated each iteration

so at the start of step , 

Here line 4 comes straight from the definition 

U = A L = I
j = 1 : n − 1
i = j + 1 : n

ℓ ​ =ij u ​/u ​ij jj

k = j : n
u ​ =ik u ​ −ik ℓ ​u ​ij jk

U

j U = L ​L ​ ⋯L ​Aj−1 j−2 1

ℓ ​ =ij ​

u ​jj

u ​ij
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LU Factorization
Line 6 accounts for the effect of  on columns  of 

For  we have

The right hand side is the updated -th column of ,

which is computed in line 6

L ​j k = j, … ,n U

k = j : n

L ​u ​ =j (:,k) ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ =

1

⋮
0
0

⋮
0

⋯

⋱
⋯
⋯

⋱
⋯

0

⋮
1

−ℓ ​j+1,j

⋮
−ℓ ​nj

0

⋮
0
1

⋮
0

⋯

⋱
⋯
⋯

⋱
⋯

0

⋮
0
0

⋮
1

u ​1k

⋮
u ​jk

u ​j+1,k

⋮
u ​nk

​ ​ ​

u ​1k

⋮
u ​jk

u ​ − ℓ ​u ​j+1,k j+1,j jk

⋮
u ​ − ℓ ​u ​nk nj jk

k U
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LU Factorization
LU factorization involves a triple nested loop, hence  operations

Careful operation counting shows LU factorization requires
 additions
 multiplications

Therefore  operations in total

O(n )3

∼ ​n3
1 3

∼ ​n3
1 3

∼ ​n3
2 3
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Solving Linear Systems Using LU
To solve , we perform the following three steps:

Step 1: Factorize  into : 
Step 2: Solve  by forward substitution: 
Step 3: Solve  by backward substitution: 

The total work, dominated by Step 1, is 

Ax = b

A A = LU ∼ ​n3
2 3

Ly = b ∼ n2

Ux = y ∼ n2

∼ ​n3
2 3
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Solving Linear Systems Using LU
An alternative approach would be to first compute 

and evaluate , but this is a bad idea!

Question: How would we compute ?

A−1

x = A b−1

A−1
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Solving Linear Systems Using LU
Answer: Let  denote the -th column of , then  must satisfy

where  is the -th basis vector

Therefore, inverting matrix  reduces to solving  for  various 

We first factorize , then forward/backward substitute for

a ​(:,k)
inv k A−1 a ​(:,k)

inv

Aa ​ =(:,k)
inv e ​k

e ​k k

A Ax = b n b

A = LU

LUa ​ =(:,k)
inv e ​, k =k 1, … ,n
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Solving Linear Systems Using LU
Solving linear systems using  is inefficient!

one pair of substitutions requires  operations
 pairs of substitutions require  operations

evaluating  takes  operations

(as many as one pair of substitutions)

A rule of thumb in Numerical Linear Algebra:

It is rarely a good idea to compute  explicitly

A−1

∼ 2n2

n ∼ 2n3

A b−1 ∼ 2n2

A−1
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Solving Linear Systems Using LU
Another case where LU factorization is very helpful

is if we want to solve  for several different

right-hand sides , 

We incur the  cost only once,

and then each subsequent pair of forward/backward

substitutions costs only 

Makes a huge difference if  is large!

Ax = b ​i

b ​i i = 1, … , k

∼ ​n3
2 3

∼ 2n2

n
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Stability of Gaussian Elimination
There is a problem with the LU algorithm presented above

Consider the matrix

 is nonsingular, well-conditioned ( )

but LU factorization fails at first step (division by zero)

A = ​ ​[
0
1

1
1 ]

A κ(A) ≈ 2.62
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Stability of Gaussian Elimination
LU factorization doesn’t fail for

but we get

A = ​ ​[
10−20

1
1
1 ]

L = ​ ​ , U =[
1

1020
0
1 ] ​ ​[

10−20

0
1

1 − 1020 ]
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Stability of Gaussian Elimination
Let’s suppose that  (a floating point number)

and that 

Then in finite precision arithmetic we get

−10 ∈20 F
round(1 − 10 ) =20 −1020

=L ​ ​ , =[
1

1020
0
1 ] U ​ ​[

10−20

0
1

−1020 ]
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Stability of Gaussian Elimination
Hence due to rounding error we obtain

which is not close to

Then, for example, let 

using , we get 
true answer is 

The relative error is large

even though the problem is well-conditioned

=LU ​ ​[
10−20

1
1
0 ]

A = ​ ​[
10−20

1
1
1 ]

b = [3, 3]T

LU =x~ [3, 3]T

x = [0, 3]T
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Stability of Gaussian Elimination
In this example, standard Gaussian elimination yields a large residual

Or equivalently, it yields the exact solution to a problem

corresponding to a large input perturbation: 

So the algorithm is unstable!

In this case the cause of the large error in 

is numerical instability, not ill-conditioning

To stabilize Gaussian elimination, we need to permute rows,

i.e. perform pivoting

Δb = [0, 3]T

x
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Pivoting
Recall the Gaussian elimination process

But we could just as easily do

​ ​ ​ ​ ​ ​ ⟶

∗ ∗
x ​jj

∗
∗

∗
∗
∗
∗

∗
∗
∗
∗

​ ​ ​ ​ ​ ​

∗ ∗
x ​jj

0
0

∗
∗
∗
∗

∗
∗
∗
∗

​ ​ ​ ​ ​ ​ ⟶

∗ ∗
∗
x ​ij

∗

∗
∗
∗
∗

∗
∗
∗
∗

​ ​ ​ ​ ​ ​

∗ ∗
0
x ​ij

0

∗
∗
∗
∗

∗
∗
∗
∗
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Partial Pivoting
The entry  is called the pivot, and flexibility

in choosing the pivot is essential otherwise we can’t deal with:

Choosing the pivot as the largest element in column 

improves numerical stability. This is called partial pivoting

Full pivoting additionally permutes the columns and looks for the largest

over  elements, which is costly and only marginally beneficial for
stability

This ensures that each  entry — which acts as a multiplier in the LU
factorization process — satisfies 

x ​ij

A = ​ ​[
0
1

1
1 ]

j

O(n )2

ℓ ​ij

∣ℓ ​∣ ≤ij 1
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Partial Pivoting
To maintain the triangular LU structure,

we permute rows by premultiplying by permutation matrices

In this case

and each  is obtained by swapping two rows of 

∗ ∗
∗
∗
x ​ij

∗
∗
∗
∗

∗
∗
∗
∗

pivot selection

P ​1

∗ ∗
x ​ij

∗
∗

∗
∗
∗
∗

∗
∗
∗
∗

row swap

L ​1

∗ ∗
x ​ij

0
0

∗
∗
∗
∗

∗
∗
∗
∗

P ​ =1

1
0
0
0

0
0
0
1

0
0
1
0

0
1
0
0

P ​j I
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Partial Pivoting
Therefore, with partial pivoting we obtain

