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Motivation
Since the time of Newton, calculus has been ubiquitous in science

Calculus problems that arise in applications 
typically do not have closed-form solutions

Numerical approximation is essential

In this Unit we will consider
numerical integration
numerical differentiation
numerical methods for ordinary differential equations
numerical methods for partial differential equations
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Integration
The process of approximating a definite integral 
using a numerical method is called quadrature

The Riemann sum suggests how to perform quadrature

We will examine more accurate/efficient quadrature methods
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Integration
Question: Why is quadrature important?

We know how to evaluate many integrals analytically,

But how about

 e dx or  cosxdx∫
0

1
x ∫

0

π

 exp(sin(cos(sinh(cosh(arctan(log(x))))))) dx∫
1

2000
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Integration
We can numerically approximate this integral 
using scipy.integrate.quad()

>>> import scipy 
>>> from math import * 
>>> def f(x): 
...    return exp(sin(cos(sinh(cosh(atan(log(x))))))) 
>>> scipy.integrate.quad(f, 1, 2000) 
(1514.7806778270256, 4.231109731546272e-06)
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Integration
Quadrature also generalizes naturally to higher dimensions, 
and allows us to compute integrals on irregular domains

For example, we can approximate an integral on a triangle 
based on a finite sum of samples at quadrature points

  
people.sc.fsu.edu/~jburkardt/cpp_src/triangle_fekete_rule_test
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Integration
And then evaluate integrals in complex geometries 
by triangulating the domain
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Differentiation
Numerical differentiation is another fundamental tool

We have already discussed the most common, intuitive approach 
to numerical differentiation: finite differences

Examples
 forward difference
 backward difference

 centered difference
 centered, second derivative

f (x) =′
 +h

f(x+h)−f(x)
O(h)

f (x) =′
 +

h

f(x)−f(x−h)
O(h)

f (x) =′
 +2h

f(x+h)−f(x−h)
O(h )2

f (x) =′′
 +

h2
f(x+h)−2f(x)+f(x−h)

O(h )2
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Differentiation
We will see how to derive these and other 
finite difference formulas and quantify their accuracy

Wide range of choices, with trade-offs in terms of
accuracy
stability
complexity
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Differentiation
In Unit 0, we saw that finite differences 
can be sensitive to rounding error when  is “too small”

But in most applications we obtain sufficient accuracy 
with  large enough that rounding error is still negligible

Hence finite differences generally work very well 
and provide a very popular approach 
to solving problems involving derivatives

h

h
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ODEs
The most common situation in which we need 
to approximate derivatives is to solve differential equations

Ordinary Differential Equations (ODEs): 
Differential equations involving functions of one variable

Examples of problems
initial value problem (IVP) for a first order ODE 

 
 

boundary value problem (BVP) for a second order ODE 
 

y (t) =′ y (t) +2 t −4 6t
y(0) = y  0

y (x) +′′ 2xy(x) = 1
y(0) = y(1) = 0
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ODEs: IVP
Newton’s second law of motion 

where  is the position of a particle of mass  at time 

This is a scalar ODE to simulate one particle

An -body problem involves a system of  interacting particles

For example,  can be gravitational force due to other particles, 
and the force on particle  depends on positions of the other particles

y (t) =′′
 , y(0) =

m

F (t, y, y )′
y  , y (0) =0

′ v  0

y(t) ∈ R m t ≥ 0

N N

F

i
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ODEs: IVP
-body problems are the basis of many cosmological simulations

Recall the galaxy formation simulations from Unit 0 

   

Computationally expensive when  is large!

