
Applied Mathematics 205
Unit 3. Numerical Calculus

Lecturer: Petr Karnakov

October 5, 2022

1

Motivation
Since the time of Newton, calculus has been ubiquitous in science

Calculus problems that arise in applications
typically do not have closed-form solutions

Numerical approximation is essential

In this Unit we will consider
numerical integration
numerical differentiation
numerical methods for ordinary differential equations
numerical methods for partial differential equations

2

Integration
The process of approximating a definite integral
using a numerical method is called quadrature

The Riemann sum suggests how to perform quadrature

We will examine more accurate/efficient quadrature methods

3

Integration
Question: Why is quadrature important?

We know how to evaluate many integrals analytically,

But how about

 e dx or cosxdx∫
0

1
x ∫

0

π

 exp(sin(cos(sinh(cosh(arctan(log(x))))))) dx∫
1

2000

4

Integration
We can numerically approximate this integral
using scipy.integrate.quad()

>>> import scipy
>>> from math import *
>>> def f(x):
... return exp(sin(cos(sinh(cosh(atan(log(x)))))))
>>> scipy.integrate.quad(f, 1, 2000)
(1514.7806778270256, 4.231109731546272e-06)

5

Integration
Quadrature also generalizes naturally to higher dimensions,
and allows us to compute integrals on irregular domains

For example, we can approximate an integral on a triangle
based on a finite sum of samples at quadrature points

people.sc.fsu.edu/~jburkardt/cpp_src/triangle_fekete_rule_test

6

https://people.sc.fsu.edu/~jburkardt/cpp_src/triangle_fekete_rule_test/triangle_fekete_rule_test.html

Integration
And then evaluate integrals in complex geometries
by triangulating the domain

7

https://commons.wikimedia.org/wiki/File:Example_of_2D_mesh.png

Differentiation
Numerical differentiation is another fundamental tool

We have already discussed the most common, intuitive approach
to numerical differentiation: finite differences

Examples
 forward difference
 backward difference

 centered difference
 centered, second derivative

f (x) =′
 +h

f(x+h)−f(x)
O(h)

f (x) =′
 +

h

f(x)−f(x−h)
O(h)

f (x) =′
 +2h

f(x+h)−f(x−h)
O(h)2

f (x) =′′
 +

h2
f(x+h)−2f(x)+f(x−h)

O(h)2

8

Differentiation
We will see how to derive these and other
finite difference formulas and quantify their accuracy

Wide range of choices, with trade-offs in terms of
accuracy
stability
complexity

9

Differentiation
In Unit 0, we saw that finite differences
can be sensitive to rounding error when is “too small”

But in most applications we obtain sufficient accuracy
with large enough that rounding error is still negligible

Hence finite differences generally work very well
and provide a very popular approach
to solving problems involving derivatives

h

h

10

ODEs
The most common situation in which we need
to approximate derivatives is to solve differential equations

Ordinary Differential Equations (ODEs):
Differential equations involving functions of one variable

Examples of problems
initial value problem (IVP) for a first order ODE

boundary value problem (BVP) for a second order ODE

y (t) =′ y (t) +2 t −4 6t
y(0) = y 0

y (x) +′′ 2xy(x) = 1
y(0) = y(1) = 0

11

ODEs: IVP
Newton’s second law of motion

where is the position of a particle of mass at time

This is a scalar ODE to simulate one particle

An -body problem involves a system of interacting particles

For example, can be gravitational force due to other particles,
and the force on particle depends on positions of the other particles

y (t) =′′
 , y(0) =

m

F (t, y, y)′
y , y (0) =0

′ v 0

y(t) ∈ R m t ≥ 0

N N

F

i

12

ODEs: IVP
-body problems are the basis of many cosmological simulations

Recall the galaxy formation simulations from Unit 0

Computationally expensive when is large!

N

N

13

ODEs: BVP
Boundary value problems for ODEs are also important
in many circumstances

The steady-state heat equation for the temperature

apply a heat source
impose zero temperature at
insulate at

Here is the temperature of a 1D rod

u(x)

−u (x) =′′ f(x), u(−1) = 0, u (1) =′ 0

f(x) = 1 − x2

x = −1
x = 1

u(x)

14

ODEs: BVP
We can approximate the equation with finite differences

and impose and

−u (x) =′′ f(x)

− =
h2

u(x + h) − 2u(x) + u(x − h)
f(x)

u(−1) = 0 u(1) − u(1 − h) = 0

15

PDEs
It is also natural to introduce time-dependence

Now is a function of and
so derivatives of are partial derivatives
and we obtain a partial differential equation (PDE)

The time-dependent heat equation for

with initial conditions
and boundary conditions ,

This is an initial-boundary value problem (IBVP)

u(x, t) x t

u

u(x, t)

 −
∂t
∂u

 =
∂x2

∂ u2

f(x)

u(x, 0) = 0
u(−1, t) = 0 (1, t) =∂x

∂u 0

16

PDEs

Again, we can approximate the equation
with finite differences

and impose , , and

 −∂t
∂u

 =∂x2
∂ u2

f(x)

 −Δt
u(x,t)−u(x,t−Δt)

 =h2
u(x+h,t)−2u(x,t)+u(x−h,t)

f(x)

u(x, 0) = 0 u(−1, t) = 0 u(1, t) − u(1 − h, t) = 0

17

PDEs
This extends to 2D and 3D domains

The time-dependent heat equation in a 3D domain
for the temperature

with initial conditions
and boundary conditions on

Ω ⊂ R3

u(x, y, z, t)

 −
∂t
∂u

 −
∂x2

∂ u2
 −

∂y2

∂ u2
 =

∂z2

∂ u2

f(x, y, z)

u(x, y, z, 0) = u (x, y, z)0

u = 0 ∂Ω

18

PDEs
This equation is typically written as

where

Here we have
the Laplacian
the gradient

 −
∂t
∂u

∇ u =2 f(x, y, z)

∇ u =2 ∇ ⋅ ∇u = +∂x2
∂ u2

 +∂y2
∂ u2

 ∂z2
∂ u2

∇ =2
 +∂x2

∂2
 +∂y2

∂2
 ∂z2

∂2

∇ = (, ,)∂x
∂

∂y
∂

∂z
∂

19

PDEs
We can add a transport term to the heat equation
to obtain the convection-diffusion equation

Now models the concentration of some substance
in a medium moving with velocity

 +
∂t
∂u

w ⋅ ∇u − ∇ u =2 f(x, y)

u(x, t)
w(x, y, t) ∈ R2

20

PDEs
The Navier-Stokes equations describe the motion of viscous liquids

together with the continuity equation (the liquid is incompressible)

for the unknown velocity and pressure , where is the viscosity

 +
∂t
∂u

(u ⋅ ∇)u = −∇p + ν∇ u2

∇ ⋅ u = 0

u p ν

21

PDEs
Numerical methods for PDEs are a major topic in scientific computing

Recall examples from Unit 0

CFD

Geophysics

In the course, we will focus on the finite difference method

Alternative methods: finite element, finite volume,
spectral, boundary element, particles, …

22

Summary
Numerical calculus includes a wide range of topics
and has important applications

We will consider various algorithms and
analyze their stability, accuracy, and efficiency

23

Quadrature

Suppose we want to evaluate the integral

We can proceed as follows
approximate using a polynomial interpolant
define
we can integrate polynomials exactly

 provides a quadrature formula,
and we should have

A quadrature rule based on an interpolant
at equally spaced points in
is known as Newton–Cotes formula of order

I(f) = f(x)dx∫
a

b

f p n

Q (f) =n p (x)dx∫
a

b
n

Q (f)n

Q (f) ≈n I(f)

p n

n + 1 [a, b]
n

24

Newton–Cotes Quadrature
Let , where

We write the interpolant of in the Lagrange form as

Then

where is the -th quadrature weight

x =k a + kh, k = 0, 1, … ,n h = (b − a)/n

f

p (x) =n f(x)L (x), where L (x) =
k=0

∑
n

k k k ∏i=0,i=k
n

x −x k i

x−x i

Q (f) =n p (x)dx =∫
a

b

n f(x) L (x)dx =
k=0

∑
n

k ∫
a

b

k w f(x)
k=0

∑
n

k k

w =k L (x)dx ∈∫
a

b
k R k

25

Newton–Cotes Quadrature
Note that quadrature weights do not depend on ,
so they can be precomputed and stored

trapezoid rule:
Simpson’s rule:

We can develop higher-order Newton–Cotes formulas in the same way

f

Q (f) =1 f(a) + f(b)2
b−a []

Q (f) =2 f(a) + 4f + f(b)6
b−a [(2

a+b)]

26

Error Estimates
Let

Then

From Unit 1, we have an expression for

E (f) =n I(f) − Q (f)n

E (f)n = f(x)dx − w f(x)∫
a

b
∑k=0

n
k k

= f(x)dx − L (x)dx f(x)∫
a

b
∑k=0

n (∫
a

b
k) k

= f(x)dx − L (x)f(x) dx∫
a

b ∫
a

b (∑k=0
n

k k)

= f(x)dx − p (x)dx∫
a

b
∫
a

b
n

= f(x) − p (x) dx∫
a

b (n)

f(x) − p (x)n

27

Error Estimates
Recall

Hence

where

f(x) − p (x) =n (x −
(n + 1)!
f (θ)n+1

x) … (x −0 x)n

∣E (f)∣ ≤n ∣(x −
(n + 1)!
M n+1 ∫

a

b

x)(x −0 x) ⋯ (x −1 x)∣dxn

M =n+1 ∣f (θ)∣
θ∈[a,b]
max n+1

28

Error Estimates
For the trapezoid rule, the error bound is

The bound for depends directly on the integrand (via)

Just like with the Lebesgue constant, it is informative to be able
to compare quadrature rules independently of the integrand

∣E (f)∣ ≤1 M

12
(b − a)3

2

E n f M n+1

29

Error Estimates: Another Perspective
Theorem: If integrates polynomials of degree exactly,
then such that

Proof: For any , we have

where does not depend on

Q n n

∃C >n 0 ∣E (f)∣ ≤n C ∥f −n
p∈P n

min p∥ ∞

p ∈ P n

∣E (f)∣n = ∣I(f) − Q (f)∣n

≤ ∣I(f) − I(p)∣ + ∣I(p) − Q (f)∣n

= ∣I(f − p)∣ + ∣Q (f − p)∣n

≤ dx∥f − p∥ + ∣w ∣ ∥f − p∥ ∫
a

b
∞ (∑k=0

n
k) ∞

= C ∥f − p∥ n ∞

C =n b − a + ∣w ∣∑k=0
n

k p

30

Error Estimates
Hence a convenient way to compare accuracy of quadrature rules is to
compare the polynomial degree they integrate exactly

Newton–Cotes of order is based on polynomial interpolation,
hence in general integrates polynomials of degree exactly

Also follows from the fact that for a polynomial of degree

n

n

M =n+1 0 n

31

Runge’s Phenomenon Again
However, Newton–Cotes formulas are based on interpolation
at equally spaced points

Hence they’re susceptible to Runge’s phenomenon,
and we expect them to be inaccurate for large

Question: How does this show up in our error bound?

n

∣E (f)∣ ≤n C ∥f −n
p∈P n

min p∥ ∞

32

Runge Phenomenon Again
Answer: In the constant

Recall that , and that

If the blow up due to equally spaced points, so does

C n

C =n b − a + ∣w ∣∑k=0
n

k w =k L (x)dx∫
a

b
k

L k C n

33

Runge Phenomenon Again
In fact, we know that , why?