It can be shown (we omit the details here, see Trefethen & Bau)

that this can be rewritten as

where . Note that  is not the same as without pivoting

Theorem: Gaussian elimination with partial pivoting produces

nonsingular factors  and  if and only if  is nonsingular

L ​P ​ ⋯L ​P ​L ​P ​A =n−1 n−1 2 2 1 1 U

PA = LU

P = P ​ ⋯P ​P ​n−1 2 1 L

L U A
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Partial Pivoting
Pseudocode for LU factorization with partial pivoting

(new code is highlighted):

1: , , 

2: for  do
3: Select  that maximizes 

4: Swap rows of : 

5: Swap rows of : 

6: Swap rows of : 
7: for  do

8: 

9: for  do


10: 

11: end for

12: end for

13: end for

Again this requires  floating point operations

U = A L = I P = I
j = 1 : n − 1

i(≥ j) ∣u ​∣ij

U u ​ ↔(j,j:n) u ​(i,j:n)

L ℓ ​ ↔(j,1:j−1) ℓ ​(i,1:j−1)

P p ​ ↔(j,:) p ​(i,:)

i = j + 1 : n
ℓ ​ =ij u ​/u ​ij jj

k = j : n
u ​ =ik u ​ −ik ℓ ​u ​ij jk

∼ ​n3
2 3
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Partial Pivoting: Solve 

To solve  using the factorization 
Multiply through by  to obtain 
Solve  using forward substitution
Then solve  using back substitution

Ax = b

Ax = b PA = LU

P PAx = LUx = Pb

Ly = Pb

Ux = y
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Partial Pivoting in Python
Python’s scipy.linalg.lu function can do LU factorization with pivoting

>>> import numpy as np

>>> import scipy.linalg

>>> A=np.random.rand(4, 4)

>>> (P,L,U) = scipy.linalg.lu(A)

>>> A

array([[0.48657354, 0.72177328, 0.89725033, 0.10555858],

       [0.19356039, 0.21192135, 0.001038  , 0.20308355],

       [0.04709362, 0.82519218, 0.29700521, 0.85089909],

       [0.35533098, 0.30291277, 0.98852909, 0.7303831 ]])

>>> P

array([[1., 0., 0., 0.],

       [0., 0., 0., 1.],

       [0., 1., 0., 0.],

       [0., 0., 1., 0.]])

>>> L

array([[ 1.        ,  0.        ,  0.        ,  0.        ],

       [ 0.09678623,  1.        ,  0.        ,  0.        ],

       [ 0.73027189, -0.29679299,  1.        ,  0.        ],

       [ 0.39780295, -0.09956144, -0.8465861 ,  1.        ]])

>>> U

array([[0.48657354, 0.72177328, 0.89725033, 0.10555858],

       [0.        , 0.75533446, 0.21016373, 0.84068247],

       [0.        , 0.        , 0.39566752, 0.9028053 ],

       [0.        , 0.        , 0.        , 1.00909401]])
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Stability of Gaussian Elimination
Numerical stability of Gaussian Elimination has been

an important research topic since the 1940s

Major figure in this field: James H. Wilkinson (England, 1919–1986)

Showed that for  with :
Gaussian elimination without partial pivoting is numerically
unstable

(as we’ve already seen)
Gaussian elimination with partial pivoting satisfies

Ax = b A ∈ Rn×n

​ ≤ 2 n ϵ
∥A∥∥x∥

∥r∥ n−1 2
mach
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Stability of Gaussian Elimination

That is, pathological cases exist where the relative residual  grows

exponentially with  due to rounding error

Worst case behavior of Gaussian Elimination with partial pivoting is
explosive instability but such pathological cases are extremely rare!

In over  years of Scientific Computation, instability has only been
encountered due to deliberate construction of pathological cases

In practice, Gaussian elimination is stable in the sense that it produces a
small relative residual

​∥A∥∥x∥
∥r∥

n

50
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Stability of Gaussian Elimination
In practice, we typically obtain

i.e. grows only linearly with , and is scaled by 

Combining this result with our inequality :

implies that in practice Gaussian elimination gives small error for well-
conditioned problems!

​ ≲ nϵ
∥A∥∥x∥

∥r∥
mach

n ϵ ​mach

(∗)

​ ≤
∥x∥

∥Δx∥
κ(A) ​

∥A∥∥x∥
∥r∥
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Cholesky Factorization
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Cholesky Factorization
Suppose that matrix  is

symmetric: 
positive definite: for any , 

Then the matrix can be represented as

known as Cholesky factorization,

where  is a lower triangular matrix

In general, any matrix of the form 

is symmetric and positive definite for any nonsingular 

A ∈ Rn×n

A =T A

x = 0 x Ax >T 0

A = LLT

L ∈ Rn×n

BBT

B ∈ Rn×n
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Cholesky Factorization
Matrix  is found directly from equation

Consider the  case

Equate components starting with the first column

L

A = LLT

3 × 3

​ ​ ​ ​ ​ =
a ​11

a ​21

a ​31

∗
a ​22

a ​32

∗
∗
a ​33

​ ​ ​ ​ ​

ℓ ​11
2

ℓ ​ℓ ​11 21

ℓ ​ℓ ​11 31

∗
ℓ ​ + ℓ ​21

2
22
2

ℓ ​ℓ ​ + ℓ ​ℓ ​21 31 22 32

∗
∗

ℓ ​ + ℓ ​ + ℓ ​31
2

32
2

33
2

​ ​ ​

ℓ ​ = ​11 a ​11

ℓ ​ = a ​/ℓ ​21 21 11

ℓ ​ = a ​/ℓ ​31 31 11

ℓ ​ = ​22 a ​ − ℓ ​22 21
2

ℓ ​ = (a ​ − ℓ ​ℓ ​)/ℓ ​32 32 21 31 22 ℓ ​ = ​33 a ​ − ℓ ​ − ℓ ​33 31
2

32
2
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Cholesky Factorization
The same approach is generalized to the  case

1: 

2:  for , 
3: for  do

4: 

5: for  do

6: 

7: end for

8: for  do

9: for  do


10: 

11: end for

12: end for

13: end for

n × n

L = 0
ℓ ​ =ij a ​ij i = 1, … ,n j = 1, … , i

j = 1 : n
ℓ ​ =jj ​ℓ ​jj

i = j + 1 : n
ℓ ​ =ij ℓ ​/ℓij jj

k = j + 1 : n
i = k : n

ℓ ​ =ik ℓ ​ −ik ℓ ​ℓ ​ij kj
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Cholesky Factorization
Notes on Cholesky factorization

Cholesky factorization is numerically stable

and does not require pivoting
Operation count:  operations in total,

i.e. about half as many as Gaussian elimination
Only need to store , so uses less memory than LU.

