
Applied Mathematics 205
Unit 2. Numerical Linear Algebra

Lecturer: Petr Karnakov

September 19, 2022

1

Motivation
Scientific Computing relies on Numerical Linear Algebra

We often reformulate problems as

Examples from Unit 1:
interpolation (Vandermonde matrix) and linear least squares
(normal equations) are naturally expressed as linear systems
Gauss–Newton method involves approximating a nonlinear problem
with a sequence of linear systems

We will see more applications of linear systems

(Numerical Calculus, Optimization, Eigenvalue problems)

Ax = b

2

Motivation
The goal of this Unit is to cover:

concepts from linear algebra relevant for Scientific Computing
stable and efficient algorithms for solving
algorithms for computing factorizations of

that are useful in many practical contexts (LU, QR)

First, we discuss some practical cases where

arises directly in mathematical modeling of physical systems

Ax = b

A

Ax = b

3

Example: Electric Circuits
Linear systems describe circuits consisting

of voltage sources and resistors

Ohm’s law: Voltage drop due to
current through a resistor is

Kirchoff’s law: Directed sum of the
voltages around any closed loop is zero

V

I R

V = IR

4

Example: Electric Circuits
The circuit has three loops

Loop 1

Loop 2

Loop 3

R ​I ​ +1 1 R ​(I ​ +3 1 I ​) +2 R ​(I ​ +4 1 I ​) =3 V ​1

R ​I ​ +2 2 R ​(I ​ +3 1 I ​) +2 R ​(I ​ −5 2 I ​) =3 V ​2

R ​(I ​ −5 3 I ​) +2 R ​(I +4 3 I ​) +1 R ​I ​ =6 3 0

5

Example: Electric Circuits
We obtain a linear system for unknown currents , ,

Note that the matrix is
symmetric, i.e.
strictly diagonally dominant, i.e.

(assuming)

Circuit simulators solve large linear systems of this type

I ​1 I ​2 I ​3

​ ​ ​ ​ =[
R ​ + R ​ + R ​1 3 4

R ​3

R ​4

R ​3

R ​ + R ​ + R ​2 3 5

−R ​5

R ​4

−R ​5

R ​ + R ​ + R ​4 5 6

] [
I ​1

I ​2

I ​3

] ​[
V ​1

V ​2

0
]

a ​ =ij a ​ji

∣a ​∣ >ii ​ ∣a ​∣∑j=i ij

R ​ >k 0

6

Example: Electric Circuits
Another linear system corresponds to unknown resistances ,

Note that the matrix has full rank (assuming)

The system is underdetermined: 3 equations for 6 unknowns

R ​i i = 1, … , 6

​ ​ ​ ​ ​ ​ ​ ​ ​ =[
I ​1

0
0

0
I ​2

0

I ​ + I ​1 2

I ​2

0

I ​1

0
I ​ + I ​1 3

0
−I ​3

−I ​2

0
0
I ​3

]

R ​1

R ​2

R ​3

R ​4

R ​5

R ​6

​[
V ​1

V ​2

0
]

I ​ =k  0

7

Example: Structural Analysis
Common in structural analysis is to use

a linear relationship between force and
displacement, Hooke’s law

Simplest case is the Hookean spring law

: spring constant (stiffness)
: applied load
: spring extension (displacement)

F = kx

k

F

x

8

Example: Structural Analysis
This relationship can be generalized to structural systems in 2D and 3D,
which yields a linear system of the form

: “stiffness matrix”
: “load vector”
: “displacement vector”

Kx = F

K ∈ Rn×n

F ∈ Rn

x ∈ Rn

9

Example: Structural Analysis
It is common engineering practice to use Hooke’s law

to simulate complex structures, which leads to large linear systems

(from SAP2000, structural analysis software)
10

Example: Economics
Leontief awarded Nobel Prize in Economics in 1973 for developing

a linear input/output model for production/consumption of goods

Consider an economy in which goods are produced and consumed
: represents

the amount of good required to produce a unit of good
: is number of units of good produced
: is consumer demand for good

In general , and may be sparse

n

A ∈ Rn×n a ​ij

j i

x ∈ Rn x ​i i

d ∈ Rn d ​i i

a ​ =ii 0 A

11

Example: Economics
The total amount of produced is given by the sum of

consumer demand and the amount of required to produce each

Hence or,

Solve for to determine the required amount of production of each good

If we consider many goods (e.g. an entire economy),

then we get a large linear system

Can be used to predict the effect of disruptions in the supply chain

x ​i

d ​i x ​i x ​j

x ​ =i ​ +

production of other goods

​a ​x ​ + a ​x ​ + ⋯ + a ​x ​i1 1 i2 2 in n d ​i

x = Ax + d

(I − A)x = d

x

12

Summary
Matrix computations are very common

Numerical Linear Algebra provides us with a toolbox

for performing these computations in an efficient and stable manner

In most cases, we can use these tools as a black box,

but it’s important to understand what they do

pick the right algorithm for a given situation

(e.g. exploit structure of a problem: symmetry, sparsity, etc)
understand how and when the algorithm fail

13

Preliminaries

14

Preliminaries
In this section we will focus on linear systems

with matrix , unknown vector

and the right-hand side vector

Recall that it is often helpful to think of matrix multiplication

as a linear combination of the columns of , where are the coefficients

That is, we have

where is the -th column of and are scalars

Ax = b

A ∈ Rn×n x ∈ Rn

b ∈ Rn

A x ​j

Ax = ​x ​a ​

j=1

∑
n

j (:,j)

a ​ ∈(:,j) Rn j A x ​j

15

Preliminaries
This can be displayed schematically as

Ax = ​ ​ ​ ​ ​ ​ ​ ​ ​ =a ​(:,1) a ​(:,2) ⋯ a ​(:,n)

x ​1

x ​2

⋮
x ​n

= ​ ​ ​ ​ ​x ​1 a ​(:,1) + ⋯ + x ​n a ​(:,n)

16

Preliminaries
We therefore interpret as:

“ is the vector of coordinates of in the basis of columns of ”

Often this is a more helpful point of view than conventional

interpretation of “dot-product of matrix row with vector”

Now we see that has a solution if

(this holds even for a non-square)

Denote

Ax = b

x b A

Ax = b

b ∈ span{a ​, a ​, ⋯ , a ​}(:,1) (:,2) (:,n)

A

image(A) = span{a ​, a ​, ⋯ , a ​}(:,1) (:,2) (:,n)

17

Preliminaries
Existence and Uniqueness

If , then solution exists
if solution exists and the columns are
linearly independent, then is unique

(if and are both solutions, then , therefore)
if is a solution and is such that ,

then also for any ,

so there are infinitely many solutions

If then has no solution

b ∈ image(A) x ∈ Rn

x {a ​, a ​, ⋯ , a }(:,1) (:,2) (:,n)

x

x y A(x − y) = 0 x = y

x z = 0 Az = 0
A(x + γz) = b γ ∈ R

b ∈ image(A) Ax = b

18

Preliminaries
The inverse map is well-defined
if and only if has unique solution for any

The inverse matrix such that

exists if any of the following equivalent conditions are satisfied

det
rank

 for any (null space of is)

 is nonsingular if exists, and then

 is singular if does not exist

A : R →−1 n Rn

Ax = b b ∈ Rn

A ∈−1 Rn×n AA =−1 A A =−1 I

(A) = 0
(A) = n

Az = 0 z = 0 A {0}

A A−1 x = A b ∈−1 Rn

A A−1

19

Norms
A norm is a function on a vector space that satisfies

positive definiteness, and
absolute homogeneity, , for
triangle inequality,

∥ ⋅ ∥ : V → R V

∥x∥ ≥ 0 ∥x∥ = 0 ⟹ x = 0
∥γx∥ = ∣γ∣∥x∥ γ ∈ R

∥x + y∥ ≤ ∥x∥ + ∥y∥

20

Norms
The triangle inequality implies another helpful inequality:

the “reverse triangle inequality”

Proof:

Therefore

​∥x∥ − ∥y∥ ​ ≤ ∥x − y∥

∥x∥ = ∥(x − y) + y∥ ≤ ∥x − y∥ + ∥y∥ ⟹ ∥x∥ − ∥y∥ ≤ ∥x − y∥

∥y∥ = ∥(y − x) + x∥ ≤ ∥y − x∥ + ∥x∥ ⟹ ∥y∥ − ∥x∥ ≤ ∥x − y∥

​∥x∥ − ∥y∥ ​ ≤ ∥x − y∥

21

Vector Norms
Let’s now introduce some common norms on

Most common norm is the Euclidean norm (or -norm):

-norm is special case of the -norm for any :

Condition is required for the triangle inequality

Norm approaches as

Rn

2

∥x∥ ​ =2 ​​ x ​∑j=1
n

j
2

2 p p ≥ 1

∥x∥ ​ =p ​ ∣x ​∣(∑j=1
n

j
p)

1/p

p ≥ 1

∥x∥ ​p ∥x∥ ​∞ p → ∞

∥x∥ ​ =∞ ​ ∣x ​∣
1≤i≤n
max i

22

Example: Limit of -norm

See

For vector

 (component of with the largest magnitude)

Norm approaches as

Bounds:

p

[examples/unit2/norm_inf.py]

x = (1.2, 0.5, −0.1, 2.3, −1.05, −2.35) ∈T R6

∥x∥ ​ =∞ 2.35 x

∥x∥ ​p ∥x∥ ​∞ p → ∞

∥x∥ ​ ≤∞ ∥x∥ ​ ≤p n ∥x∥ ​

1/p
∞

23

https://github.com/pkarnakov/am205/tree/main/examples/unit2/norm_inf.py

Vector Norms
We generally use whichever norm is most convenient/appropriate for a
given problem, e.g. -norm for least-squares analysis

Different norms give different (but related) measures of size

An important fact is:

2

All norms on a finite dimensional space (such as) are
equivalent

Rn

24

Vector Norms
That is, let and be two norms on a finite dimensional space ,
then such that for any