This tells us that if all the are positive, then

If weights are positive, then is a constant (independent of)
and the quadrature converges to the exact integral

 w =∑k=0
n

k b − a

w k

C =n b − a + ∣w ∣ =
k=0

∑
n

k b − a + w =
k=0

∑
n

k 2(b − a)

C n n

Q (f) →n I(f) as n → ∞

34

Runge Phenomenon Again
But with Newton–Cotes, quadrature weights become negative for
(in example above, would clearly yield)

Key point: Newton–Cotes is not useful for large

However, there are two natural ways to get quadrature rules
that converge as

integrate piecewise polynomial interpolant
do not use equally spaced interpolation points

We consider piecewise polynomial-based quadrature rules first

n > 8
L (x)10 w <10 0

n

n → ∞

35

Composite Quadrature Rules
Integrating a piecewise polynomial interpolant
leads to a composite quadrature rule

Suppose we divide into subintervals,
each of width , and ,

Then we have

[a, b] m

h = (b − a)/m x =i a + ih i = 0, 1, … ,m

I(f) = f(x)dx =∫
a

b

 f(x)dx
i=1

∑
m

∫
x i−1

x i

36

Composite Trapezoid Rule
Composite trapezoid rule: Apply trapezoid rule to each interval

The composite quadrature is denoted as

 f(x)dx ≈∫
x i−1

x i

 h[f(x) +
2
1

i−1 f(x)]i

Q (f)1,h = h[f(x) + f(x)]
i=1

∑
m

2
1

i−1 i

= h f(x) + f(x) + ⋯ + f(x) + f(x)[
2
1

0 1 m−1 2
1

m]

37

Composite Trapezoid Rule
Composite trapezoid rule error analysis

Hence,

E (f) =1,h I(f) − Q (f) =1,h f(x)dx − h[f(x) + f(x)]∑i=1
m [∫

x i−1

x i

2
1

i−1 i]

∣E (f)∣1,h ≤ f(x)dx − h[f(x) + f(x)] ∑i=1
m ∫

x i−1

x i

2
1

i−1 i

≤ max ∣f (θ)∣
12
h3

i=1

∑
m

θ∈[x ,x]i−1 i

′′

≤ m∥f ∥

12
h3

′′
∞

= (b − a)∥f ∥

12
h2

′′
∞

38

Composite Simpson Rule
We can obtain composite Simpson’s rule in the same way

Suppose that is divided into intervals by the points
, , where

Applying Simpson’s rule on each interval , yields

See
with composite trapezoid and Simpson’s rules

[a, b] 2m
x =i a + ih i = 0, … , 2m h = (b − a)/2m

[x ,x]2i−2 2i i = 1, … ,m

Q (f)2,h = [f(x) + 4f(x) + 2f(x) + 4f(x) + ⋯
3
h

0 1 2 3

+ 2f(x) + 4f(x) + f(x)]2m−2 2m−1 2m

[examples/unit3/quadcomp.py]

39

https://github.com/pkarnakov/am205/tree/main/examples/unit3/quadcomp.py

Adaptive Quadrature
Composite quadrature rules are very flexible,
can be applied to intervals of variable sizes

We should use smaller intervals where varies rapidly,
and larger intervals where varies slowly

This can be achieved by adaptive quadrature:
1. Initialize to (one interval)
2. On each interval, evaluate quadrature rule

and estimate quadrature error
3. If error estimate is larger than a given tolerance on interval ,

subdivide into two smaller intervals and return to step 2

Question: How can we estimate the quadrature error on an interval?

f

f

m = 1

i

40

Adaptive Quadrature
One straightforward way to estimate quadrature error on interval
is to compare to a more refined result for interval

Let denote the exact integral and
 denote quadrature approximation on interval

Let denote a more refined quadrature approximation on interval ,
e.g. obtained by subdividing interval

Then for the error on interval , we have

Suppose we can neglect so that we use
 as a computable estimator for

i

i

I (f)i

Q (f)h
i i

 (f)Q̂h
i i

i

i

∣I (f) −i Q (f)∣ ≤h
i ∣I (f) −i

 (f)∣ +Q̂h
i ∣ (f) −Q̂h

i Q (f)∣h
i

∣I (f) −i
 (f)∣Q̂h
i

∣ (f) −Q̂h
i Q (f)∣h

i ∣I (f) −i Q (f)∣h
i

41

Gauss Quadrature
Next we consider the second approach to developing
more accurate quadrature rules: unevenly spaced quadrature points

Recall that we can compare accuracy of quadrature rules
based on the polynomial degree that is integrated exactly

So far, we have only used equally spaced points

More accurate quadrature rules can be derived by choosing the
to maximize the degree of polynomials integrated exactly

Resulting family of quadrature rules is called Gauss quadrature

x i

42

Gauss Quadrature
With quadrature points and quadrature weights,
we have parameters to choose

We might hope to integrate a polynomial with parameters,
i.e. of degree

It can be shown that this is possible and leads to Gauss quadrature

Again the idea is to integrate a polynomial interpolant,
but we choose a specific set of interpolation points:
Gauss quadrature points are roots of a Legendre polynomial

n + 1 n + 1
2n + 2

2n + 2
2n + 1

43

Gauss Quadrature
Legendre polynomials form
an orthogonal basis for in the inner product

{P ,P , … ,P }0 1 n

P n L 2

 P (x)P (x)dx =∫
−1

1

m n {
 , m = n2n+1

2

0, m = n

44

Gauss Quadrature
Legendre polynomials satisfy a recurrence relation

The first six Legendre polynomials

P (x)0

P (x)1

(n + 1)P (x)n+1

= 1

= x

= (2n + 1)xP (x) − nP (x)n n−1

45

Gauss Quadrature
We can find the roots of and derive the -point
Gauss quadrature rule in the same way as for Newton–Cotes:
integrate the Lagrange interpolant

Gauss quadrature rules have been extensively tabulated for
Number of points Quadrature points Quadrature weights

1 0 2

2

3

… … …

Key point: Gauss quadrature weights are always positive,
so Gauss quadrature converges as

P (x)n n

x ∈ [−1, 1]

−1/ , 1/ 3 3 1, 1

− , 0, 3/5 3/5 5/9, 8/9, 5/9

n → ∞

46

Gauss Quadrature Points
Points cluster toward which prevents Runge’s phenomenon!±1

 47

Finite Differences

48

Finite Differences
Finite differences approximate a derivative of function

using samples of on a finite set of points

The points often form a uniform grid,
so the approximation at point involves values

f : R → R

f

x

… , f(x − 2h), f(x − h), f(x), f(x + h), f(x + 2h), …

49

Finite Differences
An approximation of the first derivative at point can be derived
from Taylor expansion about evaluated at

Solving for we get the forward difference formula

Here we neglected an term

x

x x + h

f(x + h) = f(x) + f (x)h +′
 h +

2
f (x)′′

2
 h +

6
f (x)′′′

3 ⋯

f (x)′

f (x)′ = − h + ⋯
h

f(x + h) − f(x)
2

f (x)′′

≈

h

f(x + h) − f(x)

O(h)

50

Finite Differences
The same expansion evaluated at

yields the backward difference formula

Again, we neglected an term

x − h

f(x − h) = f(x) − f (x)h +′
 h −

2
f (x)′′

2
 h +

6
f (x)′′′

3 ⋯

f (x) ≈′

h

f(x) − f(x − h)

O(h)

51

Finite Differences
Subtracting Taylor expansions for and
gives the centered difference formula

This one has a higher order, we neglected an term

f(x + h) f(x − h)

f (x)′ = − h + ⋯
2h

f(x + h) − f(x − h)
6

f (x)′′′
2

≈

2h
f(x + h) − f(x − h)

O(h)2

52

Finite Differences
Adding Taylor expansions for and expansion for
gives the centered difference formula for the second derivative

Again, we neglected an term

f(x + h) f(x − h)

f (x)′′ = − h + ⋯
h2

f(x + h) − 2f(x) + f(x − h)
12

f (x)(4)
2

≈

h2

f(x + h) − 2f(x) + f(x − h)

O(h)2

53

Finite Difference Stencils
The pattern of points involved in a finite difference
approximation is called a stencil

Examples of stencils, is the point of interest

x i

54

Finite Differences
By evaluating a Taylor expansion on stencils with more points,
we can derive:

approximations with a higher order of accuracy
approximations for higher derivatives

However, there is a more systematic way: differentiate an interpolant

55

Finite Differences
Linear interpolant through and is

Differentiating gives

which is the forward difference formula

Exercise: Derive the backward difference formula using interpolation

(x, f(x)) (x + h, f(x + h))

p (t) =1 f(x) +
h

x + h − t
f(x + h)

h

t − x

p 1

p (t) =1
′

h

f(x + h) − f(x)

56

Finite Differences
Quadratic interpolant from interpolation points
gives the centered difference formula for :

differentiate to get a linear polynomial
evaluate to get centered difference formula for

Also, gives the centered difference formula for

This approach can be applied to
higher degree interpolants (higher order, higher derivatives)
unevenly spaced points (adaptive approximations)

p 2 x − h, x, x + h

f (x)′

p 2 p 2
′

p (x)2
′ f (x)′

p (x)2
′′ f ′′

57

Differentiation Matrices
So far we have talked about finite difference formulas
to approximate at a single point

Now consider a grid and vectors of
values
derivatives
approximations

Introduce a mapping

from values to approximations

f (x)′ x

x , … , x ∈1 n R
F = [f(x), … , f(x)] ∈1 n

T Rn

F =′ [f (x), … , f (x)] ∈′
1

′
n

T Rn

=F
~ ′ [(x), … , (x)] ∈f

~′
1 f

~′
n

T Rn

D : R →n Rn

F F
~ ′

58

Differentiation Matrices
Since the exact differentiation is a linear operation,
it is natural to assume that is a linear mapping,
i.e.