Can be done in-place, overwriting matrix 

See 

∼ ​n3
1 3

L

A

[examples/unit2/cholesky.py]
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Performance Metrics
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Performance Metrics
There are various metrics for software performance

performance (FLOP/s): floating point operations per second
time to solution
scaling efficiency (for parallel computing)

High Performance Computing studies and develops efficient

implementations of numerical algorithms

Naive Python implementations (e.g. using for-loops) are typically slow

Modules such as NumPy rely on faster implementations (e.g. written in C)

Example of performance measurements for Cholesky factorization
Python 
C++ 

[examples/unit2/cholesky_time.py]
[examples/unit2/cholesky_time.cpp]
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Sparse Matrices
In applications, we often encounter sparse matrices

Common example: discretizations of partial differential equations

The term sparse matrix typically means that the number

of non-zero elements is comparable to the number of rows or columns

(e.g.   matrix with  non-zeros)

It is advantageous to store and operate only on non-zero elements

Positions of non-zero elements of a sparse matrix form its sparsity pattern

Matrices that are not sparse are called dense matrices

n × n O(n)
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Sparse Matrices
Dense matrices are typically stored as two-dimensional arrays

Sparse matrices benefit from special data structures and algorithms

for computational efficiency

Example from 
a tridiagonal matrix is stored as three one-dimensional arrays
the linear system is solved using the TDMA algorithm

Standard algorithms (e.g. LU or Cholesky factorization) can be directly
applied to sparse matrices. However, new non-zero elements will appear

These new non-zero elements are called the fill-in.

Fill-in can be reduced by permuting rows and columns of the matrix

 implements sparse linear algebra

Unit 1 (constructing a spline)

scipy.sparse
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Sparse Matrices: Data Structures
Coordinate format (COO):

Arrays: data, row, col

Element data[k] is in row row[k] and column col[k]

Compressed Sparse Row (CSR):

Arrays: data, indices, indptr

Row i contains elements data[indptr[i]:indptr[i+1]]

in columns indices[indptr[i]:indptr[i+1]]

Compressed Sparse Column (CSC):

Arrays: data, indices, indptr

Column j contains elements data[indptr[j]:indptr[j+1]]

in rows indices[indptr[j]:indptr[j+1]]
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Coordinate format (COO):






(assume zero-based indexing)

See 

Compressed Sparse Row (CSR):







Compressed Sparse Column
(CSC)







Example: Sparse Matrix

​ ​ ​ ​ ​ ​ ​

a

0
0
0

b

c

0
0

b

0
c

0

b

0
0
c

b

0
0
0

data = (a, b, b, b, b, c, c, c)
row = (0, 0, 0, 0, 0, 1, 2, 3)
col = (0, 1, 2, 3, 4, 1, 2, 3)

[examples/unit2/sparse.py]

data = (a, b, b, b, b, c, c, c)
indices = (0, 1, 2, 3, 4, 1, 2, 3)
indptr = (0, 5, 6, 7, 8)

data = (a, b, c, b, c, b, c, b)
indices = (0, 0, 1, 0, 2, 0, 3, 0)
indptr = (0, 1, 3, 5, 7, 8)
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QR Factorization
A square matrix  is called orthogonal

if its columns and rows are orthonormal vectors

Equivalently, 

Orthogonal matrices preserve the Euclidean norm of a vector

Geometrically, orthogonal matrices correspond to reflection or rotation

Orthogonal matrices are very important in scientific computing,

norm-preservation implies no amplification of numerical error!

Q ∈ Rn×n

Q Q =T QQ =T I

∥Qv∥ ​ =2
2 v Q Qv =T T v v =T ∥v∥ ​2

2
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QR Factorization
The full  factorization of matrix ,  has the form

where
 is orthogonal

 is upper-triangular

QR is used for solving overdetermined linear least-squares problems

QR can be used for solving square systems, but requires

twice as many operations as Gaussian elimination

QR A ∈ Rm×n m ≥ n

A = QR

Q ∈ Rm×m

R = [ ​ ] ∈R̂

0
Rm×n

∈R̂ Rn×n
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QR Factorization
Consider the 2-norm of the least-squares residual

Denote  with , so that

​

∥r(x)∥ ​ = ∥b − Ax∥ ​ = ​b − Q[ ​ ]x ​ ​ =2
2

2
2 R̂

0 2

2

= ​Q (b − Q[ ​ ]x) ​ ​ = ​Q b − [ ​ ]x ​ ​

T R̂

0 2

2
T R̂

0 2

2

[ ​ ] =c ​1

c ​2
Q bT c ​ ∈1 R , c ​ ∈n

2 Rm−n

∥r(x)∥ ​ =2
2

​[ ​ ] −c ​1

c ​2
[ ​ ]x ​ ​ =R̂

0 2

2
​[ ​ ] ​ ​ =c ​ − x1 R̂

c ​2 2

2
∥c −1 x∥ ​ +R̂ 2

2 ∥c ​∥ ​2 2
2
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QR Factorization
Question: How do we choose  to minimize ?

where  and 

Answer: Only the first term depends on . Try setting

the first term to zero, i.e. solve the  triangular system

This is what numpy.linalg.lstsq() does

Also, this implies that 

x ∥r(x)∥ ​2

∥r(x)∥ ​ =2
2 ∥c ​ −1 x∥ ​ +R̂ 2

2 ∥c ​∥ ​2 2
2

A = Q[ ​ ]R̂

0
[ ​ ] =c ​1

c ​2
Q bT

x

n × n

x =R̂ c ​1

​ ∥r(x)∥ ​ =
x∈Rn
min 2 ∥c ​∥ ​2 2

95



QR Factorization
Recall that solving linear least-squares via the normal equations

requires solving a system with the matrix 

But using the normal equations directly is problematic since

(with  for rectangular  defined using SVD, to be covered soon)

The QR approach avoids this condition-squaring effect

and is much more numerically stable!

A AT

κ(A A) =T κ(A)2

κ(A) A
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QR Factorization
How do we compute the QR factorization?

There are three main methods
Gram–Schmidt orthogonalization
Householder triangularization
Givens rotations
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Gram–Schmidt Orthogonalization
Suppose , 

One way to picture the QR factorization is to construct

a sequence of orthonormal vectors  such that

We seek coefficients  such that

This can be done via the Gram–Schmidt process

A ∈ Rm×n m ≥ n

q ​, q ​, …1 2

span{q ​, q ​, … , q ​} =1 2 j span{a , a ​, … , a ​}, j =(:,1) (:,2) (:,j) 1, … ,n

r ​ij

a(:,1)

a(:,2)

a(:,n)

= r ​q ​11 1

= r ​q ​ + r ​q ​12 1 22 2

…

= r ​q ​ + r ​q ​ + … + r ​q ​1n 1 2n 2 nn n
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Gram–Schmidt Orthogonalization
In matrix form we have:

This gives  for , 

This is called the reduced QR factorization of ,

which is different from the full QR factorization:  is non-square

Note that for , , but 

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​a ​(:,1) a ​(:,2) ⋯ a ​(:,n) = q ​1 q ​2 ⋯ q ​n

r ​11 r ​12

r ​22

⋯

⋱

r ​1n

r ​2n

⋮
r ​nn

A = ​Q̂R̂ ​ ∈Q̂ Rm×n ∈R̂ Rn×n

A

Q

m > n ​ ​ =Q̂T Q̂ I ​ ​ =Q̂Q̂T  I
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Full vs Reduced QR Factorization
To obtain the full QR factorization defined earlier

append  by  arbitrary columns

that are linearly independent with columns of 
apply the Gram–Schmidt process to obtain an orthogonal 