Also, from above we have

Hence if we can derive an inequality in one norm on ,

it applies (after appropriate scaling) in any other norm as well

∥ ⋅ ∥ ​a ∥ ⋅ ∥ ​b V

∃ c ​, c ​ >1 2 0 x ∈ V

c ​∥x∥ ​ ≤1 a ∥x∥ ​ ≤b c ​∥x∥ ​2 a

​ ∥x∥ ​ ≤
c ​2

1
b ∥x∥ ​ ≤a ​ ∥x∥ ​

c ​1

1
b

V

25

Vector Norms
Norm bounds norm

Proof of

Proof of . The Cauchy-Schwarz inequality

with and gives

∥x∥ ​2 ∥x∥ ​1

∥x∥ ​ ≤2 ∥x∥ ​ ≤1 ​∥x∥ ​n 2

∥x∥ ​ ≤2 ∥x∥ ​1

​

∥x∥ ​ = (​ ∣x ​∣) = (​ ∣x ​∣)(​ ∣x ​∣) =1
2 ∑i=1

n
i

2
∑i=1

n
i ∑j=1

n
j

= ​ ​ ∣x ​∣ ∣x ​∣ ≥ ∣x ​∣ ∣x ​∣ = ​ ∣x ​∣ = ∥x∥ ​∑i=1
n ∑j=1

n
i j ∑i=1

n
i i ∑i=1

n
i

2
2
2

∥x∥ ​ ≤1 ​∥x∥ ​n 2

​ a ​b ​ ≤∑i=1
n

i i (​ a ​) (​ b ​)∑i=1
n

i
2 1/2

∑i=1
n

i
2 1/2

a ​ =i 1 b ​ =i ∣x ​∣i

∥x∥ ​ =1 ​ 1 ∣x ​∣ ≤
i=1

∑
n

i (​ 1) (​ ∣x ​∣) =
i=1

∑
n

2 1/2

i=1

∑ i
2 1/2

​ ∥x∥ ​n 2

26

Vector Norms
Each norm produces a different unit circle

Norm approaches as

Commonly used norms are , , and

{x ∈ R :2 ∥x∥ ​ =p 1}

∥x∥ ​1 ∥x∥ ​2 ∥x∥ ​4 ∥x∥ ​∞

∥x∥ ​p ∥x∥ ​∞ p → ∞

∥x∥ ​1 ∥x∥ ​2 ∥x∥∞

27

Matrix Norms
There are many ways to define norms on matrices

For example, the Frobenius norm is defined as

If we think of as a vector in ,

then Frobenius is equivalent to the vector -norm of

∥A∥ ​ =F (​ ​ ∣a ​∣)
i=1

∑
n

j=1

∑
n

ij
2

1/2

A Rn2

2 A

28

Matrix Norms
Matrix norms induced by vector norms are most useful

Here, matrix -norm is induced by vector -norm

This definition implies the useful property

since

p p

∥A∥ ​ =p ​ ​ =
x=0

max
∥x∥ ​p

∥Ax∥ ​p
​ ∥Ax∥ ​

∥x∥ ​=1p

max p

∥Ax∥ ​ ≤p ∥A∥ ​∥x∥ ​p p

∥Ax∥ ​ =p ​ ∥x∥ ​ ≤
∥x∥ ​p

∥Ax∥ ​p
p ​ ​ ∥x∥ ​ =(

v=0
max

∥v∥ ​p

∥Av∥ ​p) p ∥A∥ ​∥x∥ ​p p

29

Matrix Norms
The -norm and -norm can be calculated straightforwardly:

Later we will see how to compute the -norm of a matrix

1 ∞

​ ​ ​

∥A∥ ​1

∥A∥ ​∞

= ​ ∥a ​∥ ​

1≤j≤n
max (:,j) 1

= ​ ∥a ​∥ ​

1≤i≤n
max (i,:) 1

 (max column sum)

 (max row sum)

2

30

Example: Matrix Norm Using Monte Carlo
How to compute the matrix norm induced by a “black box” vector norm?

One approach is the Monte-Carlo method

that solves problems using repeated random sampling

Recall the definition of a matrix norm induced by vector norm

See

Warning: Common norms can be computed with more efficient methods!

∥A∥ = ​ ​

x=0
max

∥x∥
∥Ax∥

[examples/unit2/norm_monte_carlo.py]

31

https://github.com/pkarnakov/am205/tree/main/examples/unit2/norm_monte_carlo.py

Condition Number
Recall from Unit 0 that the condition number of is defined as

The value of depends on which norm we use

numpy.linalg.cond computes the condition number for various norms

If is a singular square matrix, then by convention

A ∈ Rn×n

κ(A) = ∥A∥ ∥A ∥−1

κ(A)

A κ(A) = ∞

32

Residual
Recall that the residual

was crucial in least-squares problems

It is also crucial in assessing the accuracy

of a proposed solution () to a linear system

Key point: The residual is straightforward to compute,

while the error is not (without knowing the exact solution)

r(x) = b − Ax

x̂ Ax = b

r()x̂
Δx = x − x̂

33

Residual
We have that if and only if

However, small residual doesn’t necessarily imply small

Observe that

Hence

∥Δx∥ = ∥x − ∥ =x̂ 0 ∥r()∥ =x̂ 0

∥Δx∥

∥Δx∥ = ∥x − ∥ =x̂ ∥A (b −−1 A)∥ =x̂ ∥A r()∥ ≤−1 x̂ ∥A ∥∥r()∥−1 x̂

​ ≤
∥ ∥x̂

∥Δx∥
​ =

∥ ∥x̂
∥A ∥∥r()∥−1 x̂

​ =
∥A∥∥ ∥x̂

∥A∥∥A ∥∥r()∥−1 x̂
κ(A) ​ (∗)

∥A∥∥ ∥x̂
∥r()∥x̂

34

Residual
Define the relative residual as

Then our inequality states that

“relative error is bounded by condition number times the relative residual”

This is just like our condition number relationship from Unit 0:

The reason and are related is that

the residual measures the input pertubation () in

To see this, let’s consider to be a map

​

∥A∥∥ ∥x̂
∥r()∥x̂

(∗)

κ(A) ≥ ​ , i.e. ​ ≤
∥Δb∥/∥b∥
∥Δx∥/∥x∥

∥x∥
∥Δx∥

κ(A) ​ (∗∗)
∥b∥

∥Δb∥

(∗) (∗∗)
Δb Ax = b

Ax = b b ∈ R →n x ∈ Rn

35

Residual
Then we can consider to be the exact solution

for some perturbed input

The residual associated with is

i.e.

In general, a (backward) stable algorithm gives us

the exact solution to a slightly perturbed problem, i.e. a small residual

This is a reasonable expectation for a stable algorithm:

rounding error doesn’t accumulate, so effective input perturbation is small

x̂

=b̂ b + Δb

A =x̂ b̂

x̂

r() =x̂ b − A =x̂ b − =b̂ −Δb

∥r()∥ =x̂ ∥Δb∥

36

Example: Residual vs. Error
From Heath’s book (Example 2.8)

Consider a example to clearly demonstrate

the difference between residual and error

The exact solution is given by

Suppose we compute two different approximate solutions

2 × 2

Ax = ​ ​ ​ =[
0.913
0.457

0.659
0.330] [

x ​1

x ​2
] ​ =[

0.254
0.127] b

x = [1, −1]T

=x̂(1)
​ , =[

−0.0827
0.5

] x̂(2)
​[

0.999
−1.001

]

37

Example: Residual vs. Error
Then,

but

In this case, is better solution, but has larger residual!

This is possible here because is quite large

()

∥r()∥ ​ =x̂(1)
1 2.1 × 10 , ∥r()∥ ​ =−4 x̂(2)

1 2.4 × 10−2

∥x − ∥ ​ =x̂(1)
1 2.58, ∥x − ∥ =x̂(2)

1 0.002

x̂(2)

κ(A) = 1.25 × 104

relative error ≤ 1.25 × 10 ×4 relative residual

38

Solving Ax = b

39

Solving

upper triangular lower triangular

Familiar idea for solving is to use Gaussian elimination

to transform to a triangular system

What is a triangular system?

Question: Why triangular?

Answer: Because triangular systems are easy to solve!

Ax = b

Ax = b

Ax = b

U ∈ Rn×n

 for u ​ =ij 0 i > j

U = ​ ​ ​ ​ ​

u ​11

0
0

u ​12

u ​22

0

u ​13

u ​23

u ​33

L ∈ Rn×n

 for ℓ ​ =ij 0 i < j

L = ​ ​ ​ ​ ​

l ​11

l ​21

l ​31

0
l ​22

l ​32

0
0
l ​33

40

Solving

For an upper-triangular system ,

we can use backward substitution

Ax = b

Ux = b

x ​ =n b ​/u ​n nn

x ​ =n−1 (b ​ −n−1 u ​x ​)/u ​n−1,n n n−1,n−1

…

x ​ =j b ​ − ​ u ​x ​ /u ​(j ∑k=j+1
n

jk k) jj

41

Solving

For a lower triangular system ,

we can use forward substitution

Ax = b

Lx = b

x ​ =1 b ​/ℓ ​1 11

x ​ =2 (b ​ −2 ℓ ​x ​)/ℓ ​21 1 22

…

x ​ =j b ​ − ​ ℓ ​x ​ /ℓ ​(j ∑k=1
j−1

jk k) jj

42

Asymptotic Notation
To simplify the cost estimation for an algorithm, we analyze its

asymptotic behavior as the size of the problem increases ()

Notation refers to asymptotic equivalence

Notation refers to an asymptotic upper bound

for all , where and

If , then . The opposite is not true!

We prefer “ ” since it indicates the scaling factor of the leading term

For example, if , then , whereas

n → ∞

f(n) ∼ g(n)

​ ​ =
n→∞
lim

g(n)
f(n)

1

f(n) = O(g(n))

∣f(n)∣ ≤ M ∣g(n)∣

n ≥ N M > 0 N > 0

f(n) ∼ g(n) f(n) = O(g(n))

∼

f(n) = n /4 +2 n f(n) = O(n)2 f(n) ∼ n /42

43

Solving

Backward (and forward) substitution

can be implemented with a double nested loop

It requires just one pass through the matrix!

The computational work is dominated by evaluating the sum

which takes additions and multiplications for each

So the total number of floating point operations is asymptotically

Ax = b

​ ℓ ​x ​ j =
k=1

∑
j−1

jk k 1, … ,n

j − 1 j

2 ​j =
j=1

∑
n

​ ∼
2

2n(n + 1)
n2

44

Solving

How can we transform to a triangular system?

Observation: If we multiply by a nonsingular matrix ,

then the new system has the same solution

We can devise a sequence of matrices

such that and is upper triangular

Gaussian elimination provides such a sequence

and gives the transformed system

Ax = b

Ax = b

Ax = b M

MAx = Mb

M ​,M ​, … ,M ​1 2 n−1

M = M ​ …M ​n−1 1 U = MA

Ux = Mb

45

LU Factorization
We will show shortly that if ,

then is lower triangular

Therefore, we obtain that the matrix factorizes into

a product of lower () and upper () triangular matrices

This is the LU factorization of

MA = U

L = M−1

A = M U = LU−1

L U

A

46

LU Factorization
LU factorization is a common way of solving linear systems!