N

N
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ODEs: BVP
Boundary value problems for ODEs are also important 
in many circumstances

The steady-state heat equation for the temperature 

apply a heat source 
impose zero temperature at 
insulate at 

Here  is the temperature of a 1D rod

u(x)

−u (x) =′′ f(x), u(−1) = 0, u (1) =′ 0

f(x) = 1 − x2

x = −1
x = 1

u(x)
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ODEs: BVP
We can approximate the equation  with finite differences

and impose  and 

−u (x) =′′ f(x)

−  =
h2

u(x + h) − 2u(x) + u(x − h)
f(x)

u(−1) = 0 u(1) − u(1 − h) = 0
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PDEs
It is also natural to introduce time-dependence

Now  is a function of  and  
so derivatives of  are partial derivatives 
and we obtain a partial differential equation (PDE)

The time-dependent heat equation for 

with initial conditions  
and boundary conditions , 

This is an initial-boundary value problem (IBVP)

u(x, t) x t

u

u(x, t)

 −
∂t
∂u

 =
∂x2

∂ u2

f(x)

u(x, 0) = 0
u(−1, t) = 0  (1, t) =∂x

∂u 0
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PDEs

Again, we can approximate the equation  
with finite differences

and impose , , and 

 −∂t
∂u

 =∂x2
∂ u2

f(x)

 −Δt
u(x,t)−u(x,t−Δt)

 =h2
u(x+h,t)−2u(x,t)+u(x−h,t)

f(x)

u(x, 0) = 0 u(−1, t) = 0 u(1, t) − u(1 − h, t) = 0
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PDEs
This extends to 2D and 3D domains

The time-dependent heat equation in a 3D domain  
for the temperature 

with initial conditions  
and boundary conditions  on 

Ω ⊂ R3

u(x, y, z, t)

 −
∂t
∂u

 −
∂x2

∂ u2
 −

∂y2

∂ u2
 =

∂z2

∂ u2

f(x, y, z)

u(x, y, z, 0) = u  (x, y, z)0

u = 0 ∂Ω
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PDEs
This equation is typically written as 

where 

Here we have
the Laplacian 
the gradient 

 −
∂t
∂u

∇ u =2 f(x, y, z)

∇ u =2 ∇ ⋅ ∇u =  +∂x2
∂ u2

 +∂y2
∂ u2

 ∂z2
∂ u2

∇ =2
 +∂x2

∂2
 +∂y2

∂2
 ∂z2

∂2

∇ = (  ,  ,  )∂x
∂

∂y
∂

∂z
∂
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PDEs
We can add a transport term to the heat equation 
to obtain the convection-diffusion equation 

Now  models the concentration of some substance 
in a medium moving with velocity 

    

 +
∂t
∂u

w ⋅ ∇u − ∇ u =2 f(x, y)

u(x, t)
w(x, y, t) ∈ R2
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PDEs
The Navier-Stokes equations describe the motion of viscous liquids

together with the continuity equation (the liquid is incompressible)

for the unknown velocity  and pressure , where  is the viscosity

 +
∂t
∂u

(u ⋅ ∇)u = −∇p + ν∇ u2

∇ ⋅ u = 0

u p ν
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PDEs
Numerical methods for PDEs are a major topic in scientific computing

Recall examples from Unit 0 

CFD  
 

Geophysics

In the course, we will focus on the finite difference method

Alternative methods: finite element, finite volume, 
spectral, boundary element, particles, …
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Summary
Numerical calculus includes a wide range of topics 
and has important applications

We will consider various algorithms and 
analyze their stability, accuracy, and efficiency
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Quadrature

Suppose we want to evaluate the integral 

We can proceed as follows
approximate  using a polynomial interpolant 
define  
we can integrate polynomials exactly

 provides a quadrature formula, 
and we should have 

A quadrature rule based on an interpolant  
at  equally spaced points in  
is known as Newton–Cotes formula of order 

I(f) =  f(x)dx∫
a

b

f p  n

Q  (f) =n  p  (x)dx∫
a

b
n

Q  (f)n

Q  (f) ≈n I(f)

p  n

n + 1 [a, b]
n
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Newton–Cotes Quadrature
Let , where 