We also need to append  with zero rows to obtain 


so that the new arbitrary columns in  do not affect the product

A = QR

​Q̂ m − n

​Q̂

Q ∈ Rm×m

R̂ R = [ ​ ] ∈R̂

0
Rm×n

Q

100



Full vs Reduced QR Factorization

A Q R

=

Full QR
 

A Q̂ R̂

=

Reduced QR
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Full vs Reduced QR Factorization
Exercise: Show that the linear least-squares solution is given by

by plugging  into the normal equations

This is equivalent to the least-squares result

we showed earlier using the full QR factorization, since  

x =R̂ ​ bQ̂T

A = ​Q̂R̂

c ​ =1 ​ bQ̂T
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By default, numpy.linalg.qr()
does reduced QR factorization

Supplying mode="complete"
gives complete QR factorization

Full vs. Reduced QR Factorization

>>> import numpy as np

>>> np.random.seed(2022)

>>> a = np.random.random((4,2))

>>> a

array([[0.00935861, 0.49905781],

       [0.11338369, 0.04997402],

       [0.68540759, 0.48698807],

       [0.89765723, 0.64745207]])

>>> (q, r) = np.linalg.qr(a)

>>> q

array([[-0.00824455,  0.99789386],

       [-0.09988626, -0.06374317],

       [-0.60381526, -0.01057732],

       [-0.79079826,  0.00572413]])

>>> r

array([[-1.13512797, -0.81516102],

       [ 0.        ,  0.4933763 ]])

>>> import numpy as np

>>> np.random.seed(2022)

>>> a = np.random.random((4,2))

>>> a

array([[0.00935861, 0.49905781],

       [0.11338369, 0.04997402],

       [0.68540759, 0.48698807],

       [0.89765723, 0.64745207]])

>>> (q, r) = np.linalg.qr(a, mode="complete")

>>> q

array([[-0.00824455,  0.99789386, -0.02953283, -0.
       [-0.09988626, -0.06374317, -0.61111959, -0.
       [-0.60381526, -0.01057732,  0.66414863, -0.
       [-0.79079826,  0.00572413, -0.42961291,  0.
>>> r

array([[-1.13512797, -0.81516102],

       [ 0.        ,  0.4933763 ],

       [ 0.        ,  0.        ],

       [ 0.        ,  0.        ]])
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Gram–Schmidt Orthogonalization
Returning to the Gram–Schmidt process,

how do we compute the , ?

In the -th step, find a unit vector 

that is orthogonal to 

We set

and then set 

Exercise: Verify that  satisfies the requirements

We can now determine the required values of 

q ​i i = 1, … ,n

j q ​ ∈j span{a ​, a ​, … , a ​}(:,1) (:,2) (:,j)

span{q ​, q ​, … , q ​}1 n j−1

v ​ =j a ​ −(:,j) ​(q ​a ​)q ​

i=1

∑
j−1

i
T

(:,j) i

q ​ =j v ​/∥v ​∥ ​j j 2

q ​j

r ​ij
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Gram–Schmidt Orthogonalization

From the equations , for 

From the Gram–Schmidt process, for 

Both expressions have the same structure, by matching the terms

The sign of  is not determined uniquely, so we can choose 

A = ​Q̂R̂ j = 1, … ,n

q ​ =j ​

r ​jj

a ​ − ​ r ​q ​(:,j) ∑i=1
j−1

ij i

j = 1, … ,n

q ​ =j ​

∥a ​ − ​(q ​a ​)q ​∥ ​(:,j) ∑i=1
j−1

i
T

(:,j) i 2

a ​ − ​(q ​a ​)q ​(:,j) ∑i=1
j−1

i
T

(:,j) i

​ ​

r ​ij

∣r ​∣jj

= q ​a ​ (i = j)i
T

(:,j) 

= ∥a ​ − ​ r ​q ​∥ ​(:,j) ∑i=1
j−1

ij i 2

r ​jj r ​ >jj 0
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Classical Gram–Schmidt Process
The resulting algorithm is referred to as the

classical Gram–Schmidt (CGS) method

1: for  do

2: 

3: for  do

4: 

5: 

6: end for

7: 

8: 

9: end for

j = 1 : n
v ​ =j a ​(:,j)

i = 1 : j − 1
r ​ =ij q ​a ​i

T
(:,j)

v ​ =j v ​ −j r ​q ​ij i

r ​ =jj ∥v ​∥ ​j 2

q ​ =j v ​/r ​j jj
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Gram–Schmidt Orthogonalization
The only way the Gram–Schmidt process can fail

is if  for some 

This can only happen if  for some ,

i.e. if 

This means that columns of  are linearly dependent

Therefore, Gram–Schmidt fails  columns of  linearly dependent

∣r ​∣ =jj ∥v ​∥ ​ =j 2 0 j

a ​ =(:,j) ​ r ​q ​∑i=1
j−1

ij i j

a ​ ∈(:,j) span{q ​, q ​, … , q ​} =1 n j−1 span{a ​, a ​, … , a ​}(:,1) (:,2) (:,j−1)

A

⟹ A
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Gram–Schmidt Orthogonalization
Therefore, if columns of  are linearly independent,

then the Gram–Schmidt succeeds

The only non-uniqueness in the Gram–Schmidt process

was in the sign of , therefore  is unique

under the requirement that all 

This proves the following

Theorem: Every  of full rank

has a unique reduced QR factorization  with 

A

r ​ii ​Q̂R̂

r ​ >ii 0

A ∈ R (m ≥m×n n)
A = ​Q̂R̂ r ​ >ii 0
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Gram–Schmidt Orthogonalization
Theorem: Every  has a full QR factorization

Case 1:  has full rank
we compute the reduced QR factorization from above
to make  square we pad  with  arbitrary

orthonormal columns
we also pad  with  zero rows to get 

Case 2:  does not have full rank
at some point in computing the reduced QR factorization,

we encounter 
at this point we pick an arbitrary unit  orthogonal to


 and then proceed as in Case 1

A ∈ R (m ≥m×n n)

A

Q ​Q̂ m − n

R̂ m − n R

A

∥v ​∥ ​ =j 2 0
q ​j

span{q ​, q ​, … , q ​}1 2 j−1
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Modified Gram–Schmidt Process
The classical Gram–Schmidt process is numerically unstable!