Then corresponds to a square matrix
called a differentiation matrix

Row of corresponds to the finite difference formula for

Note that discretizations of PDEs often involve
nonlinear approximations of derivatives (will be considered later)

D

D(αF + βG) = αDF + βDG

D D ∈ Rn×n

i D f (x)′
i

D F ≈(i,:) f (x)′
i

59

Example: Differentiation Matrix
Forward difference corresponds to a bidiagonal matrix
with elements D =ii − , D =h

1
i,i+1

h
1

>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> n = 11
>>> h = 1 / (n - 1)
>>> D = np.diag(-np.ones(n) / h) + np.diag(np.ones(n - 1) / h, 1
>>> plt.spy(D)
>>> plt.show()

60

Example: Differentiation Matrix
But the last row is incorrect,

 is ignored!D =n,n+1

h
1

61

Example: Differentiation Matrix
Boundary points need different formulas

For example, use the backward difference in the last row

See

D =n,n−1 − , D =h
1

nn

h
1

[examples/unit3/diff_matr.py]
62

https://github.com/pkarnakov/am205/tree/main/examples/unit3/diff_matr.py

Initial Value Problems for ODEs

63

Initial Value Problems for ODEs
An initial value problem for an ODE has the form

where
 is an unknown vector function

 is the right-hand side
 is the initial condition

The order of an ODE is the highest-order derivative that appears

Therefore, is a first order ODE

y (t) =′ f(t, y(t)), y(0) = y 0

y(t) ∈ Rn

f : R × R →n Rn

y(0) = y ∈0 Rn

y (t) =′ f(t, y)

64

Initial Value Problems for ODEs
We only consider first order ODEs since higher order problems
can be transformed to first order by introducing extra variables

For example, recall Newton’s second law:

Introduce , then the original problem is equivalent to

and ,

y (t) =′′
 , y(0) =

m

F (t, y, y)′
y , y (0) =0

′ v 0

v = y′

v (t)′

y (t)′

=

m

F (t, y, v)

= v(t)

y(0) = y 0 v(0) = v 0

65

Example: A Predator–Prey Model
The Lotka–Volterra equation is a two-variable nonlinear ODE
that models the evolution of populations of two species

Unknowns are the populations (prey) and (predator)

Parameters are (birth rate), (death rate), , and (interactions)

See

y =′
 ≡[

y (α − β y)1 1 1 2

y (−α + β y)2 2 2 1
] f(y)

y 1 y 2

α 1 α 2 β 1 β 2

[examples/unit3/lotka_volterra.py]

66

https://github.com/pkarnakov/am205/tree/main/examples/unit3/lotka_volterra.py

ODEs in Python
scipy.integrate has functions to solve initial value problems for ODEs

odeint(), uses lsoda() from FORTRAN library odepack
solve_ivp(), modern alternative with various methods

67

Forward Euler Method
Suppose we want to compute an approximate solution to

at points for

Denote the approximation as

Forward Euler method: use forward difference for

See , Lotka-Volterra solved with forward Euler

y =′ f(t, y), y(0) = y 0

t =k kh k = 0, 1, …

y ≈k y(t)k
y′

 =
h

y − y k+1 k
f(t , y), k =k k 0, 1, …

[examples/unit3/euler.py]

68

https://github.com/pkarnakov/am205/tree/main/examples/unit3/euler.py

Forward Euler Method
Quadrature-based interpretation:
integrating the ODE from to gives

Apply Newton–Cotes quadrature to
based on interpolation point

to get the forward Euler method

y =′ f(t, y) t k t k+1

y(t) =k+1 y(t) +k f(s, y(s))ds∫
t k

t k+1

n = 0 f(s, y(s))ds∫
t k

t k+1

tk

 f(s, y(s))ds ≈∫
t k

t k+1

(t −k+1 t)f(t , y) =k k k hf(t , y)k k

y =k+1 y +k hf(t , y)k k

69

Backward Euler Method
We can derive other methods using the same quadrature-based approach

Apply Newton–Cotes quadrature to
based on interpolation point

to get the backward Euler method

n = 0 f(s, y(s))ds∫
t k

t k+1

t k+1

 f(s, y(s))ds ≈∫
t k

t k+1

(t −k+1 t)f(t , y) =k k+1 k+1 hf(t , y)k+1 k+1

y =k+1 y +k hf(t , y)k+1 k+1

70

Backward Euler Method
Forward Euler method is an explicit method:
we have an explicit formula for in terms of

Backward Euler is an implicit method:
we have to solve a nonlinear equation for

y k+1 y k

y =k+1 y +k hf(t , y)k k

y k+1

y =k+1 y +k hf(t , y)k+1 k+1

71

Backward Euler Method
For example, approximate using backward Euler

at the first step , we get

to compute , let
and solve (e.g. using Newton’s method)

Implicit methods are more complicated and
more computationally expensive to make one time step

However, they can be more stable and accurate (to be seen shortly)

y =′ 2 sin(ty)
k = 0

y =1 y +0 h sin(t y)1 1

y 1 F (y) =1 y −1 y −0 h sin(t y)1 1

F (y) =1 0

72

Trapezoid Method
Higher-order quadrature leads to more accurate methods

Apply Newton–Cotes (trapezoid rule) to
based on interpolation points ,

to get the trapezoid method

n = 1 f(s, y(s))ds∫
t k

t k+1

t k t k+1

 f(s, y(s))ds ≈∫
t k

t k+1

 (f(t , y) +
2
h

k k f(t , y))k+1 k+1

y =k+1 y +k f(t , y) + f(t , y)
2
h

(k k k+1 k+1)

73

One-Step Methods
The three methods we have considered so far have the form

where the choice of the function determines our method

These are called one-step methods: depends only on

In a multistep method, depends on more values
(will be discussed briefly later)

y k+1

y k+1

y k+1

= y + hΦ(t , y ;h) (explicit)k k k

= y + hΦ(t , y ;h) (implicit)k k+1 k+1

= y + hΦ(t , y , t , y ;h) (implicit)k k k k+1 k+1

Φ

y k+1 y k

y k+1 y , y , y , …k k−1 k−2

74

Convergence

75

Convergence
We now consider whether one-step methods converge
to the exact solution as

Convergence is a crucial property since we want to be able
to approach the exact solution at an arbitrary tolerance
by taking a sufficiently small

h → 0

h > 0

76

Convergence
Define the global error
as the total accumulated error at

Define the truncation error as the error introduced at one step ,
starting from the exact solution, divided by

For example, the truncation error of an explicit one-step method is

e k

t = t k

e =k y(t) −k y k

T k k

h

T =k −
h

y(t) − y(t)k+1 k Φ(t , y(t);h)k k

77

Convergence
The truncation error defined above determines
the local error introduced by the ODE approximation

For example, suppose , then for the case above we have

Therefore, is the error introduced in one step of our ODE approximation

The local error accumulates and determines the global error

Now let’s consider the global error of the Euler method in detail

y =k y(t)k

hT =k y(t) −k+1 y −k hΦ(t , y ;h) =k k y(t) −k+1 y k+1

hTk

78

Convergence
Theorem: Suppose we apply forward Euler method to

for steps , where satisfies a Lipschitz condition

where is called a Lipschitz constant.
Then the global error is bounded as

where is the truncation error of the method

y =′ f(t, y)

k = 0, 1, … ,M − 1 f

∣f(t,u) − f(t, v)∣ ≤ L ∣u −f v∣,

L ∈f R >0

∣e ∣ ≤k ∣T ∣ , k =
L f

e − 1(L t f k)
[

0≤j≤k−1
max j] 0, 1, … ,M

T j

79

Convergence
Proof (1/3)

From the definition of the truncation error, we have

Subtracting gives

therefore

y(t) =k+1 y(t) +k hf(t , y(t);h) +k k hT k

y =k+1 y +k hf(t , y ;h)k k

e =k+1 e +k h f(t , y(t)) − f(t , y) +[k k k k] hT k

∣e ∣ ≤k+1 ∣e ∣ +k hL ∣e ∣ +f k h∣T ∣ =k (1 + hL)∣e ∣ +f k h∣T ∣k

80

Convergence
Proof (2/3)

This gives a geometric progression, e.g. for we have

In general

k = 2

∣e ∣3 ≤ (1 + hL)∣e ∣ + h∣T ∣f 2 2

≤ (1 + hL)((1 + hL)∣e ∣ + h∣T ∣) + h∣T ∣f f 1 1 2

≤ (1 + hL) h∣T ∣ + (1 + hL)h∣T ∣ + h∣T ∣f
2

0 f 1 2

≤ h ∣T ∣ (1 + hL)[
0≤j≤2
max j]

j=0

∑
2

f
j

∣e ∣ ≤k h ∣T ∣ (1 +[
0≤j≤k−1

max j]
j=0

∑
k−1

hL)f j

81

Convergence
Proof (3/3)

Use the formula for the sum

with , to get

Finally, use the bound
to get the desired result

 r =
j=0

∑
k−1

j

1 − r

1 − rk

r = (1 + hL)f

∣e ∣ ≤k ∣T ∣ ((1 +
L f

1
[

0≤j≤k−1
max j] hL) −f

k 1)

1 + hL ≤f exp(hL)f
□

82

Convergence: Lipschitz Condition
A simple case where we can calculate a Lipschitz constant
is if and is continuously differentiable

Then from the mean value theorem we have

for

Therefore, a Lipschitz constant is given by

y ∈ R f

∣f(t,u) − f(t, v)∣ = (t, θ) ∣u −
∂y
∂f

v∣,

θ ∈ (u, v)

L =f ∣f (t, θ)∣

t∈[0,t]M

θ∈(u,v)

max y

83

Convergence: Lipschitz Condition
However, the Lipschitz condition is weaker,

 does not have to be continuously differentiable

For example, let ,
then ,
and therefore

f

f(x) = ∣x∣
∣f(x) − f(y)∣ = ∣∣x∣ − ∣y∣∣ ≤ ∣x − y∣

L =f 1

84

Convergence
For a fixed (i.e. , as and),
the factor in the bound is a constant

Hence the global convergence rate for each fixed
is given by the dependence of on