Once a factorization is known, the system

is solved in two steps
lower triangular:
upper triangular:

A = LU

LUx = b

Ly = b

Ux = y

47

LU Factorization
Next question: How can we find ?

We need to be able to annihilate selected entries of

below the diagonal in order to obtain an upper-triangular matrix

To do this, we use elementary elimination matrices

Let denote -th elimination matrix

From now on, we denote them rather than

since elimination matrices are lower triangular

M ​,M ​, ⋯ ,M ​1 2 n−1

A

L ​j j

L ​j Mj

48

LU Factorization
Here we describe how to proceed from step to step

Let denote the matrix at the start of step ,

and denote column of

j − 1 j

X = L ​L ​ ⋯L ​Aj−1 j−2 1 j

x ​ ∈(:,k) Rn k X

X = ​ ​ ​ ​ ​ ​ ​ ​ ​

x ​11

⋮
0
0
0

⋮
0

⋯

⋱
⋯
⋯
⋯

⋱
⋯

x ​1,j−1

⋮
x ​j−1,j−1

0
0

⋮
0

x ​1j

⋮
x ​j−1,j

x ​jj

x ​j+1,j

⋮
x ​nj

x ​1,j+1

⋮
x ​j−1,j+1

x ​j,j+1

x ​j+1,j+1

⋮
x ​n,j+1

⋯

⋱
⋯
⋯
⋯

⋱
⋯

x ​1n

⋮
x ​j−1,n

x ​jn

x ​j+1,n

⋮
x ​nn

49

LU Factorization
We are looking for a matrix such that multiplication

eliminates elements below the diagonal in
does not modify columns for

Let’s define such that

L ​j L ​Xj
x ​(:,j)

x ​(:,k) k = 1, … , j − 1

L ​j

L ​x ​ =j (:,j) ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ =

1

⋮
0
0

⋮
0

⋯

⋱
⋯
⋯

⋱
⋯

0

⋮
1

−x ​/x ​j+1,j jj

⋮
−x ​/x ​nj jj

0

⋮
0
1

⋮
0

⋯

⋱
⋯
⋯

⋱
⋯

0

⋮
0
0

⋮
1

x ​1j

⋮
x ​jj

x ​j+1,j

⋮
x ​nj

​ ​ ​

x ​1j

⋮
x ​jj

0

⋮
0

50

LU Factorization
For brevity, we denote and defineℓ ​ =ij x ​/x ​ij jj

L ​ =j ​ ​ ​ ​ ​ ​ ​ ​

1

⋮
0
0

⋮
0

⋯

⋱
⋯
⋯

⋱
⋯

0

⋮
1

−ℓ ​j+1,j

⋮
−ℓ ​nj

0

⋮
0
1

⋮
0

⋯

⋱
⋯
⋯

⋱
⋯

0

⋮
0
0

⋮
1

51

LU Factorization
Using elementary elimination matrices,

we can reduce to an upper triangular form, one column at a time

Schematically, for a matrix, we have

Key point: does not modify columns of

A

4 × 4

∗
∗
∗
∗

∗
∗
∗
∗

∗
∗
∗
∗

∗
∗
∗
∗

A

L ​1

∗
0
0
0

∗
∗
∗
∗

∗
∗
∗
∗

∗
∗
∗
∗

L ​A1

L ​2

∗
0
0
0

∗
∗
0
0

∗
∗
∗
∗

∗
∗
∗
∗

L ​L ​A2 1

L ​j 1, … , j − 1 L ​L ​ ⋯L ​Aj−1 j−2 1

52

LU Factorization
After steps, we obtain an upper triangular matrix
n − 1

U = L ​ ⋯L ​L ​A =n−1 2 1 ​ ​ ​ ​ ​ ​

∗
0
0
0

∗
∗
0
0

∗
∗
∗
0

∗
∗
∗
∗

53

LU Factorization
We have

To form a factorization ,

we need

First observation:

 is obtained by negating the subdiagonal elements of

L ​ ⋯L ​L ​A =n−1 2 1 U

A = LU

L = (L ​ ⋯L ​L ​) =n−1 2 1
−1 L ​L ​ ⋯L ​1

−1
2
−1

n−1
−1

L ​j
−1 L ​j

L ​ =j ​ ​ ​ ​ ​ ​ ​ ​ L ​ =

1

⋮
0
0

⋮
0

⋯

⋱
⋯
⋯

⋱
⋯

0

⋮
1

−ℓ ​j+1,j

⋮
−ℓ ​nj

0

⋮
0
1

⋮
0

⋯

⋱
⋯
⋯

⋱
⋯

0

⋮
0
0

⋮
1

j
−1

​ ​ ​ ​ ​ ​ ​ ​

1

⋮
0
0

⋮
0

⋯

⋱
⋯
⋯

⋱
⋯

0

⋮
1

ℓ ​j+1,j

⋮
ℓ ​nj

0

⋮
0
1

⋮
0

⋯

⋱
⋯
⋯

⋱
⋯

0

⋮
0
0

⋮
1

54

LU Factorization

multiplication subtracts

a scaled component

so the inverse should add it
back (itself is unchanged)

 can be verified directly by multiplication

Intuitive explanation

L ​L ​ =j j
−1 I

L ​vj
v ​j

L ​ ​ ​ ​ =j

v ​1

⋮
v ​j

v ​j+1

⋮
v ​n

​ ​ ​

v ​1

⋮
v ​j

v ​ − ℓ ​v ​j+1 j+1,j j

⋮
v ​ − ℓ ​v ​n nj j

v ​j

L ​ ​ ​ ​ =j
−1

v ​1

⋮
v ​j

v ​j+1

⋮
v ​n

​ ​ ​

v ​1

⋮
v ​j

v ​ + ℓ ​v ​j+1 j+1,j j

⋮
v ​ + ℓ ​v ​n nj j

55

LU Factorization
Second observation: consider L ​L ​j−1

−1
j
−1

​ ​ =

L ​j−1
−1

​
​ ​ ​ ​ ​ ​ ​ ​ ​

1

⋮
0
0
0

⋮
0

⋯

⋱
⋯
⋯
⋯

⋱
⋯

0

⋮
1

ℓ ​j,j−1

ℓ ​j+1,j−1

⋮
ℓ ​n,j−1

0

⋮
0
1
0

⋮
0

0

⋮
0
0
1

⋮
0

⋯

⋱
⋯
⋯
⋯

⋱
⋯

0

⋮
0
0
0

⋮
1

L ​j
−1

​
​ ​ ​ ​ ​ ​ ​ ​ ​

1

⋮
0
0
0

⋮
0

⋯

⋱
⋯
⋯
⋯

⋱
⋯

0

⋮
1
0
0

⋮
0

0

⋮
0
1

ℓ ​j+1,j

⋮
ℓ ​nj

0

⋮
0
0
1

⋮
0

⋯

⋱
⋯
⋯
⋯

⋱
⋯

0

⋮
0
0
0

⋮
1

​ ​ ​ ​ ​ ​ ​ ​ ​

1

⋮
0
0
0

⋮
0

⋯

⋱
⋯
⋯
⋯

⋱
⋯

0

⋮
1

ℓ ​j,j−1

ℓ ​j+1,j−1

⋮
ℓ ​n,j−1

0

⋮
0
1

ℓ ​j+1,j

⋮
ℓ ​nj

0

⋮
0
0
1

⋮
0

⋯

⋱
⋯
⋯
⋯

⋱
⋯

0

⋮
0
0
0

⋮
1

56

LU Factorization
Therefore, by generalizing to all matrices

So we simply collect the subdiagonal terms

from all steps of factorization

n − 1

L = L ​L ​ ⋯L ​ =1
−1

2
−1

n−1
−1

​ ​ ​ ​ ​ ​ ​

1
ℓ ​21

ℓ ​31

⋮
ℓ ​n1

1
ℓ ​32

⋮
ℓ ​n2

1

⋱
⋯

⋱
ℓ ​n,n−1 1

57

LU Factorization
Therefore, basic LU factorization algorithm is

1: ,

2: for do

3: for do

4:

5: for do

6:

7: end for

8: end for

9: end for

Note that the entries of are updated each iteration

so at the start of step ,

Here line 4 comes straight from the definition

U = A L = I
j = 1 : n − 1
i = j + 1 : n

ℓ ​ =ij u ​/u ​ij jj

k = j : n
u ​ =ik u ​ −ik ℓ ​u ​ij jk

U

j U = L ​L ​ ⋯L ​Aj−1 j−2 1

ℓ ​ =ij ​

u ​jj

u ​ij

58

LU Factorization
Line 6 accounts for the effect of on columns of

For we have

The right hand side is the updated -th column of ,

which is computed in line 6

L ​j k = j, … ,n U

k = j : n

L ​u ​ =j (:,k) ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ =

1

⋮
0
0

⋮
0

⋯

⋱
⋯
⋯

⋱
⋯

0

⋮
1

−ℓ ​j+1,j

⋮
−ℓ ​nj

0

⋮
0
1

⋮
0

⋯

⋱
⋯
⋯

⋱
⋯

0

⋮
0
0

⋮
1

u ​1k

⋮
u ​jk

u ​j+1,k

⋮
u ​nk

​ ​ ​

u ​1k

⋮
u ​jk

u ​ − ℓ ​u ​j+1,k j+1,j jk

⋮
u ​ − ℓ ​u ​nk nj jk

k U

59

LU Factorization
LU factorization involves a triple nested loop, hence operations

Careful operation counting shows LU factorization requires
 additions
 multiplications

Therefore operations in total

O(n)3

∼ ​n3
1 3

∼ ​n3
1 3

∼ ​n3
2 3

60

Solving Linear Systems Using LU
To solve , we perform the following three steps:

Step 1: Factorize into :
Step 2: Solve by forward substitution:
Step 3: Solve by backward substitution:

The total work, dominated by Step 1, is

Ax = b

A A = LU ∼ ​n3
2 3

Ly = b ∼ n2

Ux = y ∼ n2

∼ ​n3
2 3

61

Solving Linear Systems Using LU
An alternative approach would be to first compute

and evaluate , but this is a bad idea!

Question: How would we compute ?