(sensitive to rounding error, orthogonality of the  degrades)

The algorithm can be reformulated to give

the modified Gram–Schmidt process,

which is numerically more robust

Key idea: when each new  is computed,

orthogonalize each remaining column of  against it

q ​j

q ​j

A
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Modified Gram–Schmidt Process
Applying this idea results in the

modified Gram–Schmidt (MGS) method

1: for  do

2: 

3: end for

4: for  do

5: 

6: 

7: for  do

8: 

9: 


10: end for

11: end for

i = 1 : n
v ​ =i a ​(:,i)

i = 1 : n
r ​ =ii ∥v ​∥ ​i 2

q ​ =i v ​/r ​i ii

j = i + 1 : n
r ​ =ij q ​vi

T
j

v ​ =j v ​ −j r ​q ​ij i
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Modified Gram–Schmidt Process
Key difference between MGS and CGS

In CGS we compute orthogonalization coefficients 

using the original column 
In MGS we remove components of 

in  before computing 

This makes no difference mathematically:

In exact arithmetic components in 

are annihilated by 

But in practice it reduces degradation of orthogonality of the 

and improves the numerical stability of MGS over CGS

r ​ij

a ​(:,j)

a ​(:,j)

span{q ​, q ​, … , q ​}1 2 i−1 r ​ij

span{q ​, q ​, … , q ​}1 2 i−1

q ​i
T

q ​j
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Operation Count
MGS is dominated by the innermost loop (lines 8 and 9):

The first requires  multiplications,  additions;

the second requires  multiplications,  subtractions

Therefore, each innermost iteration takes  operations

The rotal number of operations is asymptotically

​ ​

r ​ij

v ​j

= q ​v ​i
T

j

= v ​ − r ​q ​j ij i

m m − 1
m m

∼ 4m

​ ​ 4m ∼
i=1

∑
n

j=i+1

∑
n

4m ​ i ∼
i=1

∑
n

2mn2
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Alternative QR Factorization Methods
The QR factorization can also be computed using

Householder triangularization
Givens rotations

Both methods apply a sequence of orthogonal matrices

that successively remove terms below the diagonal

(similar to the LU factorization)

Q ​,Q ​,Q ​, …1 2 3
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Householder Triangularization
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Householder Triangularization
We will now discuss the Householder triangularization which is

more numerically stable and more efficient than Gram–Schmidt

Unlike Gram–Schmidt, it will not guarantee that the orthonormal

basis at each step will span the same subspaces as columns of 


which may be important for some applications

Method used by  calling  from 

Introduced by Alston Householder (1904–1993, USA)

A

span{a ​}, span{a ​, a ​}, …(:,1) (:,1) (:,2)

scipy.linalg.qr() dgeqrf() LAPACK
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Householder Triangularization
Idea: Apply a succession of orthogonal matrices


 to  to compute an upper triangular matrix 

That will result in the full QR factorization

since  is a square matrix

Q ​ ∈k Rm×m A R

R = Q ​ ⋯Q ​Q ​An 2 1

A = QR

Q = Q ​Q ​ …Q ​1
T

2
T

n
T
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Householder Triangularization
In 1958, Householder proposed a way to choose 

to introduce zeros below the diagonal in column 

while preserving the previous columns

This is achieved by Householder reflectors

Q ​k

k

​ ​

A

​​ ​ ​ ​ ​

∗
∗
∗
∗
∗

∗
∗
∗
∗
∗

∗
∗
∗
∗
∗

Q ​1
​ ​

Q ​A1

​​ ​ ​ ​ ​

∗
0
0
0
0

∗
∗
∗
∗
∗

∗
∗
∗
∗
∗

Q ​2
​ ​

Q ​Q ​A2 1

​​ ​ ​ ​ ​

∗
0
0
0
0

∗
∗
0
0
0

∗
∗
∗
∗
∗

Q ​3
​

Q ​Q ​Q ​A3 2 1

​​ ​ ​ ​ ​

∗
0
0
0
0

∗
∗
0
0
0

∗
∗
∗
0
0
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Householder Reflectors
We choose

 is a Householder reflector

The  block ensures the first  rows are unchanged

 is an orthogonal matrix that operates on the bottom  rows

If  is orthogonal, then  is orthogonal

Q ​ =k ​ ​[
I ​k−1

0
0
F

]

I ​ ∈k−1 R(k−1)×(k−1)

F ∈ R(m−k+1)×(m−k+1)

I ​k−1 k − 1

F m − k + 1

F Q ​k
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Householder Reflectors
Let  denote elements 

of the -th column in the current matrix 

We have two requirements for 
1.  is orthogonal, in particular 
2. only the first element of  is non-zero

Therefore, we must have

Question: How can we achieve this?

x ∈ Rm−k+1 k, … ,m
k Q ​ …Q ​Ak−1 1

F

F ∥Fx∥ ​ =2 ∥x∥ ​2

Fx

Fx = F ​ ​ ​ =

∗
∗

⋮
∗

​ ​ ​ =

∥x∥ ​2

0

⋮
0

∥x∥ ​e ​2 1
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Householder Reflectors
We can see geometrically that this can be achieved

by reflection across a hyperplane 

Here  is the hyperplane orthogonal to ,

and the key point is that  passes through the origin 

H

H v = ∥x∥e ​ −1 x

H 0
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Householder Reflectors
 passes through the origin because  and 


both belong to the hypersphere with radius  centered at the origin

Also analytically, since ,

we have 

H x ∥x∥e ​1

∥x∥ ​2

(x + ∥x∥e ​)/2 ∈1 H

0 ∈ H ⟺ (∥x∥e ​ −1 x) ⋅ (x + ∥x∥e ​) =1 ∥x∥ −2 x ⋅ x = 0
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Householder Reflectors
Next, we need to determine the matrix  which maps  to 

 is closely related to the orthogonal projection of  onto ,

since that projection takes us “half way” from  to 

Hence we first consider orthogonal projection onto ,

and subsequently derive 

F x ∥x∥ ​e ​2 1

F x H

x ∥x∥ ​e ​2 1

H

F
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Householder Reflectors
The orthogonal projection of vector  onto vector  is given by

since 

In the matrix form

Therefore, the matrix  orthogonally projects onto 

a b

​b
∥b∥2

(a ⋅ b)

(a − ​b) ⋅∥b∥2
(a⋅b) b = a ⋅ b − ​b ⋅∥b∥2

(a⋅b) b = 0

​b =
∥b∥2

(a ⋅ b)
​ (a b)b =

b bT
1 T

​b(b a) =
b bT
1 T ( ​bb )a

b bT
1 T

​bb
b bT
1 T b
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Householder Reflectors
We have that  orthogonally projects onto 

Then, the following matrix

orthogonally projects onto  as it satisfies



since 
 is orthogonal to 


since  is proportional to 

​vv
v vT

1 T v

P ​ =H I − ​

v vT
vvT

H

P ​x ∈H H

v P ​x =T
H v x −T v ​x =T

v vT
vvT v x −T

​v x =
v vT
v vT T 0

x − P ​xH H

x − P ​x =H x − x + ​x =
v vT
vvT

​v
v vT
v xT v
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Householder Reflectors
But recall that  should reflect across  rather than project onto 