Our proof was for forward Euler, but the same dependence
of global error on local error holds in general

We say that a method has order of accuracy if

From our error bound, ODE methods with order are convergent

t t = kh h → 0 k → ∞
(e −L tf 1)/L f

t

T k h

p

∣T ∣ =k O(h)p

≥ 1

85

Order of Accuracy
Forward Euler is first order accurate

Tk = − f(t , y(t))
h

y(t) − y(t)k+1 k
k k

= − y (t)
h

y(t) − y(t)k+1 k ′
k

= − y (t)
h

y(t) + hy (t) + h y (θ)/2 − y(t)k
′

k
2 ′′

k ′
k

= y (θ)
2
h ′′

86

Order of Accuracy
Backward Euler is first order accurate

Tk = − f(t , y(t))
h

y(t) − y(t)k+1 k
k+1 k+1

= − y (t)
h

y(t) − y(t)k+1 k ′
k+1

= − y (t)
h

y(t) − y(t) + hy (t) − h y (θ)/2k+1 k+1
′

k+1
2 ′′

′
k+1

= − y (θ)
2
h ′′

87

Order of Accuracy
Trapezoid method is second order accurate

Let’s prove this using a quadrature error bound, recall that

so the truncation error is

 =
h

y(t) − y(t)k+1 k
 f(s, y(s))ds

h

1
∫
t k

t k+1

T =k f(s, y(s))ds −
h

1
∫
t k

t k+1

 f(t , y(t)) + f(t , y(t))
2
1

[k k k+1 k+1]

88

Order of Accuracy
Then

Therefore, is determined by the trapezoid quadrature rule
error for the integrand on

Recall that trapezoid quadrature rule error bound
depends on and hence

T k = f(s, y(s))ds − f(t , y(t)) + f(t , y(t))
h

1
[∫

t k

t k+1

2
h

(k k k+1 k+1)]

= y (s)ds − y (t) + y (t)
h

1
[∫

t k

t k+1
′

2
h

(′
k

′
k+1)]

T k

y′ t ∈ [t , t]k k+1

(b − a) =3 (t −k+1 t) =k
3 h3

T =k O(h)2

89

Order of Accuracy
The table below shows global error at for ,
solved using forward Euler and trapezoid methods

2.0e-2 2.67e-2 9.06e-05

1.0e-2 1.35e-2 2.26e-05

5.0e-3 6.76e-3 5.66e-06

2.5e-3 3.39e-3 1.41e-06

t = 1 y =′ y y(0) = 1

h E Euler E trap

h → h/2 ⟹ E →Euler E /2Euler

h → h/2 ⟹ E →trap E /4trap

90

Stability

91

Stability
So far we have discussed convergence of numerical methods
for initial value problems for ODEs, i.e. asymptotic behavior as

It is also crucial to consider stability of numerical methods:
for what values of is the method stable?

We want the method to be stable for as large a step size as possible

Taking fewer larger steps can be more efficient

h → 0

h

92

Stability
In this context, the key idea is that we want our methods to inherit the
stability properties of the ODE

If an ODE is unstable, then we can’t expect our discretization to be stable

But if an ODE is stable, we want our discretization to be stable as well

Hence we first discuss ODE stability, independent of numerical
discretization

93

ODE Stability
Consider an ODE , and

let be the solution for initial condition
let be the solution for initial condition

The ODE is stable if:
for every , such that

for all

Small input perturbation leads to small perturbation in the solution

y =′ f(t, y)
y(t) y(0) = y 0

 (t)ŷ (0) =ŷ ŷ0

ϵ > 0 ∃δ > 0

∥ −ŷ0 y ∥ ≤0 δ ⟹ ∥ (t) −ŷ y(t)∥ ≤ ϵ

t ≥ 0

94

ODE Stability
A stronger form of stability, asymptotic stability:

 as , perturbations decay over time

These two definitions of stability are properties of the ODE,
independent of any numerical algorithm

In ODEs (and PDEs), it is standard to use stability to refer to sensitivity
of both the mathematical problem and numerical approximations

∥ (t) −ŷ y(t)∥ → 0 t → ∞

95

Example: ODE Stability
Stability of for different values of

solution for
perturbed solution for
difference

asymptotically stable

stable

unstable

y =′ λy λ

y = y e0
λt y =0 1

 =ŷ eŷ0
λt

 =ŷ0 0.9
∣ −ŷ y∣ = ∣ −ŷ0 y ∣e0

λt

λ = −1 λ = 0 λ = 1

96

ODE Stability
More generally, we can allow to be a complex number:

Then

The key issue for stability is now the sign of
 asymptotically stable
 stable
 unstable

λ λ = a + ib

y(t) = y e =0
(a+ib)t y e e =0

at ibt y e (cos(bt) +0
at i sin(bt))

a = Re(λ)
Re(λ) < 0 ⟹
Re(λ) = 0 ⟹
Re(λ) > 0 ⟹

97

ODE Stability
Understanding the stability of a scalar equation
can extend to the case , where

Suppose that is diagonalizable, so that we have
the eigenvalue decomposition , where

, where the are eigenvalues
 is matrix with eigenvectors as columns,

Then,

where and

y =′ λy

y =′ Ay y ∈ R ,A ∈n Rn×n

A

A = V ΛV −1

Λ = diag(λ ,λ , … ,λ)1 2 n λ j

V v , v , … , v 1 2 n

y =′ Ay = V ΛV y ⟹−1 V y =−1 ′ ΛV y ⟹−1 z = Λz′

z = V y−1 z =0 V y

−1
0

98

ODE Stability
Hence we have decoupled ODEs for ,
and the stability of is determined by for each

Since and are related by the matrix ,
then if all are stable then all will also be stable

If Re for then is a stable ODE

Next we consider stability of numerical approximations to ODEs

n z

z i λ i i

z y V

z i y i

(λ) ≤i 0 i = 1, … ,n y =′ Ay

99

ODE Stability
Numerical approximation to an ODE is stable if:
for every , such that

for all

Key idea: We want to develop numerical methods
that mimic the stability properties of the exact solution

That is, if the ODE is unstable,
we should not expect the numerical approximation to be stable

ϵ > 0 ∃δ > 0

∥ −ŷ0 y ∥ ≤0 δ ⟹ ∥ −ŷk y ∥ ≤k ϵ

k ≥ 0

100

Stability
Since ODE stability is problem dependent,
we need a standard test problem

The standard test problem is the simple scalar ODE

Behavior of a discretization on this test problem
gives insight into behavior in general

Ideally, to reproduce stability of the ODE ,
we want our discretization to be stable for all Re

y =′ λy

y =′ λy

(λ) ≤ 0

101

Stability: Forward Euler
Consider forward Euler discretization of

Here is called the amplification factor

Stability means

Let , then

y =′ λy

y =k+1 y +k hλy =k (1 + hλ)y ⟹k y = (1 + hλ) y k
k

0

1 + hλ

∣1 + hλ∣ ≤ 1

hλ = a + ib ∣1 + a + ib∣ ≤2 1 ⟹2 (1 + a) +2 b ≤2 1

102

Stability: Forward Euler
Therefore, forward Euler is stable for
inside the circle of radius 1 centered at

This is a subset of the left-half plane

We say that the forward Euler method is conditionally stable:
if , we have to restrict to ensure stability

hλ ∈ C
(−1, 0)

Re(hλ) ≤ 0

Re(λ) ≤ 0 h

103

Stability: Forward Euler
For example, given , we require

Hence “larger negative ” implies tighter restriction on :

See , forward Euler stability

λ < 0

−2 ≤ hλ ≤ 0 ⟹ h ≤ −2/λ

λ h

λ = −10

λ = −200

⟹

⟹

h ≤ 0.2

h ≤ 0.01

[examples/unit3/euler_stab.py]

104

https://github.com/pkarnakov/am205/tree/main/examples/unit3/euler_stab.py

Stability: Backward Euler
In comparison, consider backward Euler for

Here the amplification factor is
and the stability condition is

y =′ λy

y =k+1 y +k hλy ⟹k+1 y = () y k 1−hλ
1 k

0

 1−hλ
1

 ≤∣1−hλ∣
1 1

105

Stability: Backward Euler
Let , then , i.e.

If Re , this is satisfied for any

We say that the backward Euler method is unconditionally stable:
if , no restriction on for stability

hλ = a + ib 1 ≤2 ∣1 − (a + ib)∣2 (1 − a) +2 b ≥2 1

(λ) ≤ 0 h > 0

Re(λ) ≤ 0 h

106

Stability
Generally, implicit methods have larger stability regions than explicit
and therefore allow us to take larger time steps

But explicit methods require less work per step
since we do not need to solve for

Therefore there is a tradeoff:
the choice of method should depend on the problem

y k+1

107

Stability Regions
ODE

forward Euler

backward Euler

y =′ λy

y(t) = y e0
λt

∣e ∣ ≤λ 1

y =k+1 y +k hλy k

y =k y (1 +0 hλ)k

∣1 + hλ∣ ≤ 1

y =k+1 y +k hλy k+1

y =k y /(1 −0 hλ)k

∣1/(1 − hλ)∣ ≤ 1

108

Runge–Kutta Methods
Runge–Kutta (RK) methods are a popular class of one-step methods

Aim to achieve higher order accuracy by combining evaluations of
at several points in

RK methods all fit within a general framework,
which can be described in terms of Butcher tableaus

We will first consider two RK examples:
two evaluations of and four evaluations of

Extra reading:

f

[t , t]k k+1

f f

Butcher, 1996. A history of Runge-Kutta methods

109

https://doi.org/10.1016/0168-9274(95)00108-5

Runge–Kutta Methods
A family of Runge–Kutta methods
with two intermediate evaluations is defined by

Forward Euler method is a member of this family,
with and

It can be shown that certain combinations of
yield a second-order method

k 1

k 2

y k+1

= f(t , y)k k

= f(t + αh, y + βhk)k k 1

= y + h(ak + bk)k 1 2

a = 1 b = 0

a, b,α,β

110

Runge–Kutta Methods
Second-order methods with two stages

midpoint method (, ,)

Heun’s method (,)

Ralston’s method (, , ,)