A−1

x = A b−1

A−1

62

Solving Linear Systems Using LU
Answer: Let denote the -th column of , then must satisfy

where is the -th basis vector

Therefore, inverting matrix reduces to solving for various

We first factorize , then forward/backward substitute for

a ​(:,k)
inv k A−1 a ​(:,k)

inv

Aa ​ =(:,k)
inv e ​k

e ​k k

A Ax = b n b

A = LU

LUa ​ =(:,k)
inv e ​, k =k 1, … ,n

63

Solving Linear Systems Using LU
Solving linear systems using is inefficient!

one pair of substitutions requires operations
 pairs of substitutions require operations

evaluating takes operations

(as many as one pair of substitutions)

A rule of thumb in Numerical Linear Algebra:

It is rarely a good idea to compute explicitly

A−1

∼ 2n2

n ∼ 2n3

A b−1 ∼ 2n2

A−1

64

Solving Linear Systems Using LU
Another case where LU factorization is very helpful

is if we want to solve for several different

right-hand sides ,

We incur the cost only once,

and then each subsequent pair of forward/backward

substitutions costs only

Makes a huge difference if is large!

Ax = b ​i

b ​i i = 1, … , k

∼ ​n3
2 3

∼ 2n2

n

65

Stability of Gaussian Elimination
There is a problem with the LU algorithm presented above

Consider the matrix

 is nonsingular, well-conditioned ()

but LU factorization fails at first step (division by zero)

A = ​ ​[
0
1

1
1]

A κ(A) ≈ 2.62

66

Stability of Gaussian Elimination
LU factorization doesn’t fail for

but we get

A = ​ ​[
10−20

1
1
1]

L = ​ ​ , U =[
1

1020
0
1] ​ ​[

10−20

0
1

1 − 1020]

67

Stability of Gaussian Elimination
Let’s suppose that (a floating point number)

and that

Then in finite precision arithmetic we get

−10 ∈20 F
round(1 − 10) =20 −1020

=L ​ ​ , =[
1

1020
0
1] U ​ ​[

10−20

0
1

−1020]

68

Stability of Gaussian Elimination
Hence due to rounding error we obtain

which is not close to

Then, for example, let

using , we get
true answer is

The relative error is large

even though the problem is well-conditioned

=LU ​ ​[
10−20

1
1
0]

A = ​ ​[
10−20

1
1
1]

b = [3, 3]T

LU =x~ [3, 3]T

x = [0, 3]T

69

Stability of Gaussian Elimination
In this example, standard Gaussian elimination yields a large residual

Or equivalently, it yields the exact solution to a problem

corresponding to a large input perturbation:

So the algorithm is unstable!

In this case the cause of the large error in

is numerical instability, not ill-conditioning

To stabilize Gaussian elimination, we need to permute rows,

i.e. perform pivoting

Δb = [0, 3]T

x

70

Pivoting
Recall the Gaussian elimination process

But we could just as easily do

​ ​ ​ ​ ​ ​ ⟶

∗ ∗
x ​jj

∗
∗

∗
∗
∗
∗

∗
∗
∗
∗

​ ​ ​ ​ ​ ​

∗ ∗
x ​jj

0
0

∗
∗
∗
∗

∗
∗
∗
∗

​ ​ ​ ​ ​ ​ ⟶

∗ ∗
∗
x ​ij

∗

∗
∗
∗
∗

∗
∗
∗
∗

​ ​ ​ ​ ​ ​

∗ ∗
0
x ​ij

0

∗
∗
∗
∗

∗
∗
∗
∗

71

Partial Pivoting
The entry is called the pivot, and flexibility

in choosing the pivot is essential otherwise we can’t deal with:

Choosing the pivot as the largest element in column

improves numerical stability. This is called partial pivoting

Full pivoting additionally permutes the columns and looks for the largest

over elements, which is costly and only marginally beneficial for
stability

This ensures that each entry — which acts as a multiplier in the LU
factorization process — satisfies

x ​ij

A = ​ ​[
0
1

1
1]

j

O(n)2

ℓ ​ij

∣ℓ ​∣ ≤ij 1
72

Partial Pivoting
To maintain the triangular LU structure,

we permute rows by premultiplying by permutation matrices

In this case

and each is obtained by swapping two rows of

∗ ∗
∗
∗
x ​ij

∗
∗
∗
∗

∗
∗
∗
∗

pivot selection

P ​1

∗ ∗
x ​ij

∗
∗

∗
∗
∗
∗

∗
∗
∗
∗

row swap

L ​1

∗ ∗
x ​ij

0
0

∗
∗
∗
∗

∗
∗
∗
∗

P ​ =1

1
0
0
0

0
0
0
1

0
0
1
0

0
1
0
0

P ​j I
73

Partial Pivoting
Therefore, with partial pivoting we obtain

It can be shown (we omit the details here, see Trefethen & Bau)

that this can be rewritten as

where . Note that is not the same as without pivoting

Theorem: Gaussian elimination with partial pivoting produces

nonsingular factors and if and only if is nonsingular

L ​P ​ ⋯L ​P ​L ​P ​A =n−1 n−1 2 2 1 1 U

PA = LU

P = P ​ ⋯P ​P ​n−1 2 1 L

L U A

74

Partial Pivoting
Pseudocode for LU factorization with partial pivoting

(new code is highlighted):

1: , ,

2: for do
3: Select that maximizes

4: Swap rows of :

5: Swap rows of :

6: Swap rows of :
7: for do

8:

9: for do

10:

11: end for

12: end for

13: end for

Again this requires floating point operations

U = A L = I P = I
j = 1 : n − 1

i(≥ j) ∣u ​∣ij

U u ​ ↔(j,j:n) u ​(i,j:n)

L ℓ ​ ↔(j,1:j−1) ℓ ​(i,1:j−1)

P p ​ ↔(j,:) p ​(i,:)

i = j + 1 : n
ℓ ​ =ij u ​/u ​ij jj

k = j : n
u ​ =ik u ​ −ik ℓ ​u ​ij jk

∼ ​n3
2 3

75

Partial Pivoting: Solve

To solve using the factorization
Multiply through by to obtain
Solve using forward substitution
Then solve using back substitution

Ax = b

Ax = b PA = LU

P PAx = LUx = Pb

Ly = Pb

Ux = y

76

Partial Pivoting in Python
Python’s scipy.linalg.lu function can do LU factorization with pivoting

>>> import numpy as np

>>> import scipy.linalg

>>> A=np.random.rand(4, 4)

>>> (P,L,U) = scipy.linalg.lu(A)

>>> A

array([[0.48657354, 0.72177328, 0.89725033, 0.10555858],

 [0.19356039, 0.21192135, 0.001038 , 0.20308355],

 [0.04709362, 0.82519218, 0.29700521, 0.85089909],

 [0.35533098, 0.30291277, 0.98852909, 0.7303831]])

>>> P

array([[1., 0., 0., 0.],

 [0., 0., 0., 1.],

 [0., 1., 0., 0.],

 [0., 0., 1., 0.]])

>>> L

array([[1. , 0. , 0. , 0.],

 [0.09678623, 1. , 0. , 0.],

 [0.73027189, -0.29679299, 1. , 0.],

 [0.39780295, -0.09956144, -0.8465861 , 1.]])

>>> U

array([[0.48657354, 0.72177328, 0.89725033, 0.10555858],

 [0. , 0.75533446, 0.21016373, 0.84068247],

 [0. , 0. , 0.39566752, 0.9028053],

 [0. , 0. , 0. , 1.00909401]])

77

Stability of Gaussian Elimination
Numerical stability of Gaussian Elimination has been

an important research topic since the 1940s

Major figure in this field: James H. Wilkinson (England, 1919–1986)

Showed that for with :
Gaussian elimination without partial pivoting is numerically
unstable

(as we’ve already seen)
Gaussian elimination with partial pivoting satisfies

Ax = b A ∈ Rn×n

​ ≤ 2 n ϵ
∥A∥∥x∥

∥r∥ n−1 2
mach

78

Stability of Gaussian Elimination

That is, pathological cases exist where the relative residual grows

exponentially with due to rounding error

Worst case behavior of Gaussian Elimination with partial pivoting is
explosive instability but such pathological cases are extremely rare!

In over years of Scientific Computation, instability has only been
encountered due to deliberate construction of pathological cases

In practice, Gaussian elimination is stable in the sense that it produces a
small relative residual

​∥A∥∥x∥
∥r∥

n

50

79

Stability of Gaussian Elimination
In practice, we typically obtain

i.e. grows only linearly with , and is scaled by

Combining this result with our inequality :

implies that in practice Gaussian elimination gives small error for well-
conditioned problems!

​ ≲ nϵ
∥A∥∥x∥

∥r∥
mach

n ϵ ​mach

(∗)

​ ≤
∥x∥

∥Δx∥
κ(A) ​

∥A∥∥x∥
∥r∥

80

Cholesky Factorization

81

Cholesky Factorization
Suppose that matrix is

symmetric:
positive definite: for any ,

Then the matrix can be represented as

known as Cholesky factorization,

where is a lower triangular matrix

In general, any matrix of the form

is symmetric and positive definite for any nonsingular

A ∈ Rn×n

A =T A

x = 0 x Ax >T 0

A = LLT

L ∈ Rn×n

BBT

B ∈ Rn×n

82

Cholesky Factorization
Matrix is found directly from equation

Consider the case

Equate components starting with the first column

L

A = LLT

3 × 3

​ ​ ​ ​ ​ =
a ​11

a ​21

a ​31

∗
a ​22

a ​32

∗
∗
a ​33

​ ​ ​ ​ ​

ℓ ​11
2

ℓ ​ℓ ​11 21

ℓ ​ℓ ​11 31

∗
ℓ ​ + ℓ ​21

2
22
2

ℓ ​ℓ ​ + ℓ ​ℓ ​21 31 22 32

∗
∗

ℓ ​ + ℓ ​ + ℓ ​31
2

32
2

33
2

​ ​ ​

ℓ ​ = ​11 a ​11

ℓ ​ = a ​/ℓ ​21 21 11

ℓ ​ = a ​/ℓ ​31 31 11

ℓ ​ = ​22 a ​ − ℓ ​22 21
2

ℓ ​ = (a ​ − ℓ ​ℓ ​)/ℓ ​32 32 21 31 22 ℓ ​ = ​33 a ​ − ℓ ​ − ℓ ​33 31
2

32
2

83

Cholesky Factorization
The same approach is generalized to the case

1:

2: for ,
3: for do

4:

5: for do

6:

7: end for

8: for do

9: for do

10:

11: end for

12: end for

13: end for

n × n

L = 0
ℓ ​ =ij a ​ij i = 1, … ,n j = 1, … , i

j = 1 : n
ℓ ​ =jj ​ℓ ​jj

i = j + 1 : n
ℓ ​ =ij ℓ ​/ℓij jj

k = j + 1 : n
i = k : n

ℓ ​ =ik ℓ ​ −ik ℓ ​ℓ ​ij kj

84

Cholesky Factorization
Notes on Cholesky factorization

Cholesky factorization is numerically stable

and does not require pivoting
Operation count: operations in total,

i.e. about half as many as Gaussian elimination
Only need to store , so uses less memory than LU.