We write the interpolant of  in the Lagrange form as

Then

where  is the -th quadrature weight

x  =k a + kh, k = 0, 1, … ,n h = (b − a)/n

f

p  (x) =n  f(x  )L  (x), where L  (x) =
k=0

∑
n

k k k   ∏i=0,i=k
n

x  −x  k i

x−x  i

Q  (f) =n  p  (x)dx =∫
a

b

n f(x  )  L  (x)dx =
k=0

∑
n

k ∫
a

b

k  w  f(x  )
k=0

∑
n

k k

w  =k  L  (x)dx ∈∫
a

b
k R k
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Newton–Cotes Quadrature
Note that quadrature weights do not depend on , 
so they can be precomputed and stored

trapezoid rule: 
Simpson’s rule: 

We can develop higher-order Newton–Cotes formulas in the same way

f

Q  (f) =1  f(a) + f(b)2
b−a [ ]

Q  (f) =2  f(a) + 4f  + f(b)6
b−a [ ( 2

a+b) ]
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Error Estimates
Let 

Then

From Unit 1, we have an expression for 

E  (f) =n I(f) − Q  (f)n

  

E  (f)n =  f(x)dx −  w  f(x  )∫
a

b
∑k=0

n
k k

=  f(x)dx −   L  (x)dx f(x  )∫
a

b
∑k=0

n (∫
a

b
k ) k

=  f(x)dx −   L  (x)f(x  ) dx∫
a

b ∫
a

b (∑k=0
n

k k )

=  f(x)dx −  p  (x)dx∫
a

b
∫
a

b
n

=  f(x) − p  (x) dx∫
a

b ( n )

f(x) − p  (x)n
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Error Estimates
Recall

Hence

where 

f(x) − p  (x) =n  (x −
(n + 1)!
f (θ)n+1

x  ) … (x −0 x  )n

∣E  (f)∣ ≤n   ∣(x −
(n + 1)!
M  n+1 ∫

a

b

x  )(x −0 x  ) ⋯ (x −1 x  )∣dxn

M  =n+1  ∣f (θ)∣
θ∈[a,b]
max n+1
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Error Estimates
For the trapezoid rule, the error bound is

The bound for  depends directly on the integrand  (via )

Just like with the Lebesgue constant, it is informative to be able 
to compare quadrature rules independently of the integrand

∣E  (f)∣ ≤1  M  

12
(b − a)3

2

E  n f M  n+1
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Error Estimates: Another Perspective
Theorem: If  integrates polynomials of degree  exactly, 
then  such that 

Proof: For any , we have

where  does not depend on 

Q  n n

∃C  >n 0 ∣E  (f)∣ ≤n C   ∥f −n
p∈P  n

min p∥  ∞

p ∈ P  n

  

∣E  (f)∣n = ∣I(f) − Q  (f)∣n

≤ ∣I(f) − I(p)∣ + ∣I(p) − Q  (f)∣n

= ∣I(f − p)∣ + ∣Q  (f − p)∣n

≤  dx∥f − p∥  +  ∣w  ∣ ∥f − p∥  ∫
a

b
∞ (∑k=0

n
k ) ∞

= C  ∥f − p∥  n ∞

C  =n b − a +  ∣w  ∣∑k=0
n

k p
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Error Estimates
Hence a convenient way to compare accuracy of quadrature rules is to 
compare the polynomial degree they integrate exactly

Newton–Cotes of order  is based on polynomial interpolation, 
hence in general integrates polynomials of degree  exactly

Also follows from the fact that  for a polynomial of degree 

n

n

M  =n+1 0 n
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Runge’s Phenomenon Again
However, Newton–Cotes formulas are based on interpolation 
at equally spaced points

Hence they’re susceptible to Runge’s phenomenon, 
and we expect them to be inaccurate for large 

Question: How does this show up in our error bound?

n

∣E  (f)∣ ≤n C   ∥f −n
p∈P  n

min p∥  ∞
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Runge Phenomenon Again
Answer: In the constant 

Recall that , and that 

If the  blow up due to equally spaced points, so does 

C  n

C  =n b − a +  ∣w  ∣∑k=0
n

k w  =k  L  (x)dx∫
a

b
k

L  k C  n
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Runge Phenomenon Again
In fact, we know that , why?