We obtain  by going “twice as far” in the direction of  compared to 

Exercise: Show that  is an orthogonal matrix, i.e. that 

F H H

P ​ =H I − ​

v vT
vvT

F v P ​H

F = I − 2 ​

v vT
vvT

F F F =T I
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Householder Reflectors
In fact, there are two Householder reflectors that we can choose from

Which one is better?
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Householder Reflectors
If  and  (or  and ) are close,

we could obtain loss of precision due to cancellation
when computing  (or )

To ensure  and its reflection are well separated

we should choose the reflection to be

Therefore, we want to have 

Since the sign of  does not affect , we scale  by  to get

x ∥x∥ ​e ​2 1 x −∥x∥ ​e ​2 1

v = ∥x∥e ​ −1 x v = −∥x∥e ​ −1 x

x

− sign(x ​)∥x∥ ​e ​1 2 1

v = − sign(x ​)∥x∥ ​e ​ −1 2 1 x

v F v −1

v = sign(x ​)∥x∥ ​e ​ + x1 2 1
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Householder Reflectors
Let’s compare the two options for  in the potentially

problematic case when , i.e. when 

The corresponding norms are

v

x ≈ ∥x∥ ​e ​2 1 x ​ ≈1 ∥x∥ ​2

v ​ = ∥x∥ ​e ​ − xbad 2 1

v ​ = sign(x ​)∥x∥ ​e ​ + xgood 1 2 1

∥v ​∥ ​ =bad 2
2

​∥x∥ ​e ​ −2 1 x ​ ​ ≈
2
2 0

∥v ∥good 2
2 = ​ sign(x ​)∥x∥ ​e ​ + x ​ ​1 2 1 2

2

= (sign(x ​)∥x∥ ​ + x ​) + ∥x ​∥ ​1 2 1
2

(2:m−k+1) 2
2

= (sign(x ​)∥x∥ ​ + sign(x ​)∣x ​∣) + ∥x ​∥ ​1 2 1 1
2

(2:m−k+1) 2
2

= (∥x∥ ​ + ∣x ​∣) + ∥x ​∥ ​ ≈ (2∥x∥ ​)2 1
2

(2:m−k+1) 2
2

2
2
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Householder Reflectors
Recall that  is computed from two vectors of magnitude 

The argument above shows that with  we can get 

leading to loss of precision due to cancellation

In contrast, with  we always have ,

which rules out loss of precision due to cancellation

v ∥x∥ ​2

v ​bad ∥v∥ ​ ≪2 ∥x∥ ​2

v ​good ∥v ​∥ ​ ≥good 2 ∥x∥ ​2
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Householder Triangularization
We can now write out the Householder algorithm

1: for  do

2: 

3: 

4: 

5: 

6: end for

It overwrites  with  and stores 

Note that we do not divide by  in line 5

since we normalize  in line 4

Householder algorithm requires  operations

(while Gram–Schmidt requires )

k = 1 : n
x = a ​(k:m,k)
v ​ =k sign(x ​)∥x∥ ​e ​ +1 2 1 x

v ​ =k v ​/∥v ​∥ ​k k 2

a ​ =(k:m,k:n) a ​ −(k:m,k:n) 2v ​(v ​a ​)k k
T

(k:m,k:n)

A R v ​, … , v ​1 n

v ​v ​k
T

k

vk

∼ 2mn −2
​n3

2 3

2mn2
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Householder Triangularization
Note that we do not explicitly form 

We can use the vectors  to compute  in a post-processing step

Recall that

and 

Also, the Householder reflectors are symmetric (see the definition of ),

so  and

Note that each  is involutory (i.e.  )

but in general this does not hold for the product ( )

Q

v ​, … , v ​1 n Q

Q ​ =k ​ ​[
I
0

0
F

]

Q = (Q ​ ⋯Q ​Q ​) =n 2 1
T Q ​Q ​ ⋯Q ​1

T
2
T

n
T

F

Q = Q ​Q ​ ⋯Q ​ =1
T

2
T

n
T Q ​Q ​ ⋯Q ​1 2 n

Q ​k Q ​ =k
−1 Q ​k

Q =−1  Q
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Householder Triangularization
For any , we can evaluate  using the 

1: for  do

2: 

3: end for

Question: How can we use this to form the matrix ?

y Qy = Q ​Q ​ ⋯Q ​y1 2 n v ​k

k = n : −1 : 1
y ​ =(k:m) y ​ −(k:m) 2v ​(v ​y ​)k k

T
(k:m)

Q
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Householder Triangularization
Answer: Compute  from , 

since  consists of columns 

Similarly, compute the reduced  from , 

However, often not necessary to form  or  explicitly,

e.g. to solve the least-squares problem ,

we only need the product  and the matrix 

Note that the product  can be evaluated as

1: for  do

2: 

3: end for

Q Qe ​i i = 1, … ,m
Q Qe ​i

​Q̂ Qe ​i i = 1, … ,n

Q ​Q̂

Ax ≃ b

Q bT R

Q b =T Q ​ ⋯Q ​Q ​bn 2 1

k = 1 : n
b ​ =(k:m) b ​ −(k:m) 2v ​(v ​b ​)k k

T
(k:m)
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Givens Rotations
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Givens Rotations
Another method of QR-factorization is based on Givens rotation matrix

which is defined for  and  as an  matrix with elements

where  and 

G(i, j, θ) = ​ ​ ​ ​ ​ ​ ​ ​ ​

1

⋮
0

⋮
0

⋮
0

…

⋱
…

⋱
…

⋱
…

0

⋮
c

⋮
s

⋮
0

…

⋱
…

⋱
…

⋱
…

0

⋮
−s

⋮
c

⋮
0

…

⋱
…

⋱
…

⋱
…

0

⋮
0

⋮
0

⋮
1

i < j θ ∈ R m × m

g = c, g ​ = c, g ​ = −s, g ​ = sii jj ij ji

g = 1 for k = i, j, g ​ = 0 otherwisekk  kl

c = cos θ s = sin θ
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Givens Rotations
A Givens rotation matrix applies a rotation

within the space spanned by the -th and -th coordinates

Named after James W. Givens, Jr. (1910–1993, USA)

i j
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Effect of a Givens rotation
Consider a rectangular matrix  where 

Suppose that  and  are in the -th and -th positions

in a particular column of . Assume that 

Restricting to just -th and -th dimensions,

a Givens rotation  for a particular angle  can be chosen so that

where  is non-zero, and the -th component is eliminated

A ∈ Rm×n m ≥ n

a ​1 a ​2 i j

A a ​ +1
2 a ​ =2

2  0

i j

G(i, j, θ) θ

​ ​ ​ =(
c

s

−s
c

) (
a ​1

a ​2
) ​(

α

0
)