Can be done in-place, overwriting matrix

See

∼ ​n3
1 3

L

A

[examples/unit2/cholesky.py]

85

https://github.com/pkarnakov/am205/tree/main/examples/unit2/cholesky.py

Performance Metrics

86

Performance Metrics
There are various metrics for software performance

performance (FLOP/s): floating point operations per second
time to solution
scaling efficiency (for parallel computing)

High Performance Computing studies and develops efficient

implementations of numerical algorithms

Naive Python implementations (e.g. using for-loops) are typically slow

Modules such as NumPy rely on faster implementations (e.g. written in C)

Example of performance measurements for Cholesky factorization
Python
C++

[examples/unit2/cholesky_time.py]
[examples/unit2/cholesky_time.cpp]

87

https://github.com/pkarnakov/am205/tree/main/examples/unit2/cholesky_time.py
https://github.com/pkarnakov/am205/tree/main/examples/unit2/cholesky_time.cpp

Sparse Matrices
In applications, we often encounter sparse matrices

Common example: discretizations of partial differential equations

The term sparse matrix typically means that the number

of non-zero elements is comparable to the number of rows or columns

(e.g. matrix with non-zeros)

It is advantageous to store and operate only on non-zero elements

Positions of non-zero elements of a sparse matrix form its sparsity pattern

Matrices that are not sparse are called dense matrices

n × n O(n)

88

Sparse Matrices
Dense matrices are typically stored as two-dimensional arrays

Sparse matrices benefit from special data structures and algorithms

for computational efficiency

Example from
a tridiagonal matrix is stored as three one-dimensional arrays
the linear system is solved using the TDMA algorithm

Standard algorithms (e.g. LU or Cholesky factorization) can be directly
applied to sparse matrices. However, new non-zero elements will appear

These new non-zero elements are called the fill-in.

Fill-in can be reduced by permuting rows and columns of the matrix

 implements sparse linear algebra

Unit 1 (constructing a spline)

scipy.sparse

89

https://pkarnakov.github.io/am205/slides/unit1/#/58
https://docs.scipy.org/doc/scipy/reference/sparse.html

Sparse Matrices: Data Structures
Coordinate format (COO):

Arrays: data, row, col

Element data[k] is in row row[k] and column col[k]

Compressed Sparse Row (CSR):

Arrays: data, indices, indptr

Row i contains elements data[indptr[i]:indptr[i+1]]

in columns indices[indptr[i]:indptr[i+1]]

Compressed Sparse Column (CSC):

Arrays: data, indices, indptr

Column j contains elements data[indptr[j]:indptr[j+1]]

in rows indices[indptr[j]:indptr[j+1]]

90

Coordinate format (COO):

(assume zero-based indexing)

See

Compressed Sparse Row (CSR):

Compressed Sparse Column
(CSC)

Example: Sparse Matrix

​ ​ ​ ​ ​ ​ ​

a

0
0
0

b

c

0
0

b

0
c

0

b

0
0
c

b

0
0
0

data = (a, b, b, b, b, c, c, c)
row = (0, 0, 0, 0, 0, 1, 2, 3)
col = (0, 1, 2, 3, 4, 1, 2, 3)

[examples/unit2/sparse.py]

data = (a, b, b, b, b, c, c, c)
indices = (0, 1, 2, 3, 4, 1, 2, 3)
indptr = (0, 5, 6, 7, 8)

data = (a, b, c, b, c, b, c, b)
indices = (0, 0, 1, 0, 2, 0, 3, 0)
indptr = (0, 1, 3, 5, 7, 8)

91

https://github.com/pkarnakov/am205/tree/main/examples/unit2/sparse.py

QR Factorization
A square matrix is called orthogonal

if its columns and rows are orthonormal vectors

Equivalently,

Orthogonal matrices preserve the Euclidean norm of a vector

Geometrically, orthogonal matrices correspond to reflection or rotation

Orthogonal matrices are very important in scientific computing,

norm-preservation implies no amplification of numerical error!

Q ∈ Rn×n

Q Q =T QQ =T I

∥Qv∥ ​ =2
2 v Q Qv =T T v v =T ∥v∥ ​2

2

92

QR Factorization
The full factorization of matrix , has the form

where
 is orthogonal

 is upper-triangular

QR is used for solving overdetermined linear least-squares problems

QR can be used for solving square systems, but requires

twice as many operations as Gaussian elimination

QR A ∈ Rm×n m ≥ n

A = QR

Q ∈ Rm×m

R = [​] ∈R̂

0
Rm×n

∈R̂ Rn×n

93

QR Factorization
Consider the 2-norm of the least-squares residual

Denote with , so that

​

∥r(x)∥ ​ = ∥b − Ax∥ ​ = ​b − Q[​]x ​ ​ =2
2

2
2 R̂

0 2

2

= ​Q (b − Q[​]x) ​ ​ = ​Q b − [​]x ​ ​

T R̂

0 2

2
T R̂

0 2

2

[​] =c ​1

c ​2
Q bT c ​ ∈1 R , c ​ ∈n

2 Rm−n

∥r(x)∥ ​ =2
2

​[​] −c ​1

c ​2
[​]x ​ ​ =R̂

0 2

2
​[​] ​ ​ =c ​ − x1 R̂

c ​2 2

2
∥c −1 x∥ ​ +R̂ 2

2 ∥c ​∥ ​2 2
2

94

QR Factorization
Question: How do we choose to minimize ?

where and

Answer: Only the first term depends on . Try setting

the first term to zero, i.e. solve the triangular system

This is what numpy.linalg.lstsq() does

Also, this implies that

x ∥r(x)∥ ​2

∥r(x)∥ ​ =2
2 ∥c ​ −1 x∥ ​ +R̂ 2

2 ∥c ​∥ ​2 2
2

A = Q[​]R̂

0
[​] =c ​1

c ​2
Q bT

x

n × n

x =R̂ c ​1

​ ∥r(x)∥ ​ =
x∈Rn
min 2 ∥c ​∥ ​2 2

95

QR Factorization
Recall that solving linear least-squares via the normal equations

requires solving a system with the matrix

But using the normal equations directly is problematic since

(with for rectangular defined using SVD, to be covered soon)

The QR approach avoids this condition-squaring effect

and is much more numerically stable!

A AT

κ(A A) =T κ(A)2

κ(A) A

96

QR Factorization
How do we compute the QR factorization?

There are three main methods
Gram–Schmidt orthogonalization
Householder triangularization
Givens rotations

97

Gram–Schmidt Orthogonalization
Suppose ,

One way to picture the QR factorization is to construct

a sequence of orthonormal vectors such that

We seek coefficients such that

This can be done via the Gram–Schmidt process

A ∈ Rm×n m ≥ n

q ​, q ​, …1 2

span{q ​, q ​, … , q ​} =1 2 j span{a , a ​, … , a ​}, j =(:,1) (:,2) (:,j) 1, … ,n

r ​ij

a(:,1)

a(:,2)

a(:,n)

= r ​q ​11 1

= r ​q ​ + r ​q ​12 1 22 2

…

= r ​q ​ + r ​q ​ + … + r ​q ​1n 1 2n 2 nn n

98

Gram–Schmidt Orthogonalization
In matrix form we have:

This gives for ,

This is called the reduced QR factorization of ,

which is different from the full QR factorization: is non-square

Note that for , , but

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​a ​(:,1) a ​(:,2) ⋯ a ​(:,n) = q ​1 q ​2 ⋯ q ​n

r ​11 r ​12

r ​22

⋯

⋱

r ​1n

r ​2n

⋮
r ​nn

A = ​Q̂R̂ ​ ∈Q̂ Rm×n ∈R̂ Rn×n

A

Q

m > n ​ ​ =Q̂T Q̂ I ​ ​ =Q̂Q̂T  I

99

Full vs Reduced QR Factorization
To obtain the full QR factorization defined earlier

append by arbitrary columns

that are linearly independent with columns of
apply the Gram–Schmidt process to obtain an orthogonal

We also need to append with zero rows to obtain

so that the new arbitrary columns in do not affect the product

A = QR

​Q̂ m − n

​Q̂

Q ∈ Rm×m

R̂ R = [​] ∈R̂

0
Rm×n

Q

100

Full vs Reduced QR Factorization

A Q R

=

Full QR

A Q̂ R̂

=

Reduced QR
101

Full vs Reduced QR Factorization
Exercise: Show that the linear least-squares solution is given by

by plugging into the normal equations

This is equivalent to the least-squares result

we showed earlier using the full QR factorization, since

x =R̂ ​ bQ̂T

A = ​Q̂R̂

c ​ =1 ​ bQ̂T

102

By default, numpy.linalg.qr()
does reduced QR factorization

Supplying mode="complete"
gives complete QR factorization

Full vs. Reduced QR Factorization

>>> import numpy as np

>>> np.random.seed(2022)

>>> a = np.random.random((4,2))

>>> a

array([[0.00935861, 0.49905781],

 [0.11338369, 0.04997402],

 [0.68540759, 0.48698807],

 [0.89765723, 0.64745207]])

>>> (q, r) = np.linalg.qr(a)

>>> q

array([[-0.00824455, 0.99789386],

 [-0.09988626, -0.06374317],

 [-0.60381526, -0.01057732],

 [-0.79079826, 0.00572413]])

>>> r

array([[-1.13512797, -0.81516102],

 [0. , 0.4933763]])

>>> import numpy as np

>>> np.random.seed(2022)

>>> a = np.random.random((4,2))

>>> a

array([[0.00935861, 0.49905781],

 [0.11338369, 0.04997402],

 [0.68540759, 0.48698807],

 [0.89765723, 0.64745207]])

>>> (q, r) = np.linalg.qr(a, mode="complete")

>>> q

array([[-0.00824455, 0.99789386, -0.02953283, -0.
 [-0.09988626, -0.06374317, -0.61111959, -0.
 [-0.60381526, -0.01057732, 0.66414863, -0.
 [-0.79079826, 0.00572413, -0.42961291, 0.
>>> r

array([[-1.13512797, -0.81516102],

 [0. , 0.4933763],

 [0. , 0.],

 [0. , 0.]])

103

Gram–Schmidt Orthogonalization
Returning to the Gram–Schmidt process,

how do we compute the , ?