This tells us that if all the  are positive, then

If weights are positive, then  is a constant (independent of ) 
and the quadrature converges to the exact integral

 w  =∑k=0
n

k b − a

w  k

C  =n b − a +  ∣w  ∣ =
k=0

∑
n

k b − a +  w  =
k=0

∑
n

k 2(b − a)

C  n n

Q  (f) →n I(f) as n → ∞
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Runge Phenomenon Again
But with Newton–Cotes, quadrature weights become negative for  
(in example above,  would clearly yield )

Key point: Newton–Cotes is not useful for large 

However, there are two natural ways to get quadrature rules 
that converge as 

integrate piecewise polynomial interpolant
do not use equally spaced interpolation points

We consider piecewise polynomial-based quadrature rules first

n > 8
L (x)10 w  <10 0

n

n → ∞
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Composite Quadrature Rules
Integrating a piecewise polynomial interpolant 
leads to a composite quadrature rule

Suppose we divide  into  subintervals, 
each of width , and , 

Then we have

[a, b] m

h = (b − a)/m x  =i a + ih i = 0, 1, … ,m

I(f) =  f(x)dx =∫
a

b

  f(x)dx
i=1

∑
m

∫
x  i−1

x  i

36



Composite Trapezoid Rule
Composite trapezoid rule: Apply trapezoid rule to each interval

The composite quadrature is denoted as

 f(x)dx ≈∫
x  i−1

x  i

 h[f(x  ) +
2
1

i−1 f(x  )]i

  

Q  (f)1,h =   h[f(x  ) + f(x  )]
i=1

∑
m

2
1

i−1 i

= h  f(x  ) + f(x  ) + ⋯ + f(x  ) +  f(x  )[
2
1

0 1 m−1 2
1

m ]
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Composite Trapezoid Rule
Composite trapezoid rule error analysis

Hence,

E  (f) =1,h I(f) − Q  (f) =1,h   f(x)dx −  h[f(x  ) + f(x  )]∑i=1
m [∫

x  i−1

x  i

2
1

i−1 i ]

  

∣E  (f)∣1,h ≤    f(x)dx −  h[f(x  ) + f(x  )]  ∑i=1
m ∫

x  i−1

x  i

2
1

i−1 i

≤   max  ∣f (θ)∣
12
h3

i=1

∑
m

θ∈[x  ,x  ]i−1 i

′′

≤  m∥f ∥  

12
h3

′′
∞

=  (b − a)∥f ∥  

12
h2

′′
∞
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Composite Simpson Rule
We can obtain composite Simpson’s rule in the same way

Suppose that  is divided into  intervals by the points
, , where 

Applying Simpson’s rule on each interval ,  yields

See  
with composite trapezoid and Simpson’s rules

[a, b] 2m
x  =i a + ih i = 0, … , 2m h = (b − a)/2m

[x  ,x  ]2i−2 2i i = 1, … ,m

  

Q  (f)2,h =  [f(x  ) + 4f(x  ) + 2f(x  ) + 4f(x  ) + ⋯
3
h

0 1 2 3

+ 2f(x  ) + 4f(x  ) + f(x  )]2m−2 2m−1 2m

[examples/unit3/quadcomp.py]
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Adaptive Quadrature
Composite quadrature rules are very flexible, 
can be applied to intervals of variable sizes

We should use smaller intervals where  varies rapidly, 
and larger intervals where  varies slowly

This can be achieved by adaptive quadrature:
1. Initialize to  (one interval)
2. On each interval, evaluate quadrature rule 

and estimate quadrature error
3. If error estimate is larger than a given tolerance on interval , 

subdivide into two smaller intervals and return to step 2

Question: How can we estimate the quadrature error on an interval?