See

α = β = 1/2 a = 0 b = 1

y =k+1 y +k hf(t +k h, y +2
1

k hf(t , y))2
1

k k

α = β = 1 a = b = 1/2

y =k+1 y +k h[f(t , y) +2
1

k k f(t +k h, y +k hf(t , y))]k k

α = 2/3 β = 2/3 a = 1/4 b = 3/4

y =k+1 y +k h[f(t , y) +4
1

k k 3f(t +k , y +3
2h

k f(t , y))]3
2h

k k

[examples/unit3/rk_order2.py]

111

https://github.com/pkarnakov/am205/tree/main/examples/unit3/rk_order2.py

Runge–Kutta Methods
The classical fourth-order Runge-Kutta method RK4
(available in scipy.integrate.solve_ivp)

It can be shown that the truncation error of RK4 is

k 1

k 2

k 3

k 4

y k+1

= f(t , y)k k

= f(t + h/2, y + hk /2)k k 1

= f(t + h/2, y + hk /2)k k 2

= f(t + h, y + hk)k k 3

= y + h(k + 2k + 2k + k)k 6
1

1 2 3 4

T =k O(h)4

112

Runge–Kutta Methods: Stability
Stability regions of -stage Runge–Kutta methods of order
(do not depend on a particular method)

p p

113

Butcher tableau
Any explicit Runge–Kutta method with stages can be represented
using a triangular grid of coefficients called the Butcher tableau

The -th intermediate step is

The solution is updated as

s + 1

α 0

α 1

⋮
α s

β 1,0

⋮
β s,0

γ 0

β s,1

γ 1

…
…

β s,s−1

γ s−1 γ s

i

k =i f(t +k α h, y +i k h β k)∑j=0
i−1

i,j j

y =k+1 y +k h γ k ∑j=0
s

j j

114

Richardson Extrapolation
Richardson extrapolation is a general approach
to analyze error and improve accuracy

Treats the approximation as a “black box”

Assume that is an approximation to that depends
on a discretization parameter and the error has the form

Some parameters here may be known or unknown
exact solution
order of accuracy
factor of the leading error term

Y (h) y

h > 0

Y (h) − y = Ch +p O(h)p+1

y

p

C

115

Richardson Extrapolation
We can evaluate for various to eliminate the unknowns

For example, if is known we can evaluate and

Y (h) h

p Y (2h) Y (h)

Y (2h) − y

Y (h) − y

= C2 h + O(h)p p p+1

= Ch + O(h)p p+1

116

Richardson Extrapolation
If we multiply the second equation by

and eliminate , we get a higher-order approximation to

The corresponding error estimate is

2p

Y (2h) − y

2 (Y (h) − y)p

= C2 h + O(h)p p p+1

= C2 h + O(h)p p p+1

C2 hp p y

y = [2 Y (h) −
2 − 1p

1 p Y (2h)] + O(h)p+1

Y (h) − y = [Y (2h) −
2 − 1p

1
Y (h)] + O(h)p+1

117

Error Estimation
How can we compute the solution error
without knowing the exact solution?

Two approaches to estimate the error
Richardson extrapolation
include an error estimate in the derivation of the method

118

Error Estimation
First approach: Richardson extrapolation

Let be an approximation to
by a Runge–Kutta method of order with a time step

Evaluate and to construct an approximation of order

The corresponding error estimate is

See and
applying Richardson extrapolation to each step of forward Euler (i.e.)

Y (h) y(t)
p h

Y (h) − y(t) = Ch +p O(h)p+1

Y (h) Y (h/2) p + 1

y(t) = [2 Y (h/2) −
2 − 1p

1 p Y (h)] + O(h)p+1

Y (h/2) − y(t) = [Y (h) −
2 − 1p

1
Y (h/2)] + O(h)p+1

[examples/unit3/richardson.py] [examples/unit3/richardson2.py]
t = h

119

https://github.com/pkarnakov/am205/tree/main/examples/unit3/richardson.py
https://github.com/pkarnakov/am205/tree/main/examples/unit3/richardson2.py

Error Estimation
Second approach: derive Butcher tableaus with
an additional higher-order formula for estimating error

Fehlberg’s order 4(5) method RKF45
 is order 4, is order 5, is an error estimatey k+1 ŷk+1 y −k+1 ŷk+1

0
 4

1

8
3

 13
12

1

 2
1

y k+1

 ŷk+1

 4
1

32
3

 2197
1932

216
439

 27
−8

 216
25

135
16

32
9

− 2197
7200

−8

2

0

0

 2197
7296

513
3680

 2565
−3544

 2565
1408

12825
6656

−

4104
845

 4104
1859

 4104
2197

56430
28561

 40
−11

− 5
1

−

50
9

0

55
2

Fehlberg, 1969. Low-order classical Runge-Kutta formulas with stepsize
control and their application to some heat transfer problems. NASA

120

https://ntrs.nasa.gov/citations/19690021375

Higher-Order Methods
Fehlberg’s order 7(8) method RKF78

See implementation in

0

27
2

9
1

 6
1

12
5

 2
1

6
5

6
1

 3
2

3
1

1

0
1

y k+1

 ŷk+1

27
2

36
1

 24
1

12
5

 20
1

−

108
25

300
31

2
−

108
91

 4100
2383

205
3

−

4100
1777

 840
41

0

12
1

0
0

0

0
0

0
0

0

0
0

0
0

 8
1

− 16
25

0

0
0

0
0

0

0
0

0
0

16
25

 4
1

108
125

0

− 6
53

108
23

− 164
341

0
−

164
341

0
0

 5
1

−

27
65

225
61

 45
704

−

135
976

 1025
4496

0

1025
4496

0
0

54
125

−

9
2

− 9
107

54
311

− 82
301

−

41
6

−

82
289

 105
34

105
34

900
13

 90
67

− 60
19

 4100
2133

−

205
3

4100
2193

 35
9

35
9

3

6
17

 82
45

−

41
3

82
51

 35
9

35
9

−

12
1

 164
45

41
3

164
33

 280
9

280
9

 41
18

41
6

41
12

 280
9

280
9

0
0

 840
41

0

1

0

840
41

0

840
41

[examples/unit3/fehlberg.py]

Fehlberg, 1968. Classical fifth-, sixth-, seventh-, and eighth-order
Runge-Kutta formulas with stepsize control. NASA

121

https://github.com/pkarnakov/am205/tree/main/examples/unit3/fehlberg.py
https://ntrs.nasa.gov/citations/19680027281

Higher-Order Methods: Stability
Stability region of Fehlberg’s order 7 method (13 stages)
compared to order Runge–Kutta methodsp

122

Stiff systems
A system of linear ODEs

is called stiff if the eigenvalues of differ greatly in magnitude

Recall that if with a diagonal matrix of eigenvalues ,
then substitution reduces the system to .
Therefore, eigenvalues determine the timescales

If the differences in eigenvalues are large,
we need to resolve multiple timescales simultaneously

y =′ Ay

A

A = V ΛV −1 Λ
y = V z z =′ Λz

123

Stiff systems
Suppose we are interested only in the slow components of the solution
and can ignore the fast components

However, an explicit method will need to resolve the fast components
to avoid instability

Therefore, it may be beneficial to use an implicit method for stiff systems

124

Stiff systems
From a practical point of view, an ODE is considered stiff
if there is a significant benefit in using an implicit method instead of explicit

In particular, the time step required for stability is much smaller
than what is required for accuracy

Consider , where

which has , and exact solution

See and

y =′ Ay y =0 [1, 0]T

A = [
998

−999
1998

−1999]

λ =1 −1 λ =2 −1000

y(t) = [
2e − e−t −1000t

−e + e−t −1000t]

[examples/unit3/stiff.py] [examples/unit3/stiff2.py]
125

https://github.com/pkarnakov/am205/tree/main/examples/unit3/stiff.py
https://github.com/pkarnakov/am205/tree/main/examples/unit3/stiff2.py

Multistep Methods
To obtain a high-order approximation
one-step methods use multiple function evaluations

Can we reuse data from earlier time steps instead?

This is the idea of multistep methods

If then the method is explicit

Interpolate the solution and integrate the interpolant
to derive the parameters

y =k+1 α y +
i=1

∑
m

i k+1−i h β f(t , y)
i=0

∑
m

i k+1−i k+1−i

β =0 0

126

Multistep Methods
See , second-order Adams–Bashforth method

Question: Multistep methods require data from
several earlier time steps, so how do we initialize?

Answer: The standard approach is to use a one-step method
and then move to multistep after collecting enough data

Advantages of one-step methods over multistep
one-step methods are “self-starting”, only need the initial condition
easier to adapt the time step size

[examples/unit3/adams.py]

127

https://github.com/pkarnakov/am205/tree/main/examples/unit3/adams.py

Boundary Value Problems for ODEs

128

Boundary Value Problems for ODEs
Consider a second-order linear ODE

for with given parameters
and function

The terms in this ODE have standard names
diffusion term
advection term
reaction term
source term

−αu (x) +′′ βu (x) +′ γu(x) = f(x)

x ∈ [a, b] α,β, γ ∈ R
f : R → R

−αu (x)′′

βu (x)′

γu(x)
f(x)

129

Boundary Value Problems for ODEs
A boundary value problem (BVP) for a second-order linear ODE
consists of

and boundary conditions (BCs) at and

Standard types of boundary conditions
Dirichlet condition:
Neumann condition:
Robin (or “mixed”) condition:

−αu (x) +′′ βu (x) +′ γu(x) = f(x)

x = a x = b

u(a) = c 1

u (a) =′ c 1

u (a) +′ c u(a) =2 c 3

130

Shooting Method
The shooting method solves the boundary value problem
iteratively by solving an initial value problem at each iteration

To form a correct IVP starting from for a second-order equation,
we need two conditions at

one condition is part of the BVP
another condition is imposed with an unknown parameter

For example, with two Dirichlet conditions and ,
we can additionally specify

Solve the IVP, and somehow update to improve the error

Not widely used as it relies on nonlinear optimization
and does not generalize to PDEs

x = a

x = a

u(a) = c 1 u(b) = c 2

u (a) =′ g

g ∣u(b) − c ∣2

131

Shooting Method: Example
Steady-state diffusion-reaction equation ()

Dirichlet conditions: and
and extra Neumann condition:

Iteration: with

See

α = 1, γ = −5

−αu (x) +′′ γu(x) = 0, x ∈ [0, 1]

u(0) = 0 u(1) = 0.5
u(0) = g

g =new g + η(0.5 − u(1)) η = 2

[examples/unit3/shooting.py]
132

https://github.com/pkarnakov/am205/tree/main/examples/unit3/shooting.py

ODEs: BVP
A more general approach is to formulate a coupled system
of equations for the BVP based on a finite difference approximation