In the -th step, find a unit vector

that is orthogonal to

We set

and then set

Exercise: Verify that satisfies the requirements

We can now determine the required values of

q ​i i = 1, … ,n

j q ​ ∈j span{a ​, a ​, … , a ​}(:,1) (:,2) (:,j)

span{q ​, q ​, … , q ​}1 n j−1

v ​ =j a ​ −(:,j) ​(q ​a ​)q ​

i=1

∑
j−1

i
T

(:,j) i

q ​ =j v ​/∥v ​∥ ​j j 2

q ​j

r ​ij

104

Gram–Schmidt Orthogonalization

From the equations , for

From the Gram–Schmidt process, for

Both expressions have the same structure, by matching the terms

The sign of is not determined uniquely, so we can choose

A = ​Q̂R̂ j = 1, … ,n

q ​ =j ​

r ​jj

a ​ − ​ r ​q ​(:,j) ∑i=1
j−1

ij i

j = 1, … ,n

q ​ =j ​

∥a ​ − ​(q ​a ​)q ​∥ ​(:,j) ∑i=1
j−1

i
T

(:,j) i 2

a ​ − ​(q ​a ​)q ​(:,j) ∑i=1
j−1

i
T

(:,j) i

​ ​

r ​ij

∣r ​∣jj

= q ​a ​ (i = j)i
T

(:,j) 

= ∥a ​ − ​ r ​q ​∥ ​(:,j) ∑i=1
j−1

ij i 2

r ​jj r ​ >jj 0
105

Classical Gram–Schmidt Process
The resulting algorithm is referred to as the

classical Gram–Schmidt (CGS) method

1: for do

2:

3: for do

4:

5:

6: end for

7:

8:

9: end for

j = 1 : n
v ​ =j a ​(:,j)

i = 1 : j − 1
r ​ =ij q ​a ​i

T
(:,j)

v ​ =j v ​ −j r ​q ​ij i

r ​ =jj ∥v ​∥ ​j 2

q ​ =j v ​/r ​j jj

106

Gram–Schmidt Orthogonalization
The only way the Gram–Schmidt process can fail

is if for some

This can only happen if for some ,

i.e. if

This means that columns of are linearly dependent

Therefore, Gram–Schmidt fails columns of linearly dependent

∣r ​∣ =jj ∥v ​∥ ​ =j 2 0 j

a ​ =(:,j) ​ r ​q ​∑i=1
j−1

ij i j

a ​ ∈(:,j) span{q ​, q ​, … , q ​} =1 n j−1 span{a ​, a ​, … , a ​}(:,1) (:,2) (:,j−1)

A

⟹ A

107

Gram–Schmidt Orthogonalization
Therefore, if columns of are linearly independent,

then the Gram–Schmidt succeeds

The only non-uniqueness in the Gram–Schmidt process

was in the sign of , therefore is unique

under the requirement that all

This proves the following

Theorem: Every of full rank

has a unique reduced QR factorization with

A

r ​ii ​Q̂R̂

r ​ >ii 0

A ∈ R (m ≥m×n n)
A = ​Q̂R̂ r ​ >ii 0

108

Gram–Schmidt Orthogonalization
Theorem: Every has a full QR factorization

Case 1: has full rank
we compute the reduced QR factorization from above
to make square we pad with arbitrary

orthonormal columns
we also pad with zero rows to get

Case 2: does not have full rank
at some point in computing the reduced QR factorization,

we encounter
at this point we pick an arbitrary unit orthogonal to

 and then proceed as in Case 1

A ∈ R (m ≥m×n n)

A

Q ​Q̂ m − n

R̂ m − n R

A

∥v ​∥ ​ =j 2 0
q ​j

span{q ​, q ​, … , q ​}1 2 j−1

109

Modified Gram–Schmidt Process
The classical Gram–Schmidt process is numerically unstable!

(sensitive to rounding error, orthogonality of the degrades)

The algorithm can be reformulated to give

the modified Gram–Schmidt process,

which is numerically more robust

Key idea: when each new is computed,

orthogonalize each remaining column of against it

q ​j

q ​j

A

110

Modified Gram–Schmidt Process
Applying this idea results in the

modified Gram–Schmidt (MGS) method

1: for do

2:

3: end for

4: for do

5:

6:

7: for do

8:

9:

10: end for

11: end for

i = 1 : n
v ​ =i a ​(:,i)

i = 1 : n
r ​ =ii ∥v ​∥ ​i 2

q ​ =i v ​/r ​i ii

j = i + 1 : n
r ​ =ij q ​vi

T
j

v ​ =j v ​ −j r ​q ​ij i

111

Modified Gram–Schmidt Process
Key difference between MGS and CGS

In CGS we compute orthogonalization coefficients

using the original column
In MGS we remove components of

in before computing

This makes no difference mathematically:

In exact arithmetic components in

are annihilated by

But in practice it reduces degradation of orthogonality of the

and improves the numerical stability of MGS over CGS

r ​ij

a ​(:,j)

a ​(:,j)

span{q ​, q ​, … , q ​}1 2 i−1 r ​ij

span{q ​, q ​, … , q ​}1 2 i−1

q ​i
T

q ​j

112

Operation Count
MGS is dominated by the innermost loop (lines 8 and 9):

The first requires multiplications, additions;

the second requires multiplications, subtractions

Therefore, each innermost iteration takes operations

The rotal number of operations is asymptotically

​ ​

r ​ij

v ​j

= q ​v ​i
T

j

= v ​ − r ​q ​j ij i

m m − 1
m m

∼ 4m

​ ​ 4m ∼
i=1

∑
n

j=i+1

∑
n

4m ​ i ∼
i=1

∑
n

2mn2

113

Alternative QR Factorization Methods
The QR factorization can also be computed using

Householder triangularization
Givens rotations

Both methods apply a sequence of orthogonal matrices

that successively remove terms below the diagonal

(similar to the LU factorization)

Q ​,Q ​,Q ​, …1 2 3

114

Householder Triangularization

115

Householder Triangularization
We will now discuss the Householder triangularization which is

more numerically stable and more efficient than Gram–Schmidt

Unlike Gram–Schmidt, it will not guarantee that the orthonormal

basis at each step will span the same subspaces as columns of

which may be important for some applications

Method used by calling from

Introduced by Alston Householder (1904–1993, USA)

A

span{a ​}, span{a ​, a ​}, …(:,1) (:,1) (:,2)

scipy.linalg.qr() dgeqrf() LAPACK

116

https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.qr.html
https://netlib.org/lapack/explore-html/df/dc5/group__variants_g_ecomputational_ga3766ea903391b5cf9008132f7440ec7b.html
https://netlib.org/lapack/lug/node69.html

Householder Triangularization
Idea: Apply a succession of orthogonal matrices

 to to compute an upper triangular matrix

That will result in the full QR factorization

since is a square matrix

Q ​ ∈k Rm×m A R

R = Q ​ ⋯Q ​Q ​An 2 1

A = QR

Q = Q ​Q ​ …Q ​1
T

2
T

n
T

117

Householder Triangularization
In 1958, Householder proposed a way to choose

to introduce zeros below the diagonal in column

while preserving the previous columns

This is achieved by Householder reflectors

Q ​k

k

​ ​

A

​​ ​ ​ ​ ​

∗
∗
∗
∗
∗

∗
∗
∗
∗
∗

∗
∗
∗
∗
∗

Q ​1
​ ​

Q ​A1

​​ ​ ​ ​ ​

∗
0
0
0
0

∗
∗
∗
∗
∗

∗
∗
∗
∗
∗

Q ​2
​ ​

Q ​Q ​A2 1

​​ ​ ​ ​ ​

∗
0
0
0
0

∗
∗
0
0
0

∗
∗
∗
∗
∗

Q ​3
​

Q ​Q ​Q ​A3 2 1

​​ ​ ​ ​ ​

∗
0
0
0
0

∗
∗
0
0
0

∗
∗
∗
0
0

118

Householder Reflectors
We choose

 is a Householder reflector

The block ensures the first rows are unchanged

 is an orthogonal matrix that operates on the bottom rows

If is orthogonal, then is orthogonal

Q ​ =k ​ ​[
I ​k−1

0
0
F

]

I ​ ∈k−1 R(k−1)×(k−1)

F ∈ R(m−k+1)×(m−k+1)

I ​k−1 k − 1

F m − k + 1

F Q ​k

119

Householder Reflectors
Let denote elements

of the -th column in the current matrix

We have two requirements for
1. is orthogonal, in particular
2. only the first element of is non-zero

Therefore, we must have

Question: How can we achieve this?

x ∈ Rm−k+1 k, … ,m
k Q ​ …Q ​Ak−1 1

F

F ∥Fx∥ ​ =2 ∥x∥ ​2

Fx

Fx = F ​ ​ ​ =

∗
∗

⋮
∗

​ ​ ​ =

∥x∥ ​2

0

⋮
0

∥x∥ ​e ​2 1

120

Householder Reflectors
We can see geometrically that this can be achieved

by reflection across a hyperplane

Here is the hyperplane orthogonal to ,

and the key point is that passes through the origin

H

H v = ∥x∥e ​ −1 x

H 0
121

Householder Reflectors
 passes through the origin because and

both belong to the hypersphere with radius centered at the origin

Also analytically, since ,

we have

H x ∥x∥e ​1

∥x∥ ​2

(x + ∥x∥e ​)/2 ∈1 H

0 ∈ H ⟺ (∥x∥e ​ −1 x) ⋅ (x + ∥x∥e ​) =1 ∥x∥ −2 x ⋅ x = 0
122

Householder Reflectors
Next, we need to determine the matrix which maps to

 is closely related to the orthogonal projection of onto ,

since that projection takes us “half way” from to

Hence we first consider orthogonal projection onto ,

and subsequently derive

F x ∥x∥ ​e ​2 1

F x H

x ∥x∥ ​e ​2 1

H

F

123

Householder Reflectors
The orthogonal projection of vector onto vector is given by

since

In the matrix form

Therefore, the matrix orthogonally projects onto

a b

​b
∥b∥2

(a ⋅ b)

(a − ​b) ⋅∥b∥2
(a⋅b) b = a ⋅ b − ​b ⋅∥b∥2

(a⋅b) b = 0

​b =
∥b∥2

(a ⋅ b)
​ (a b)b =

b bT
1 T

​b(b a) =
b bT
1 T (​bb)a

b bT
1 T

​bb
b bT
1 T b

124

Householder Reflectors
We have that orthogonally projects onto

Then, the following matrix

orthogonally projects onto as it satisfies

since
 is orthogonal to

since is proportional to

​vv
v vT

1 T v

P ​ =H I − ​

v vT
vvT

H

P ​x ∈H H

v P ​x =T
H v x −T v ​x =T

v vT
vvT v x −T

​v x =
v vT
v vT T 0

x − P ​xH H

x − P ​x =H x − x + ​x =
v vT
vvT

​v
v vT
v xT v

125

Householder Reflectors
But recall that should reflect across rather than project onto

We obtain by going “twice as far” in the direction of compared to

Exercise: Show that is an orthogonal matrix, i.e. that

F H H

P ​ =H I − ​

v vT
vvT

F v P ​H

F = I − 2 ​

v vT
vvT

F F F =T I

126

Householder Reflectors
In fact, there are two Householder reflectors that we can choose from

Which one is better?