f

f

m = 1

i

40



Adaptive Quadrature
One straightforward way to estimate quadrature error on interval  
is to compare to a more refined result for interval 

Let  denote the exact integral and 
 denote quadrature approximation on interval 

Let  denote a more refined quadrature approximation on interval , 
e.g. obtained by subdividing interval 

Then for the error on interval , we have

Suppose we can neglect  so that we use 
 as a computable estimator for 

i

i

I (f)i

Q  (f)h
i i

  (f)Q̂h
i i

i

i

∣I (f) −i Q  (f)∣ ≤h
i ∣I (f) −i

  (f)∣ +Q̂h
i ∣   (f) −Q̂h

i Q  (f)∣h
i

∣I (f) −i
  (f)∣Q̂h
i

∣   (f) −Q̂h
i Q  (f)∣h

i ∣I (f) −i Q  (f)∣h
i

41



Gauss Quadrature
Next we consider the second approach to developing 
more accurate quadrature rules: unevenly spaced quadrature points

Recall that we can compare accuracy of quadrature rules 
based on the polynomial degree that is integrated exactly

So far, we have only used equally spaced points

More accurate quadrature rules can be derived by choosing the  
to maximize the degree of polynomials integrated exactly

Resulting family of quadrature rules is called Gauss quadrature

x  i
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Gauss Quadrature
With  quadrature points and  quadrature weights, 
we have  parameters to choose

We might hope to integrate a polynomial with  parameters, 
i.e. of degree 

It can be shown that this is possible and leads to Gauss quadrature

Again the idea is to integrate a polynomial interpolant, 
but we choose a specific set of interpolation points: 
Gauss quadrature points are roots of a Legendre polynomial

n + 1 n + 1
2n + 2

2n + 2
2n + 1

43



Gauss Quadrature
Legendre polynomials  form 
an orthogonal basis for  in the  inner product

{P  ,P  , … ,P  }0 1 n

P  n L  2

 P  (x)P  (x)dx =∫
−1

1

m n  {
 , m = n2n+1

2

0,   m = n

44



Gauss Quadrature
Legendre polynomials satisfy a recurrence relation

The first six Legendre polynomials

  

P  (x)0

P  (x)1

(n + 1)P  (x)n+1

= 1

= x

= (2n + 1)xP  (x) − nP  (x)n n−1
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Gauss Quadrature
We can find the roots of  and derive the -point 
Gauss quadrature rule in the same way as for Newton–Cotes: 
integrate the Lagrange interpolant

Gauss quadrature rules have been extensively tabulated for 
Number of points Quadrature points Quadrature weights

1 0 2

2

3

… … …

Key point: Gauss quadrature weights are always positive, 
so Gauss quadrature converges as 

P  (x)n n

x ∈ [−1, 1]

−1/  , 1/  3 3 1, 1

−  , 0,  3/5 3/5 5/9, 8/9, 5/9

n → ∞
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Gauss Quadrature Points
Points cluster toward  which prevents Runge’s phenomenon!±1
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Finite Differences
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Finite Differences
Finite differences approximate a derivative of function

using samples of  on a finite set of points

The points often form a uniform grid, 
so the approximation at point  involves values

f : R → R

f

x

… , f(x − 2h), f(x − h), f(x), f(x + h), f(x + 2h), …

49



Finite Differences
An approximation of the first derivative at point  can be derived 
from Taylor expansion about  evaluated at 

Solving for  we get the forward difference formula

Here we neglected an  term

x

x x + h

f(x + h) = f(x) + f (x)h +′
 h +

2
f (x)′′

2
 h +

6
f (x)′′′

3 ⋯

f (x)′

  

f (x)′ =  −  h + ⋯
h

f(x + h) − f(x)
2

f (x)′′

≈  

h

f(x + h) − f(x)