Suppose we have a grid

where

Then our approximation to is represented by a vector ,
where

x =i a + ih, i = 0, 1, … ,n − 1

h = (b − a)/(n − 1)

u(x) U ∈ Rn

U ≈i u(x)i

133

ODEs: BVP
Recall the ODE

Let’s develop an approximation for each term in the ODE

For the reaction term , we have the pointwise approximation

−αu (x) +′′ βu (x) +′ γu(x) = f(x), x ∈ [a, b]

γu

γU ≈i γu(x)i

134

ODEs: BVP
Similarly, for the derivatives

Let be the differentiation matrix for the second derivative
Let be the differentiation matrix for the first derivative

Then and

Hence, we obtain , where is

Similarly, we represent the right hand side by sampling at the grid points,
so we introduce , where

D ∈2 Rn×n

D ∈1 Rn×n

−α(D U) ≈2 i −αu (x)′′
i β(D U) ≈1 i βu (x)′

i

(AU) ≈i −αu (x) +′′
i βu (x) +′

i γu(x)i A ∈ Rn×n

A = −αD + βD + γI2 1

f

F ∈ Rn F =i f(x)i

135

ODEs: BVP
Therefore, we obtain the linear system for

We have converted a linear differential equation
into a linear algebraic equation

Similarly, we can convert a nonlinear differential
equation into a nonlinear algebraic system

Now we need to account for the boundary conditions

U ∈ Rn

AU = F

136

ODEs: BVP
Dirichlet boundary conditions
we need to impose ,

Since we fix and , they are no longer variables:
we can eliminate them from our linear system

However, instead of removing rows and columns from ,
it is more convenient to

“zero out” first row of , then set and
“zero out” last row of , then set and

U =0 c 1 U =n−1 c 2

U 0 U n−1

A

A A(0, 0) = 1 F =0 c 1

A A(n − 1,n − 1) = 1 F =n−1 c 2

137

ODEs: BVP
See

Convergence study:

error

, as expected due to second-order differentiation matrices

[examples/unit3/ode_bvp.py]

h

2.0 × 10−2 5.07 × 10−3

1.0 × 10−2 1.26 × 10−3

5.0 × 10−3 3.17 × 10−4

2.5 × 10−3 7.92 × 10−5

O(h)2

138

https://github.com/pkarnakov/am205/tree/main/examples/unit3/ode_bvp.py

Method of Manufactured Solutions
The method of manufactured solutions
is a technique for testing the implementation
1. choose a solution that satisfies the boundary conditions
2. substitute into the ODE to get a right-hand side
3. compute the ODE approximation with from step 2
4. verify that you get the expected convergence rate

for the approximation to

For example, consider and set

u

f

f

u

x ∈ [0, 1] u(x) = e sin(2πx)x

f(x) = −αu (x) + βu (x) + γu(x)′′ ′

= −αe 4π cos(2πx) + (1 − 4π) sin(2πx) +x [2]

+ βe sin(2πx) + 2π cos(2πx) + γe sin(2πx)x [] x

139

Derivatives in BCs
Question: How would we impose the Robin boundary condition

, and preserve the convergence rate?

Option 1: Introduce a ghost node at ,
this node is involved in both the BC and the -th matrix row

Employ central difference approx. to to get approx. B.C.:

or equivalently

u (b) +′ c u(b) =2 c 3 O(h)2

x =n b + h

(n − 1)

u (b)′

 +
2h

U − U n n−2
c U =2 n−1 c ,3

U =n U −n−2 2hc U +2 n−1 2hc 3

140

Derivatives in BCs
The -th equation is

We can substitute our expression for into the above equation,
and hence eliminate

Set , we get system

Option 2: Use a one-sided finite-difference formula for in the Robin BC

(n − 1)

−α +
h2

U − 2U + U n−2 n−1 n
β +

2h
U − U n n−2

γU =n−1 F n−1

U n

U n

− + βc −(
h

2αc 3
3) U +

h2

2α
n−2 (1 + hc) − βc + γ U =(

h2

2α
2 2) n−1 F n−1

F ←n−1 F −n−1 − + βc (
h

2αc 3
3) n × n AU = F

u (b)′

141

Partial Differential Equations

142

Partial Differential Equations
As discussed in the introduction, it is a natural extension to consider Partial
Differential Equations (PDEs)

There are three main classes of PDEs:

equation type prototypical example equation

hyperbolic wave equation

parabolic heat equation

elliptic Poisson equation

Question: Where do these names come from?

u −tt u =xx 0

u −t u =xx f

u +xx u =yy f

143

Partial Differential Equations
Answer: The names are related to conic sections

General second-order PDEs have the form

This looks like the quadratic function

au +xx bu +xy cu +yy du +x eu +y fu + g = 0

q(x, y) = ax +2 bxy + cy +2 dx + ey

144

PDEs: Hyperbolic
Wave equation:

Corresponding quadratic function is

 gives a hyperbola, e.g. for , we have

u −tt u =xx 0

q(x, t) = t −2 x2

q(x, t) = c c = 0, 2, 4, 6

145

PDEs: Parabolic
Heat equation:

Corresponding quadratic function is

 gives a parabola, e.g. for , we have

u −t u =xx 0

q(x, t) = t − x2

q(x, t) = c c = 0, 2, 4, 6

146

PDEs: Elliptic
Poisson equation:

Corresponding quadratic function is

 gives an ellipse, e.g. for , we have

u +xx u =yy f

q(x, y) = x +2 y2

q(x, y) = c c = 0, 2, 4, 6

147

PDEs
In general, it is not so easy to classify PDEs using conic section naming

Many problems don’t strictly fit into the classification scheme
(e.g. nonlinear, or higher order, or variable coefficient equations)

Nevertheless, the names hyperbolic, parabolic, elliptic are the standard ways
of describing PDEs, based on the criteria:

Hyperbolic: time-dependent, conservative physical process,
no steady state
Parabolic: time-dependent, dissipative physical process,
evolves towards steady state
Elliptic: describes systems at equilibrium/steady-state

148

Hyperbolic PDEs
We introduced the wave equation above

Note that the system of first order PDEs

is equivalent to the wave equation, since

This assumes that , are smooth,
so we can switch the order of the partial derivatives

u −tt u =xx 0

u + vt x

v + ut x

= 0

= 0

u =tt (u) =t t (−v) =x t −(v) =t x −(−u) =x x uxx

u v

149

Hyperbolic PDEs
Hence we will focus on the linear advection equation

with initial condition , and

This equation is representative of hyperbolic PDEs in general

This is a first order PDE and does not correspond to a conic section

However, it is still considered hyperbolic since it is
time-dependent
conservative
not evolving toward steady state

u +t cu =x 0

u(x, 0) = u (x)0 c ∈ R

150

Hyperbolic PDEs
We can see that satisfies the PDE

Let , then from the chain rule we have

u(x, t) = u (x −0 ct)

z(x, t) = x − ct

 u (x − ct) + c u (x − ct)
∂t
∂

0 ∂x
∂

0 = u (z(x, t)) + c u (z(x, t))
∂t
∂

0 ∂x
∂

0

= u (z) + cu (z) 0
′

∂t
∂z

0
′

∂x
∂z

= −cu (z) + cu (z)0
′

0
′

= 0

151

Hyperbolic PDEs
This tells us that the equation transports (or advects)
the initial condition with “speed”

For example, with and an initial condition

c

u +t cu =x 0

c = 1 u (x) =0 e−(1−x)2

152

Characteristics
We can understand the behavior of hyperbolic PDEs in more detail
by considering characteristics

Characteristics are paths in the -plane
on which the solution is constant

For we have , since

(X(t), t) xt

u +t cu =x 0 X(t) = X +0 ct

 u(X(t), t)
dt
d

= u (X(t), t) + u (X(t), t) t x dt
dX(t)

= u (X(t), t) + cu (X(t), t)t x

= 0

153

Characteristics
Hence ,
i.e. the initial condition is transported along characteristics

Characteristics have important implications for the direction of
flow of information, and for boundary conditions

, must impose BC at

cannot impose BC at

, must impose BC at

cannot impose BC at

u(X(t), t) = u(X(0), 0) = u (X)0 0

c > 0 x = a

x = b

c < 0 x = b

x = a
154

Characteristics
More generally, if we have a non-zero right-hand side in the PDE,
then the situation is a bit more complicated on each characteristic

Consider , and

In this case, the solution is no longer constant on ,
but we have reduced a PDE to a set of ODEs, so that

u +t cu =x f(t,x,u(t,x)) X(t) = X +0 ct

 u(X(t), t)
dt
d

= u (X(t), t) + u (X(t), t) t x dt
dX(t)

= u (X(t), t) + cu (X(t), t)t x

= f(t,X(t),u(X(t), t))

(X(t), t)

u(X(t), t) = u (X) + f(t,X(t),u(X(t), t)dt0 0 ∫
0

t

155

Characteristics
We can also find characteristics for advection
with a variable coefficient

Exercise: Verify that the characteristic curve for

is given by

In this case, we have to solve an ODE
to obtain the curve in the -plane

u +t c(t,x)u =x 0

X (t) =′ c(X(t), t)

(X(t), t) xt

156

Example: Variable Speed in Space
Equation: with

Characteristics satisfy
with solution

Characteristics “bend away” from

u +t cu =x 0 c(x, t) = x − 1

X (t) =′ c(X(t), t)
X(t) = 1 + (X −0 1)et

x = 1

157

Example: Variable Speed in Time
Equation: with

Characteristics satisfy
with solution

The same shape shifted along

u +t cu =x 0 c(x, t) = t − 1

X (t) =′ c(X(t), t)
X(t) = X +0 t −2

1 2 t

x

158

Hyperbolic PDEs: Numerical Approximation
We now consider how to solve

using a finite difference method

Question: Why finite differences? Why not just use characteristics?