α j
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Stable computation

Since the length is preserved, 


We could compute

but this is susceptible to underflow/overflow if  is very small

A better procedure is
if , set  and then 
if , set  and then 

α = ​a ​ + a ​1
2

2
2

c = ​ , s =
​a ​ + a ​1

2
2
2

a ​1
​

​a ​ + a ​1
2

2
2

−a ​2

α

∣a ​∣ >1 ∣a ​∣2 t = tan θ = a ​/a ​2 1 c = ​ , s =
​1+t2

1 −ct
∣a ​∣ ≥2 ∣a ​∣1 t = cot θ = a ​/a ​1 2 s = ​ , c =

​1+t2
−1 −st
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Givens rotation algorithm
The following algorithm performs the full QR-factorization

of a matrix  with  using Givens rotations

1: 

2: for  do

3: for  do

4: Construct  to eliminate 

5: 

6: 

7: end for

8: end for

A ∈ Rm×n m ≥ n

R = A,Q = I

k = 1 : n
j = m : k + 1

G = G(j − 1, j, θ) a ​jk

R = GR

Q = QGT
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Advantages of Givens Rotations
In general, for dense matrices, Givens rotations are not as efficient

as the other two approaches (Gram–Schmidt and Householder)

However, they are advantageous for sparse matrices,
since non-zero elements can be eliminated one-by-one

without affecting other rows
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Advantages of Givens Rotations
Also, Givens rotations of different rows can be done concurrently

Consider the  matrix

Each number denotes the step when that element can be eliminated

For example, on step 3, elements  and  can be

eliminated concurrently using  and 

since they operate on different rows

6 × 6

​ ​ ​ ​ ​ ​ ​ ​

∗
5
4

​3
2
1

∗
∗
6
5
4

​3

∗
∗
∗
7
6
5

∗
∗
∗
∗
8
7

∗
∗
∗
∗
∗
9

∗
∗
∗
∗
∗
∗

(4, 1) (6, 2)
G(3, 4, ⋅) G(5, 6, ⋅)
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Example: Sparsity Patterns
Positions of non-zero elements of a sparse matrix form its sparsity pattern

Transformations of the matrix may introduce new non-zero elements

These new non-zero elements are called the fill-in

See [examples/unit2/sparse_pattern.py]
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Singular Value Decomposition
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Singular Value Decomposition
How does a matrix deform the space?

Example of  mapping the unit circle to an ellipse

In general, a matrix does not preserve orthogonality and length

A = ​ ​[
1
0

1.5
1 ]
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Singular Value Decomposition
However, orthogonal  and  can be chosen such that


 and  are orthogonal

where  and 

v ​1 v ​2

Av =1 σ ​u ​1 1 Av ​ =2 σ ​u ​2 2

σ ​ ≥1 σ ​ ≥2 0 ∥u ​∥ =1 ∥u ​∥ =2 1
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Singular Value Decomposition
To obtain a Singular Value Decomposition (SVD) of a matrix ,

we are looking for orthonormal vectors  such that

where vectors  are also orthonormal and 

In the matrix form, we get

A ∈ Rm×n

v ​i

Av ​ =i σ ​u ​, i =i i 1, … ,n

u ​i σ ​ ∈i R, σ ​ ≥i 0

AV = Û Σ̂

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​      A        v ​1 ⋯ v ​n = u ​1 ⋯ u ​n

σ ​1

⋱
σ ​n
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Singular Value Decomposition
Matrices in  are

 is a general matrix
 with orthonormal columns
 is diagonal with non-negative, real entries
 with orthonormal columns

Therefore  is an orthogonal matrix ( ) and

we have the following decomposition called the reduced SVD

 are singular values (typically )
 are left singular vectors (columns of )

 are right singular vectors (rows of )

AV = Û Σ̂
A ∈ Rm×n

V ∈ Rn×n

∈Σ̂ Rn×n

∈Û Rm×n

V V V =T V V =T I

A = VÛ Σ̂ T

σ ​,σ ​, … ,σ ​ ≥1 2 n 0 σ ​ ≥1 σ ​ ≥2 …
u ​,u ​, … ,u ​1 2 n Û

v ​, v ​, … , v ​1 2 n V T
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Singular Value Decomposition
Just as with QR factorization, we can pad the columns of 

with  arbitrary orthonormal vectors

to obtain an orthogonal 

We then need to “silence” these arbitrary columns

by adding rows of zeros to  to obtain 

This gives the full SVD for 

Û

m − n

U ∈ Rm×m

∈Σ̂ Rn×n Σ ∈ Rm×n

A ∈ Rm×n

A = UΣV T
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Full vs Reduced SVD

Full SVD
 

Reduced SVD
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Singular Value Decomposition
Theorem: Every matrix  has

a full singular value decomposition. Furthermore:

singular values  are uniquely determined
if  is square and  are distinct,

then  and  are uniquely determined up to sign

Proof is outside of the scope of the course

A ∈ Rm×n

σ ​i

A σ ​j

u ​i v ​i
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Singular Value Decomposition
This theorem justifies the statement:

the image of the unit hypersphere under any  matrix is a hyperellipse

Consider  (full SVD) applied to the unit sphere :
the orthogonal map  preserves 

 stretches  into a hyperellipse aligned with the canonical axes 
 rotates or reflects the hyperellipse without changing its shape

m × n

A = UΣV T S ⊂ Rn

V T S

Σ S e ​j

U
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SVD in Python
numpy.linalg.svd() computes

the full SVD by default

with full_matrices=0

it computes the reduced SVD

>>> import numpy as np

>>> np.random.seed(2022)

>>> a=np.random.random((4,2))

>>> a

array([[0.00935861, 0.49905781],

       [0.11338369, 0.04997402],

       [0.68540759, 0.48698807],

       [0.89765723, 0.64745207]])

>>> (u, s, v) = np.linalg.svd(a)

>>> u

array([[-0.22570503,  0.97206861, -0.02953283, -0.0571636
       [-0.08357767, -0.08399541, -0.61111959, -0.7826189
       [-0.58696968, -0.14202585,  0.66414863, -0.4406833
       [-0.77300621, -0.16690133, -0.42961291,  0.4359335
>>> s

array([1.42929716, 0.39183261])

>>> v

array([[-0.77506396, -0.63188279],

       [-0.63188279,  0.77506396]])

>>> import numpy as np

>>> np.random.seed(2022)

>>> a = np.random.random((4,2))

>>> a

array([[0.00935861, 0.49905781],

       [0.11338369, 0.04997402],

       [0.68540759, 0.48698807],

       [0.89765723, 0.64745207]])

>>> (u, s, v) = np.linalg.svd(a, full_matrices
>>> u

array([[-0.22570503,  0.97206861],

       [-0.08357767, -0.08399541],

       [-0.58696968, -0.14202585],

       [-0.77300621, -0.16690133]])

>>> s

array([1.42929716, 0.39183261])

>>> v

array([[-0.77506396, -0.63188279],

       [-0.63188279,  0.77506396]])
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Matrix Properties via the SVD
Let  denote the number of nonzero singular values, so that

Property: 

Proof: In the full SVD , matrices  and  have full rank,

so multiplication by them preserves rank, leading to 

Property:  and 

Proof: This follows from  and

r

σ ​ ≥1 σ ​ >2 ⋯ ≥ σ ​ >r 0, σ ​ =r+1 … = σ =n 0

r = rank(A)

A = UΣV T U V T

rank(A) = rank(Σ) = r

image(A) = span{u ​, … ,u ​}1 r null(A) = span{v ​, … , v ​}r+1 n

A = UΣV T

image(Σ)

null(Σ)

= span{e ​, … , e ​} ∈ R1 r
m

= span{e ​, … , e ​} ∈ Rr+1 n
n
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Matrix Properties via the SVD
Property: 

Proof: By definition .