O(h)
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Finite Differences
The same expansion evaluated at 

yields the backward difference formula

Again, we neglected an  term

x − h

f(x − h) = f(x) − f (x)h +′
 h −

2
f (x)′′

2
 h +

6
f (x)′′′

3 ⋯

f (x) ≈′
 

h

f(x) − f(x − h)

O(h)
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Finite Differences
Subtracting Taylor expansions for  and  
gives the centered difference formula

This one has a higher order, we neglected an  term

f(x + h) f(x − h)

  

f (x)′ =  −  h + ⋯
2h

f(x + h) − f(x − h)
6

f (x)′′′
2

≈  

2h
f(x + h) − f(x − h)

O(h )2
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Finite Differences
Adding Taylor expansions for  and expansion for  
gives the centered difference formula for the second derivative

Again, we neglected an  term

f(x + h) f(x − h)

f (x)′′ =  −  h + ⋯
h2

f(x + h) − 2f(x) + f(x − h)
12

f (x)(4)
2

≈  

h2

f(x + h) − 2f(x) + f(x − h)

O(h )2
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Finite Difference Stencils
The pattern of points involved in a finite difference 
approximation is called a stencil

Examples of stencils,  is the point of interest 
  

x  i
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Finite Differences
By evaluating a Taylor expansion on stencils with more points, 
we can derive:

approximations with a higher order of accuracy
approximations for higher derivatives

However, there is a more systematic way: differentiate an interpolant
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Finite Differences
Linear interpolant through  and  is

Differentiating  gives

which is the forward difference formula

Exercise: Derive the backward difference formula using interpolation

(x, f(x)) (x + h, f(x + h))

p  (t) =1 f(x)  +
h

x + h − t
f(x + h)  

h

t − x

p  1

p  (t) =1
′

 

h

f(x + h) − f(x)
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Finite Differences
Quadratic interpolant  from interpolation points  
gives the centered difference formula for :

differentiate  to get a linear polynomial 
evaluate  to get centered difference formula for 

Also,  gives the centered difference formula for 

This approach can be applied to
higher degree interpolants (higher order, higher derivatives)
unevenly spaced points (adaptive approximations)

p  2 x − h, x, x + h

f (x)′

p  2 p  2
′

p  (x)2
′ f (x)′

p  (x)2
′′ f ′′

57



Differentiation Matrices
So far we have talked about finite difference formulas 
to approximate  at a single point 

Now consider a grid  and vectors of
values 
derivatives 
approximations 

Introduce a mapping

from values  to approximations 

f (x)′ x

x  , … , x  ∈1 n R
F = [f(x  ), … , f(x  )] ∈1 n

T Rn

F =′ [f (x  ), … , f (x  )] ∈′
1

′
n

T Rn

=F
~ ′ [  (x  ), … ,  (x  )] ∈f

~′
1 f

~′
n

T Rn

D : R →n Rn

F F
~ ′

58



Differentiation Matrices
Since the exact differentiation is a linear operation, 
it is natural to assume that  is a linear mapping, 
i.e. 

Then  corresponds to a square matrix  
called a differentiation matrix

Row  of  corresponds to the finite difference formula for 

Note that discretizations of PDEs often involve 
nonlinear approximations of derivatives (will be considered later)

D

D(αF + βG) = αDF + βDG

D D ∈ Rn×n

i D f (x  )′
i

D  F ≈(i,:) f (x  )′
i

59



Example: Differentiation Matrix
Forward difference corresponds to a bidiagonal matrix 
with elements D  =ii −  , D  =h

1
i,i+1  

h
1

>>> import numpy as np 
>>> import matplotlib.pyplot as plt 
>>> n = 11 
>>> h = 1 / (n - 1) 
>>> D = np.diag(-np.ones(n) / h) + np.diag(np.ones(n - 1) / h, 1
>>> plt.spy(D) 
>>> plt.show()
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Example: Differentiation Matrix
But the last row is incorrect, 

 is ignored!D  =n,n+1  

h
1
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Example: Differentiation Matrix
Boundary points need different formulas