Answer: Characteristics actually are a viable option for computational
methods, and are used in practice

However, characteristic methods can become very complicated in 2D or 3D,
or for nonlinear problems

Finite differences are a much more practical choice

u +t cu =x 0

159

Hyperbolic PDEs: Numerical Approximation
We impose an initial condition and a boundary condition

A finite difference approximation is performed on a grid in the -planext

160

Hyperbolic PDEs: Numerical Approximation
The first step in developing a finite difference approximation
is to consider the Courant–Friedrichs–Lewy (CFL) condition

The CFL condition is a necessary condition for the convergence
of a finite difference approximation of a hyperbolic problem

Suppose we discretize in space and time using the explicit
scheme

Here , where ,

u +t cu =x 0

 +
Δt

U − U j
n+1

j
n

c =
Δx

U − U j
n

j−1
n

0

U ≈j
n u(t ,x)n j t =n nΔt x =j jΔx

161

Hyperbolic PDEs: Numerical Approximation
This can be rewritten as

where

We can see that depends only on and

Uj
n+1 = U − (U − U)j

n

Δx

cΔt
j
n

j−1
n

= (1 − ν)U + νU j
n

j−1
n

ν =

Δx

cΔt

U

j
n+1 U j

n U j−1
n

162

Hyperbolic PDEs: Numerical Approximation
The set of grid nodes on which depends
is called the domain of dependence of

U j
n+1

U

j
n+1

163

Hyperbolic PDEs: Numerical Approximation
The domain of dependence of the exact solution
is determined by the characteristics passing through

The CFL condition states

u(t ,x)n+1 j

(t ,x)n+1 j

For a convergent scheme, the domain of dependence of
the PDE must lie within the domain of dependence of the
numerical method

164

Hyperbolic PDEs: Numerical Approximation
Domain of dependence of : grid nodes •
Domain of dependence of : solid line (characteristic)

In this case, the scheme satisfies the CFL condition

U j
n

u(t ,x)n+1 j

165

Hyperbolic PDEs: Numerical Approximation
With a larger advection speed ,
the scheme does not satisfy the CFL condition

c

166

Hyperbolic PDEs: Numerical Approximation
With a negative advection speed (),
the scheme does not satisfy the CFL condition

c < 0

167

Hyperbolic PDEs: Numerical Approximation
Question: What goes wrong if the CFL condition is violated?

Answer: The exact solution depends on initial value ,
which is outside the scheme’s domain of dependence

Therefore, the numerical approximation to is “insensitive”
to the value , which means that the method cannot be convergent

u(x, t) u (x)0 0

u(x, t)
u (x)0 0

168

Hyperbolic PDEs: Numerical Approximation
If , then we require
for the CFL condition to be satisfied
c > 0 ν = ≤Δx

cΔt 1

169

Hyperbolic PDEs: Numerical Approximation
Note that CFL is only a necessary condition for convergence

However, CFL is straightforward to test and allows us
to easily reject improper schemes or parameters

For example, for , the scheme with a backward difference

cannot be convergent if

Question: How should we modify the scheme for ?

u +t cu =x 0

+
Δt

U − U j
n+1

j
n

c =
Δx

U − U j
n

j−1
n

0

c < 0

c < 0

170

Hyperbolic PDEs: Upwind Method
Answer: The method should account for the direction of “information flow”

This motivates the upwind scheme for

The upwind scheme satisfies CFL condition if

 is called the CFL number (or the Courant number)

u +t cu =x 0

U =j
n+1

 {
U − c (U − U), if c > 0j
n

Δx
Δt

j
n

j−1
n

U − c (U − U), if c < 0j
n

Δx
Δt

j+1
n

j
n

∣ν∣ = ∣cΔt/Δx∣ ≤ 1

ν = cΔt/Δx

171

Hyperbolic PDEs: Central Difference
Another method that seems appealing is the central difference method

It satisfies CFL for both for and

However, we will see that this method is unstable

+
Δt

U − U j
n+1

j
n

c =
2Δx

U − U j+1
n

j−1
n

0

∣ν∣ = ∣cΔt/Δx∣ ≤ 1 c > 0 c < 0

172

Hyperbolic PDEs: Accuracy
Recall that truncation error is
the residual of the numerical approximation
evaluated on the exact solution

For the () upwind method, the truncation error is:

The order of accuracy is then the largest such that

c > 0

T =j
n

 +
Δt

u(t ,x) − u(t ,x)n+1
j

n
j

c

Δx

u(t ,x) − u(t ,x)n
j

n
j−1

p

T =j
n O((Δx) +p (Δt))p

173

Hyperbolic PDEs: Accuracy
For the upwind method, we have

Hence the upwind scheme is first order accurate

T =j
n

 Δtu (t ,x) − cΔxu (t ,x) +
2
1

[tt
n

j xx
n

j] h.o.t.

174

Hyperbolic PDEs: Accuracy
Just like with ODEs, truncation error is related to convergence
to the exact solution as

Note that to let , we generally need to decide
on a relationship between and

For example, to let for the upwind scheme,
we would set .
This ensures CFL is satisfied for all

Δt, Δx → 0

Δt, Δx → 0
Δt Δx

Δt, Δx → 0
 =Δx

cΔt ν ∈ (0, 1]
Δx, Δt

175

Hyperbolic PDEs: Accuracy
In general, convergence of a finite difference method for a PDE
is related to both its truncation error and its stability

Now we will consider how to analyze stability using
the Fourier stability analysis (also called von Neumann analysis)

176

Hyperbolic PDEs: Stability
Suppose that is periodic on a grid U j

n x ,x , … ,x 1 2 n

177

Hyperbolic PDEs: Stability
Then we can represent as a linear combination
of and functions, i.e. Fourier modes

Equivalently, as a linear combination of complex exponentials,
since so that

U j
n

sin cos

e =ikx cos(kx) + i sin(kx)

sin(x) = (e −2i
1 ix e), cos(x) =−ix

 (e +2
1 ix e)−ix

178

Hyperbolic PDEs: Stability
Let’s focus on only one of the Fourier modes

In particular, we consider the ansatz ,
where is the wave number and

Key idea: Suppose that satisfies our
finite difference equation, then this will allow us to solve for

The value of indicates whether
the Fourier mode is amplified or damped

If for all then the scheme
does not amplify any Fourier modes, therefore is stable

U (k) =j
n λ(k) en ikx j

k λ(k) ∈ C
U (k)j
n

λ(k)

∣λ(k)∣
eikx j

∣λ(k)∣ ≤ 1 k

179

Hyperbolic PDEs: Stability
We now perform Fourier stability analysis for
the upwind scheme with (recall that):

Substituting in gives

Then

c > 0 ν = Δx
cΔt

U =j
n+1 U −j

n ν(U −j
n U)j−1

n

U (k) =j
n λ(k) en ik(jΔx)

λ(k)eik(jΔx) = e − ν(e − e)ik(jΔx) ik(jΔx) ik((j−1)Δx)

= e − νe (1 − e)ik(jΔx) ik(jΔx) −ikΔx)

λ(k) = 1 − ν(1 − e) =−ikΔx 1 − ν(1 − cos(kΔx) + i sin(kΔx))

180

Hyperbolic PDEs: Stability
It follows that

and from the identity , we have

Due to the CFL condition, we first suppose that

Then , and therefore

∣λ(k)∣2 = [(1 − ν) + ν cos(kΔx)] + [ν sin(kΔx)]2 2

= (1 − ν) + ν + 2ν(1 − ν) cos(kΔx)2 2

= 1 − 2ν(1 − ν)(1 − cos(kΔx))

(1 − cos(θ)) = 2 sin ()2
2
θ

∣λ(k)∣ = 1 − 4ν(1 − ν) sin kΔx2 2 (
2
1

)

0 ≤ ν ≤ 1

0 ≤ 4ν(1 − ν) sin kΔx ≤2 (2
1) 1 ∣λ(k)∣ ≤ 1

181

Hyperbolic PDEs: Stability
In contrast, consider stability of the central difference scheme

Recall that this also satisfies the CFL condition as long as

But Fourier stability analysis yields

and hence (unless), i.e. unstable!

+
Δt

U − U j
n+1

j
n

c =
2Δx

U − U j+1
n

j−1
n

0

ν ≤∣ ∣ 1

λ(k) = 1 − νi sin(kΔx) ⟹ ∣λ(k)∣ =2 1 + ν sin (kΔx)2 2

∣λ(k)∣ > 1 sin(kΔx) = 0

182

Consistency
We say that a numerical scheme is consistent with a PDE
if its truncation error tends to zero as

For example, any first (or higher) order scheme is consistent

Δx, Δt → 0

183

Lax Equivalence Theorem
Then a fundamental theorem about finite difference schemes
is the Lax equivalence theorem

This theorem refers to linear evolutionary problems,
e.g. linear hyperbolic or parabolic PDEs

Due to Peter Lax (born 1926, American mathematician)

For a consistent finite difference approximation to a
linear evolutionary problem, the stability of the scheme is
necessary and sufficient for convergence

184

Lax Equivalence Theorem
We know how to check consistency: Derive the truncation error

We know how to check stability: Fourier stability analysis

Hence, from the Lax equivalence theorem,
we have a general approach for verifying convergence

Also, as with ODEs, convergence rate is determined by truncation error

185

Lax Equivalence Theorem
Note that strictly speaking Fourier stability analysis
only applies for periodic problems

However, its conclusions on periodic problems generally hold in other cases

Fourier stability analysis is the standard tool for examining stability of
finite-difference methods for PDEs

See , one-sided and central difference
schemes for the advection equation

[examples/unit3/advection.py]

186

https://github.com/pkarnakov/am205/tree/main/examples/unit3/advection.py

Hyperbolic PDEs: Semi-discretization
So far, we have developed full discretizations (both space and time)
of the advection equation, and considered accuracy and stability

However, it can be helpful to consider semi-discretizations,
where we discretize only in space, or only in time

For example, discretizing in space using a backward
difference formula gives

u +t c(t,x)u =x 0

 +
∂t

∂U (t)j
c (t) =j Δx

U (t) − U (t)j j−1 0, j = 1, … ,n

187

Hyperbolic PDEs: Semi-discretization
This gives a system of ODEs, , where and

Forward Euler applied to that system yields
the first-order upwind scheme

Backward Euler yields the implicit first-order upwind

U =t f(t,U(t)) U(t) ∈ Rn

f (t,U(t)) =j −c (t) j Δx

U (t) − U (t)j j−1

 =
Δt

U − U j
n+1

j
n

f(t ,U) =n n −c j
n

Δx

U − U j
n

j−1
n

 =
Δt

U − U j
n+1

j
n

f(t ,U) =n+1 n+1 −c j
n+1

Δx

U − U j
n+1

j−1
n+1

188

Hyperbolic PDEs: Method of Lines
We can also use a “black box” ODE solver (e.g. scipy.integrate.odeint)
to solve the system of ODEs

This “black box” approach is called the method of lines

The name “lines” is because we solve each for a fixed ,
i.e. a line in the -plane