127

Householder Reflectors
If and (or and) are close,

we could obtain loss of precision due to cancellation
when computing (or)

To ensure and its reflection are well separated

we should choose the reflection to be

Therefore, we want to have

Since the sign of does not affect , we scale by to get

x ∥x∥ ​e ​2 1 x −∥x∥ ​e ​2 1

v = ∥x∥e ​ −1 x v = −∥x∥e ​ −1 x

x

− sign(x ​)∥x∥ ​e ​1 2 1

v = − sign(x ​)∥x∥ ​e ​ −1 2 1 x

v F v −1

v = sign(x ​)∥x∥ ​e ​ + x1 2 1

128

Householder Reflectors
Let’s compare the two options for in the potentially

problematic case when , i.e. when

The corresponding norms are

v

x ≈ ∥x∥ ​e ​2 1 x ​ ≈1 ∥x∥ ​2

v ​ = ∥x∥ ​e ​ − xbad 2 1

v ​ = sign(x ​)∥x∥ ​e ​ + xgood 1 2 1

∥v ​∥ ​ =bad 2
2

​∥x∥ ​e ​ −2 1 x ​ ​ ≈
2
2 0

∥v ∥good 2
2 = ​ sign(x ​)∥x∥ ​e ​ + x ​ ​1 2 1 2

2

= (sign(x ​)∥x∥ ​ + x ​) + ∥x ​∥ ​1 2 1
2

(2:m−k+1) 2
2

= (sign(x ​)∥x∥ ​ + sign(x ​)∣x ​∣) + ∥x ​∥ ​1 2 1 1
2

(2:m−k+1) 2
2

= (∥x∥ ​ + ∣x ​∣) + ∥x ​∥ ​ ≈ (2∥x∥ ​)2 1
2

(2:m−k+1) 2
2

2
2

129

Householder Reflectors
Recall that is computed from two vectors of magnitude

The argument above shows that with we can get

leading to loss of precision due to cancellation

In contrast, with we always have ,

which rules out loss of precision due to cancellation

v ∥x∥ ​2

v ​bad ∥v∥ ​ ≪2 ∥x∥ ​2

v ​good ∥v ​∥ ​ ≥good 2 ∥x∥ ​2

130

Householder Triangularization
We can now write out the Householder algorithm

1: for do

2:

3:

4:

5:

6: end for

It overwrites with and stores

Note that we do not divide by in line 5

since we normalize in line 4

Householder algorithm requires operations

(while Gram–Schmidt requires)

k = 1 : n
x = a ​(k:m,k)
v ​ =k sign(x ​)∥x∥ ​e ​ +1 2 1 x

v ​ =k v ​/∥v ​∥ ​k k 2

a ​ =(k:m,k:n) a ​ −(k:m,k:n) 2v ​(v ​a ​)k k
T

(k:m,k:n)

A R v ​, … , v ​1 n

v ​v ​k
T

k

vk

∼ 2mn −2
​n3

2 3

2mn2

131

Householder Triangularization
Note that we do not explicitly form

We can use the vectors to compute in a post-processing step

Recall that

and

Also, the Householder reflectors are symmetric (see the definition of),

so and

Note that each is involutory (i.e.)

but in general this does not hold for the product ()

Q

v ​, … , v ​1 n Q

Q ​ =k ​ ​[
I
0

0
F

]

Q = (Q ​ ⋯Q ​Q ​) =n 2 1
T Q ​Q ​ ⋯Q ​1

T
2
T

n
T

F

Q = Q ​Q ​ ⋯Q ​ =1
T

2
T

n
T Q ​Q ​ ⋯Q ​1 2 n

Q ​k Q ​ =k
−1 Q ​k

Q =−1  Q

132

Householder Triangularization
For any , we can evaluate using the

1: for do

2:

3: end for

Question: How can we use this to form the matrix ?

y Qy = Q ​Q ​ ⋯Q ​y1 2 n v ​k

k = n : −1 : 1
y ​ =(k:m) y ​ −(k:m) 2v ​(v ​y ​)k k

T
(k:m)

Q

133

Householder Triangularization
Answer: Compute from ,

since consists of columns

Similarly, compute the reduced from ,

However, often not necessary to form or explicitly,

e.g. to solve the least-squares problem ,

we only need the product and the matrix

Note that the product can be evaluated as

1: for do

2:

3: end for

Q Qe ​i i = 1, … ,m
Q Qe ​i

​Q̂ Qe ​i i = 1, … ,n

Q ​Q̂

Ax ≃ b

Q bT R

Q b =T Q ​ ⋯Q ​Q ​bn 2 1

k = 1 : n
b ​ =(k:m) b ​ −(k:m) 2v ​(v ​b ​)k k

T
(k:m)

134

Givens Rotations

135

Givens Rotations
Another method of QR-factorization is based on Givens rotation matrix

which is defined for and as an matrix with elements

where and

G(i, j, θ) = ​ ​ ​ ​ ​ ​ ​ ​ ​

1

⋮
0

⋮
0

⋮
0

…

⋱
…

⋱
…

⋱
…

0

⋮
c

⋮
s

⋮
0

…

⋱
…

⋱
…

⋱
…

0

⋮
−s

⋮
c

⋮
0

…

⋱
…

⋱
…

⋱
…

0

⋮
0

⋮
0

⋮
1

i < j θ ∈ R m × m

g = c, g ​ = c, g ​ = −s, g ​ = sii jj ij ji

g = 1 for k = i, j, g ​ = 0 otherwisekk  kl

c = cos θ s = sin θ
136

Givens Rotations
A Givens rotation matrix applies a rotation

within the space spanned by the -th and -th coordinates

Named after James W. Givens, Jr. (1910–1993, USA)

i j

137

Effect of a Givens rotation
Consider a rectangular matrix where

Suppose that and are in the -th and -th positions

in a particular column of . Assume that

Restricting to just -th and -th dimensions,

a Givens rotation for a particular angle can be chosen so that

where is non-zero, and the -th component is eliminated

A ∈ Rm×n m ≥ n

a ​1 a ​2 i j

A a ​ +1
2 a ​ =2

2  0

i j

G(i, j, θ) θ

​ ​ ​ =(
c

s

−s
c

) (
a ​1

a ​2
) ​(

α

0
)

α j

138

Stable computation

Since the length is preserved,

We could compute

but this is susceptible to underflow/overflow if is very small

A better procedure is
if , set and then
if , set and then

α = ​a ​ + a ​1
2

2
2

c = ​ , s =
​a ​ + a ​1

2
2
2

a ​1
​

​a ​ + a ​1
2

2
2

−a ​2

α

∣a ​∣ >1 ∣a ​∣2 t = tan θ = a ​/a ​2 1 c = ​ , s =
​1+t2

1 −ct
∣a ​∣ ≥2 ∣a ​∣1 t = cot θ = a ​/a ​1 2 s = ​ , c =

​1+t2
−1 −st

139

Givens rotation algorithm
The following algorithm performs the full QR-factorization

of a matrix with using Givens rotations

1:

2: for do

3: for do

4: Construct to eliminate

5:

6:

7: end for

8: end for

A ∈ Rm×n m ≥ n

R = A,Q = I

k = 1 : n
j = m : k + 1

G = G(j − 1, j, θ) a ​jk

R = GR

Q = QGT

140

Advantages of Givens Rotations
In general, for dense matrices, Givens rotations are not as efficient

as the other two approaches (Gram–Schmidt and Householder)

However, they are advantageous for sparse matrices,
since non-zero elements can be eliminated one-by-one

without affecting other rows

141

Advantages of Givens Rotations
Also, Givens rotations of different rows can be done concurrently

Consider the matrix

Each number denotes the step when that element can be eliminated

For example, on step 3, elements and can be

eliminated concurrently using and

since they operate on different rows

6 × 6

​ ​ ​ ​ ​ ​ ​ ​

∗
5
4

​3
2
1

∗
∗
6
5
4

​3

∗
∗
∗
7
6
5

∗
∗
∗
∗
8
7

∗
∗
∗
∗
∗
9

∗
∗
∗
∗
∗
∗

(4, 1) (6, 2)
G(3, 4, ⋅) G(5, 6, ⋅)

142

Example: Sparsity Patterns
Positions of non-zero elements of a sparse matrix form its sparsity pattern

Transformations of the matrix may introduce new non-zero elements

These new non-zero elements are called the fill-in

See [examples/unit2/sparse_pattern.py]

143

https://github.com/pkarnakov/am205/tree/main/examples/unit2/sparse_pattern.py

Singular Value Decomposition

144

Singular Value Decomposition
How does a matrix deform the space?