Orthogonal matrices preserve the norm, 

Property: Singular values of  are the square roots

of the eigenvalues of  or 

Proof: 

Therefore, , or 

(Analogous for )

∥A∥ ​ =2 σ ​1

∥A∥ ​ =2 max ​ ∥Av∥ ​ =∥v∥ ​=12 2 max ​ ∥UΣV v∥ ​∥v∥ ​=12
T

2

∥A∥ ​ =2 max ​ ∥Σv∥ ​ =∥v∥ ​=12 2 σ ​1

A

A AT AAT

A A =T (UΣV ) (UΣV ) =T T T V ΣU UΣV =T T V (Σ Σ)VT T

(A A)V =T V (Σ Σ)T (A A)v ​ =T
(:,j) σ ​vj

2
(:,j)

AAT
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Matrix Properties via the SVD
The pseudoinverse  can be defined more generally in terms of the SVD

Define pseudoinverse of a scalar  to be

 if  if 

Define pseudoinverse  of a diagonal matrix 

as its transpose after taking scalar pseudoinverse of each element

Define pseudoinverse of  as

Note:  exists for any matrix , and it covers

our previous definitions of pseudoinverse

A+

σ ∈ R
σ =+ 1/σ σ = 0 and σ =+ 0 σ = 0

Σ ∈+ Rn×m Σ ∈ Rm×n

A ∈ Rm×n

A =+ V Σ U+ T

A+ A
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Matrix Properties via the SVD
We generalize the condition number to rectangular matrices

via the definition

Property: The 2-norm condition number is given by

Proof:  as shown before.

The largest singular value of  is  so 

κ(A) = ∥A∥∥A ∥+

κ(A) = σ ​/σ ​max min

∥A∥ ​ =2 σ ​max

A+ 1/σ ​min ∥A ∥ ​ =+
2 1/σ ​min
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Matrix Properties via the SVD
These results indicate the importance of the SVD,

both theoretical and as a computational tool

Algorithms for calculating the SVD are outside scope of this course

SVD requires  operations

For more details on algorithms, see Trefethen & Bau, or Golub & van Loan

∼ 4mn −2
​n3

4 3
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Low-Rank Approximation via the SVD
One of the most useful properties of the SVD is that it allows us

to obtain an optimal low-rank approximation to 

We can recast SVD as

Follows from writing  as a sum of  matrices ,

where 

Each  is a rank one matrix: each column is a scaled version of 

A

A = ​σ ​u ​v ​

j=1

∑
r

j j j
T

Σ r Σ ​j

Σ ​ =j diag(0, … , 0,σ ​, 0, … , 0)j

u ​v ​j j
T u ​j
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Low-Rank Approximation via the SVD
Theorem: For any index  the matrix

satisfies

That is
 is the closest rank  matrix to , measured in the 2-norm

The error in  is given by the first omitted singular value

ν = 0, … , r

A ​ =ν ​σ ​u ​v ​

j=1

∑
ν

j j j
T

∥A − A ​∥ ​ =ν 2 ​ ∥A −
B∈R , rank(B)≤νm×n

inf B∥ ​ =2 σ ​ν+1

A ​ν ν A

A ​ν
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Low-Rank Approximation via the SVD
A similar result holds in the Frobenius norm:

∥A − A ​∥ ​ =ν F ​ ∥A −
B∈R , rank(B)≤νm×n

inf B∥ ​ =F ​σ ​ + ⋯ + σ ​ν+1
2

r
2
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Low-Rank Approximation via the SVD
These theorems indicate that the SVD is an effective way

to compress data encapsulated by a matrix!

For example,  can represent an image

If singular values of  decay rapidly,

we can approximate  with few rank one matrices

For each rank one matrix ,

we only need to store  numbers: 

A

A

A

σ ​u ​v ​j j j

m + n + 1 σ ​, u ​, v ​j j j
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Principal Component Analysis
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Principal Component Analysis
Consider a dataset of  for 

There is a strong correlation between  and 

This means that we can describe most of the data with just one feature

This is done by Principal Component Analysis (PCA)

(x ​, y ​) ∈i i R2 i = 1, … ,m

x y
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Principal Component Analysis
The new axis should maximize variance of the data

Consider the empirical covariance matrix

In terms of the samples 

where  and  are the empirical means

M = ​ ​[
Var(x)

Cov(x, y)
Cov(x, y)

Var(y) ]

(x ​, y ​)i i

M = ​ ​ ​

m

1
[

​(x ​ − )∑i=1
m

i x̄ 2

​(x ​ − )(y ​ − ​)∑i=1
m

i x̄ i ȳ

​(x ​ − )(y ​ − ​)∑i=1
m

i x̄ i ȳ

​(y ​ − ​)∑i=1
m

i ȳ 2 ]

=x̄ ​ x ​∑i=1
m

i ​ =ȳ ​ y ​∑i=1
m

i
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Principal Component Analysis
 is a symmetric positive-definite matrix

Variance in the direction  is given by 

 is maximized if  is the eigenvector of 

corresponding to the largest eigenvalue

Define a matrix 

Then 

M

v ∈ R2 v MvT

v MvT v M

A ∈ Rm×2

A = ​ ​ ​ ​

x ​ −1 x̄

x ​ −2 x̄

⋮
x ​ −m x̄

y ​ − ​1 ȳ

y ​ − ​2 ȳ

⋮
y ​ − ​m ȳ

M = ​A A
m
1 T
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Principal Component Analysis
From the full SVD ,

the columns of  are the eigenvectors of 

Define the new axes along  and 

See 

A = UΣV T

V M = ​A A
m
1 T

v ​1 v ​2

[examples/unit2/pca.py]
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https://github.com/pkarnakov/am205/tree/main/examples/unit2/pca.py


Example: Video Reconstruction
Three videos

Paris 
Vietnam 
Sunrise 

PCA applied to frames of the videos

https://www.pexels.com/video/852352
https://www.youtube.com/watch?v=OiqSsE0B-Rc

https://www.pexels.com/video/855646
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https://www.pexels.com/video/855646


Paris, original

0:00 / 0:04
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Paris, only first three

0:00 / 0:04
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Paris, without first three

0:00 / 0:04
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Vietnam, original

0:00 / 0:03
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Vietnam, only first three

0:00 / 0:03
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Vietnam, without first three

0:00 / 0:03
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Sunrise, original

0:00 / 0:04
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Sunrise, only first three

0:00 / 0:04
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Sunrise, without first three

0:00 / 0:04
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