We let the ODE solver to choose step size
to obtain a stable and accurate scheme

U (t)j x j

xt

Δt

189

Wave Equation
We now briefly return to the wave equation:

In one spatial dimension, this models vibrations of a string

u −tt c u =2
xx 0

190

Wave Equation
Many schemes have been proposed for the wave equation,
as well as other hyperbolic systems in general

One good option is to use central difference approximations
for both and

Key points
truncation error analysis second-order accurate
Fourier stability analysis stable for
two-step method in time, need a one-step method to “get started”

See and

u tt u xx

 −
Δt2

U − 2U + U j
n+1

j
n

j
n−1

c =2

Δx2

U − 2U + U j+1
n

j
n

j−1
n

0

⟹
⟹ 0 ≤ cΔt/Δx ≤ 1

[examples/unit3/wave.py] [examples/unit3/wave_audio.py]

191

https://github.com/pkarnakov/am205/tree/main/examples/unit3/wave.py
https://github.com/pkarnakov/am205/tree/main/examples/unit3/wave_audio.py

Wave Equation: Example
Wave equation with forcing

Energy

Sound (change in arc length)

Forcing
 u −tt u =xx f

u dx∫ t
2

u dx∫ x
2

f = x sin(ω(t)t)
ω(t) = at + b

192

Heat Equation
The canonical parabolic equation is the heat equation

where is the thermal diffusivity

By rescaling and , we can assume

To form an initial-boundary value problem, we impose
initial condition
boundary conditions on both endpoints the domain

u −t αu =xx f(t,x)

α

x t α = 1

u(0,x) = u (x)0

193

Heat Equation
A natural idea would be to discretize with a central difference,
and employ forward Euler in time

Or we could use backward Euler in time

u xx

 −
Δt

U − U j
n+1

j
n

 =
Δx2

U − 2U + U j−1
n

j
n

j+1
n

0

 −
Δt

U − U j
n+1

j
n

 =
Δx2

U − 2U + U j−1
n+1

j
n+1

j+1
n+1

0

194

Heat Equation
Or we could do the midpoint rule in time

This is called the Crank–Nicolson method

Extra reading:

 −
Δt

U − U j
n+1

j
n

 −
2
1

Δx2

U − 2U + U j−1
n+1

j
n+1

j+1
n+1

 =
2
1

Δx2

U − 2U + U j−1
n

j
n

j+1
n

0

Crank & Nicolson, 1947. A practical method for numerical
evaluation of solutions of partial differential equations of the heat-
conduction type

195

https://doi.org/10.1017/S0305004100023197

-Method

The -method is a family of methods that includes all of the above

where is a parameter
 forward Euler
 Crank–Nicolson
 backward Euler

For the -method, we can
perform Fourier stability analysis
calculate the truncation error

θ

θ

 −
Δt

U − U j
n+1

j
n

θ −
Δx2

U − 2U + U j−1
n+1

j
n+1

j+1
n+1

(1 − θ) =
Δx2

U − 2U + U j−1
n

j
n

j+1
n

0

θ ∈ [0, 1]
θ = 0 ⟹
θ = ⟹2

1

θ = 1 ⟹

θ

196

-Method: Stability

Fourier stability analysis. Set to get

where

In general, is dimensionless
(sometimes called the diffusion number, or diffusion CFL number)

Here we cannot get , hence only concern is

Let’s find conditions for stability, i.e. we want

θ

U (k) =j
n λ(k) en ik(jΔx)

λ(k) =

1 + 4θμ sin kΔx2 (2
1)

1 − 4(1 − θ)μ sin kΔx2 (2
1)

μ = Δt/Δx2

μ = αΔt/Δx2

λ(k) > 1 λ(k) < −1

λ(k) ≥ −1

1 − 4(1 − θ)μ sin kΔx ≥2 (
2
1

) − 1 + 4θμ sin kΔx[2 (
2
1

)]

197

-Method: Stability

Or equivalently

For this inequality is always satisfied,
hence the -method is unconditionally stable (i.e. stable independent of)

For , the “most unstable” Fourier mode is at ,
since this maximizes the factor

θ

4μ(1 − 2θ) sin kΔx ≤2 (
2
1

) 2

θ ∈ [0.5, 1]
θ μ

θ ∈ [0, 0.5) k = π/Δx

sin kΔx2 (2
1)

198

-Method: Stability

Note that this corresponds to the highest frequency mode
that can be represented on our grid, since with we have

The “sawtooth” mode

θ

k = π/Δx

e =ik(jΔx) e =πij (e) =πi j (−1)j

k = π/Δx

199

-Method: Stability

This sawtooth mode is stable (and so all modes are stable) if

Therefore, the -method is conditionally stable for

θ

4μ(1 − 2θ) ≤ 2 ⟺ μ ≤

2(1 − 2θ)
1

θ θ ∈ [0, 0.5)

200

-Method: Stability

The -method is conditionally stable if
and unconditionally stable if

Stability region in the - plane

θ

θ θ ∈ [0, 0.5)
θ ∈ [0.5, 1]

μ θ

201

-Method: Stability

Note that in leads to a severe stability restriction,
since is quadratic in

Recall that in the hyperbolic case, is linear in

This indicates that spacial discretization of the heat equation
results in a stiff system of ODEs

θ

θ [0, 0.5)
Δt Δx

Δt ≤ 2(1−2θ)
(Δx)2

Δt Δx

Δt ≤

c
Δx

202

-Method: Accuracy

The truncation error analysis gives

The term in vanishes since solves the PDE

θ

Tj
n = − θ − (1 − θ)

Δt

u − u j
n+1

j
n

Δx2

u − 2u + u j−1
n+1

j
n+1

j+1
n+1

Δx2

u − 2u + u j−1
n

j
n

j+1
n

= [u − u] + [(− θ)Δtu − Δx u]t xx 2
1

xxt 12
1 2

xxxx

+ [Δt u − Δt u]24
1 2

ttt 8
1 2

xxtt

+ [(− θ)ΔtΔx u − Δx u] + ⋯12
1

2
1 2

xxxxt 6!
2 4

xxxxxx

u −t u xx T j
n u

203

-Method: Accuracy

The method is second order if , and first order otherwise if

The -method is consistent (i.e. truncation error tends to zero)
and stable (conditionally stable for)

Therefore, from the Lax equivalence theorem, the method is convergent

θ

θ = 0.5 θ = 0.5

θ

θ ∈ [0, 0.5)

204

Heat Equation
Note that the heat equation describes a diffusive process,
so it tends to smooth out discontinuities

See ,
forward Euler and Crank-Nicolson schemes for the heat equation

This is qualitatively different to hyperbolic equations,
e.g. the advection equation will just transport a discontinuity in

[examples/unit3/heat.py]

u 0

205

https://github.com/pkarnakov/am205/tree/main/examples/unit3/heat.py

Elliptic PDEs
The canonical elliptic PDE is the Poisson equation

for in the domain

This is generally written as (or)

Options for boundary conditions on the domain boundary
Dirichlet, given value
Neumann, given normal derivative
Robin (mixed), given linear combination of both

u +xx u =yy f(x, y)

(x, y) ∈ Ω Ω ⊂ R2

∇ u =2 f Δu = f

∂Ω
u

 ∂n
∂u

206

Elliptic PDEs
We will consider how to use a finite difference scheme
to approximate this 2D Poisson equation

First, introduce a uniform grid to discretize Ω

207

Elliptic PDEs
Assume equal grid spacing

Then
, ,
, ,

Use finite differences to approximate and on this grid

h = Δx = Δy

x =i ih i = 0, 1, 2 … ,N −x 1
y =j jh j = 0, 1, 2, … ,N −y 1
U ≈i,j u(x , y)i j

u xx u yy

208

Elliptic PDEs
Each derivative is approximated as

The Laplacian is approximated as

u (x , y) =xx i j +
h2

u(x , y) − 2u(x , y) + u(x , y)i−1 j i j i+1 j
O(h)2

u (x , y) =yy i j +
h2

u(x , y) − 2u(x , y) + u(x , y)i j−1 i j i j+1
O(h)2

u (x , y) +xx i j u (x , y) =yy i j

 +
h2

u(x , y) + u(x , y) − 4u(x , y) + u(x , y) + u(x , y)i j−1 i−1 j i j i+1 j i j+1
O(h)2

209

Elliptic PDEs
Using the grid values, the approximation to the Laplacian is

This corresponds to a 5-point stencil

u +xx u ≈yy

h2

U + U − 4U + U + U i,j−1 i−1,j i,j i+1,j i,j+1

210

Elliptic PDEs
We represent the numerical solution as a vector

We want to construct a differentiation matrix
that approximates the Laplacian

Question: How many non-zero diagonals will have?

To construct , we need to relate the entries of
the one-dimensional vector to the two-dimensional grid values
(i.e. flatten the grid values)

U ∈ RN N x y

D ∈ RN N ×N N x y x y

D

D

U U i,j

211

Elliptic PDEs
For instance, let’s enumerate the nodes from 0 to
starting from the bottom row (i.e. row-major order)

Let denote the mapping from the 2D indexing to the 1D indexing

From the above schematic we have

N N −x y 1
j = 0

G

G(i, j) = jN +x i and therefore U =G(i,j) U i,j

212

Elliptic PDEs
Let’s focus on node , this corresponds to entry of

Due to the 5-point stencil, row of
will only have non-zeros in five columns with indices

(i, j) G(i, j) U

G(i, j) D

G(i, j − 1)

G(i − 1, j)

G(i, j)

G(i + 1, j)

G(i, j + 1)

= G(i, j) − N x

= G(i, j) − 1

= G(i, j)

= G(i, j) + 1

= G(i, j) + N x

213

Elliptic PDEs
The discretization of the equations above
applies in inner nodes, i.e. nodes with indices

Impose zero Dirichlet conditions

on the boundaries, i.e. nodes with indices

Other cases (e.g. Neumann conditions) will need to be discretized
accordingly on each boundary

i > 0, i < N −x 1, j > 0, and j < N −y 1

U =i,j 0

i = 0, i = N −x 1, j = 0, or j = N −y 1

214

Elliptic PDEs
For example, in the case ,
matrix has the following sparsity pattern

N =x N =y 6
D

215

Elliptic PDEs
Poisson equation
for with on

See , solved using scipy.sparse

∇ u =2 −10
(x, y) ∈ Ω = [0, 1]2 u = 0 ∂Ω

[examples/unit3/poisson.py]

216

https://github.com/pkarnakov/am205/tree/main/examples/unit3/poisson.py