Example of mapping the unit circle to an ellipse

In general, a matrix does not preserve orthogonality and length

A = ​ ​[
1
0

1.5
1]

145

Singular Value Decomposition
However, orthogonal and can be chosen such that

 and are orthogonal

where and

v ​1 v ​2

Av =1 σ ​u ​1 1 Av ​ =2 σ ​u ​2 2

σ ​ ≥1 σ ​ ≥2 0 ∥u ​∥ =1 ∥u ​∥ =2 1

146

Singular Value Decomposition
To obtain a Singular Value Decomposition (SVD) of a matrix ,

we are looking for orthonormal vectors such that

where vectors are also orthonormal and

In the matrix form, we get

A ∈ Rm×n

v ​i

Av ​ =i σ ​u ​, i =i i 1, … ,n

u ​i σ ​ ∈i R, σ ​ ≥i 0

AV = Û Σ̂

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ A v ​1 ⋯ v ​n = u ​1 ⋯ u ​n

σ ​1

⋱
σ ​n

147

Singular Value Decomposition
Matrices in are

 is a general matrix
 with orthonormal columns
 is diagonal with non-negative, real entries
 with orthonormal columns

Therefore is an orthogonal matrix () and

we have the following decomposition called the reduced SVD

 are singular values (typically)
 are left singular vectors (columns of)

 are right singular vectors (rows of)

AV = Û Σ̂
A ∈ Rm×n

V ∈ Rn×n

∈Σ̂ Rn×n

∈Û Rm×n

V V V =T V V =T I

A = VÛ Σ̂ T

σ ​,σ ​, … ,σ ​ ≥1 2 n 0 σ ​ ≥1 σ ​ ≥2 …
u ​,u ​, … ,u ​1 2 n Û

v ​, v ​, … , v ​1 2 n V T

148

Singular Value Decomposition
Just as with QR factorization, we can pad the columns of

with arbitrary orthonormal vectors

to obtain an orthogonal

We then need to “silence” these arbitrary columns

by adding rows of zeros to to obtain

This gives the full SVD for

Û

m − n

U ∈ Rm×m

∈Σ̂ Rn×n Σ ∈ Rm×n

A ∈ Rm×n

A = UΣV T

149

Full vs Reduced SVD

Full SVD

Reduced SVD
150

Singular Value Decomposition
Theorem: Every matrix has

a full singular value decomposition. Furthermore:

singular values are uniquely determined
if is square and are distinct,

then and are uniquely determined up to sign

Proof is outside of the scope of the course

A ∈ Rm×n

σ ​i

A σ ​j

u ​i v ​i

151

Singular Value Decomposition
This theorem justifies the statement:

the image of the unit hypersphere under any matrix is a hyperellipse

Consider (full SVD) applied to the unit sphere :
the orthogonal map preserves

 stretches into a hyperellipse aligned with the canonical axes
 rotates or reflects the hyperellipse without changing its shape

m × n

A = UΣV T S ⊂ Rn

V T S

Σ S e ​j

U

152

SVD in Python
numpy.linalg.svd() computes

the full SVD by default

with full_matrices=0

it computes the reduced SVD

>>> import numpy as np

>>> np.random.seed(2022)

>>> a=np.random.random((4,2))

>>> a

array([[0.00935861, 0.49905781],

 [0.11338369, 0.04997402],

 [0.68540759, 0.48698807],

 [0.89765723, 0.64745207]])

>>> (u, s, v) = np.linalg.svd(a)

>>> u

array([[-0.22570503, 0.97206861, -0.02953283, -0.0571636
 [-0.08357767, -0.08399541, -0.61111959, -0.7826189
 [-0.58696968, -0.14202585, 0.66414863, -0.4406833
 [-0.77300621, -0.16690133, -0.42961291, 0.4359335
>>> s

array([1.42929716, 0.39183261])

>>> v

array([[-0.77506396, -0.63188279],

 [-0.63188279, 0.77506396]])

>>> import numpy as np

>>> np.random.seed(2022)

>>> a = np.random.random((4,2))

>>> a

array([[0.00935861, 0.49905781],

 [0.11338369, 0.04997402],

 [0.68540759, 0.48698807],

 [0.89765723, 0.64745207]])

>>> (u, s, v) = np.linalg.svd(a, full_matrices
>>> u

array([[-0.22570503, 0.97206861],

 [-0.08357767, -0.08399541],

 [-0.58696968, -0.14202585],

 [-0.77300621, -0.16690133]])

>>> s

array([1.42929716, 0.39183261])

>>> v

array([[-0.77506396, -0.63188279],

 [-0.63188279, 0.77506396]])

153

Matrix Properties via the SVD
Let denote the number of nonzero singular values, so that

Property:

Proof: In the full SVD , matrices and have full rank,

so multiplication by them preserves rank, leading to

Property: and

Proof: This follows from and

r

σ ​ ≥1 σ ​ >2 ⋯ ≥ σ ​ >r 0, σ ​ =r+1 … = σ =n 0

r = rank(A)

A = UΣV T U V T

rank(A) = rank(Σ) = r

image(A) = span{u ​, … ,u ​}1 r null(A) = span{v ​, … , v ​}r+1 n

A = UΣV T

image(Σ)

null(Σ)

= span{e ​, … , e ​} ∈ R1 r
m

= span{e ​, … , e ​} ∈ Rr+1 n
n

154

Matrix Properties via the SVD
Property:

Proof: By definition .

Orthogonal matrices preserve the norm,

Property: Singular values of are the square roots

of the eigenvalues of or

Proof:

Therefore, , or

(Analogous for)

∥A∥ ​ =2 σ ​1

∥A∥ ​ =2 max ​ ∥Av∥ ​ =∥v∥ ​=12 2 max ​ ∥UΣV v∥ ​∥v∥ ​=12
T

2

∥A∥ ​ =2 max ​ ∥Σv∥ ​ =∥v∥ ​=12 2 σ ​1

A

A AT AAT

A A =T (UΣV) (UΣV) =T T T V ΣU UΣV =T T V (Σ Σ)VT T

(A A)V =T V (Σ Σ)T (A A)v ​ =T
(:,j) σ ​vj

2
(:,j)

AAT

155

Matrix Properties via the SVD
The pseudoinverse can be defined more generally in terms of the SVD

Define pseudoinverse of a scalar to be

 if if

Define pseudoinverse of a diagonal matrix

as its transpose after taking scalar pseudoinverse of each element

Define pseudoinverse of as

Note: exists for any matrix , and it covers

our previous definitions of pseudoinverse

A+

σ ∈ R
σ =+ 1/σ σ = 0 and σ =+ 0 σ = 0

Σ ∈+ Rn×m Σ ∈ Rm×n

A ∈ Rm×n

A =+ V Σ U+ T

A+ A

156

Matrix Properties via the SVD
We generalize the condition number to rectangular matrices

via the definition

Property: The 2-norm condition number is given by

Proof: as shown before.

The largest singular value of is so

κ(A) = ∥A∥∥A ∥+

κ(A) = σ ​/σ ​max min

∥A∥ ​ =2 σ ​max

A+ 1/σ ​min ∥A ∥ ​ =+
2 1/σ ​min

157

Matrix Properties via the SVD
These results indicate the importance of the SVD,

both theoretical and as a computational tool

Algorithms for calculating the SVD are outside scope of this course

SVD requires operations

For more details on algorithms, see Trefethen & Bau, or Golub & van Loan

∼ 4mn −2
​n3

4 3

158

Low-Rank Approximation via the SVD
One of the most useful properties of the SVD is that it allows us

to obtain an optimal low-rank approximation to

We can recast SVD as

Follows from writing as a sum of matrices ,

where

Each is a rank one matrix: each column is a scaled version of

A

A = ​σ ​u ​v ​

j=1

∑
r

j j j
T

Σ r Σ ​j

Σ ​ =j diag(0, … , 0,σ ​, 0, … , 0)j

u ​v ​j j
T u ​j

159

Low-Rank Approximation via the SVD
Theorem: For any index the matrix

satisfies

That is
 is the closest rank matrix to , measured in the 2-norm

The error in is given by the first omitted singular value

ν = 0, … , r

A ​ =ν ​σ ​u ​v ​

j=1

∑
ν

j j j
T

∥A − A ​∥ ​ =ν 2 ​ ∥A −
B∈R , rank(B)≤νm×n

inf B∥ ​ =2 σ ​ν+1

A ​ν ν A

A ​ν

160

Low-Rank Approximation via the SVD
A similar result holds in the Frobenius norm:

∥A − A ​∥ ​ =ν F ​ ∥A −
B∈R , rank(B)≤νm×n

inf B∥ ​ =F ​σ ​ + ⋯ + σ ​ν+1
2

r
2

161

Low-Rank Approximation via the SVD
These theorems indicate that the SVD is an effective way

to compress data encapsulated by a matrix!

For example, can represent an image

If singular values of decay rapidly,

we can approximate with few rank one matrices

For each rank one matrix ,

we only need to store numbers:

A

A

A

σ ​u ​v ​j j j

m + n + 1 σ ​, u ​, v ​j j j

162

Principal Component Analysis

163

Principal Component Analysis
Consider a dataset of for

There is a strong correlation between and

This means that we can describe most of the data with just one feature

This is done by Principal Component Analysis (PCA)

(x ​, y ​) ∈i i R2 i = 1, … ,m

x y

164

Principal Component Analysis
The new axis should maximize variance of the data

Consider the empirical covariance matrix

In terms of the samples

where and are the empirical means

M = ​ ​[
Var(x)

Cov(x, y)
Cov(x, y)

Var(y)]

(x ​, y ​)i i

M = ​ ​ ​

m

1
[

​(x ​ −)∑i=1
m

i x̄ 2

​(x ​ −)(y ​ − ​)∑i=1
m

i x̄ i ȳ

​(x ​ −)(y ​ − ​)∑i=1
m

i x̄ i ȳ

​(y ​ − ​)∑i=1
m

i ȳ 2]

=x̄ ​ x ​∑i=1
m

i ​ =ȳ ​ y ​∑i=1
m

i

165

Principal Component Analysis
 is a symmetric positive-definite matrix

Variance in the direction is given by

 is maximized if is the eigenvector of

corresponding to the largest eigenvalue

Define a matrix

Then

M

v ∈ R2 v MvT

v MvT v M

A ∈ Rm×2

A = ​ ​ ​ ​

x ​ −1 x̄

x ​ −2 x̄

⋮
x ​ −m x̄

y ​ − ​1 ȳ

y ​ − ​2 ȳ

⋮
y ​ − ​m ȳ

M = ​A A
m
1 T

166

Principal Component Analysis
From the full SVD ,

the columns of are the eigenvectors of

Define the new axes along and

See

A = UΣV T

V M = ​A A
m
1 T

v ​1 v ​2

[examples/unit2/pca.py]
167

https://github.com/pkarnakov/am205/tree/main/examples/unit2/pca.py

Example: Video Reconstruction
Three videos

Paris
Vietnam
Sunrise

PCA applied to frames of the videos

https://www.pexels.com/video/852352
https://www.youtube.com/watch?v=OiqSsE0B-Rc

https://www.pexels.com/video/855646

168

https://www.pexels.com/video/852352
https://www.youtube.com/watch?v=OiqSsE0B-Rc
https://www.pexels.com/video/855646

Paris, original

0:00 / 0:04

169

Paris, only first three

0:00 / 0:04

170

Paris, without first three

0:00 / 0:04

171

Vietnam, original

0:00 / 0:03

172

Vietnam, only first three

0:00 / 0:03

173

Vietnam, without first three

0:00 / 0:03

174

Sunrise, original

0:00 / 0:04

175

Sunrise, only first three

0:00 / 0:04

176

Sunrise, without first three

0:00 / 0:04

177