For example, use the backward difference in the last row 

See 

D  =n,n−1 −  , D  =h
1

nn  

h
1

[examples/unit3/diff_matr.py]
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Initial Value Problems for ODEs
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Initial Value Problems for ODEs
An initial value problem for an ODE has the form

where
 is an unknown vector function

 is the right-hand side
 is the initial condition

The order of an ODE is the highest-order derivative that appears

Therefore,  is a first order ODE

y (t) =′ f(t, y(t)), y(0) = y  0

y(t) ∈ Rn

f : R × R →n Rn

y(0) = y  ∈0 Rn

y (t) =′ f(t, y)
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Initial Value Problems for ODEs
We only consider first order ODEs since higher order problems 
can be transformed to first order by introducing extra variables

For example, recall Newton’s second law:

Introduce , then the original problem is equivalent to

and , 

y (t) =′′
 , y(0) =

m

F (t, y, y )′
y  , y (0) =0

′ v  0

v = y′

  

v (t)′

y (t)′

=  

m

F (t, y, v)

= v(t)

y(0) = y  0 v(0) = v  0
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Example: A Predator–Prey Model
The Lotka–Volterra equation is a two-variable nonlinear ODE 
that models the evolution of populations of two species

Unknowns are the populations  (prey) and  (predator)

Parameters are  (birth rate),  (death rate), , and  (interactions)

See 

y =′
 ≡[

y  (α  − β  y  )1 1 1 2

y  (−α  + β  y  )2 2 2 1
] f(y)

y  1 y  2

α  1 α  2 β  1 β  2

[examples/unit3/lotka_volterra.py]
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ODEs in Python
scipy.integrate has functions to solve initial value problems for ODEs

odeint(), uses lsoda() from FORTRAN library odepack
solve_ivp(), modern alternative with various methods
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Forward Euler Method
Suppose we want to compute an approximate solution to

at points  for 

Denote the approximation as 

Forward Euler method: use forward difference for 

See , Lotka-Volterra solved with forward Euler

y =′ f(t, y), y(0) = y  0

t  =k kh k = 0, 1, …

y  ≈k y(t  )k
y′

 =
h

y  − y  k+1 k
f(t  , y  ), k =k k 0, 1, …

[examples/unit3/euler.py]
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Forward Euler Method
Quadrature-based interpretation: 
integrating the ODE  from  to  gives

Apply  Newton–Cotes quadrature to  
based on interpolation point 

to get the forward Euler method

y =′ f(t, y) t  k t  k+1

y(t  ) =k+1 y(t  ) +k  f(s, y(s))ds∫
t  k

t  k+1

n = 0  f(s, y(s))ds∫
t  k

t  k+1

tk

 f(s, y(s))ds ≈∫
t  k

t  k+1

(t  −k+1 t  )f(t  , y  ) =k k k hf(t  , y  )k k

y  =k+1 y  +k hf(t  , y  )k k
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Backward Euler Method
We can derive other methods using the same quadrature-based approach

Apply  Newton–Cotes quadrature to  
based on interpolation point 

to get the backward Euler method

n = 0  f(s, y(s))ds∫
t  k

t  k+1

t  k+1

 f(s, y(s))ds ≈∫
t  k

t  k+1

(t  −k+1 t  )f(t  , y  ) =k k+1 k+1 hf(t  , y  )k+1 k+1

y  =k+1 y  +k hf(t  , y  )k+1 k+1
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Backward Euler Method
Forward Euler method is an explicit method: 
we have an explicit formula for  in terms of 

Backward Euler is an implicit method: 
we have to solve a nonlinear equation for 

y  k+1 y  k

y  =k+1 y  +k hf(t  , y  )k k

y  k+1

y  =k+1 y  +k hf(t  , y  )k+1 k+1
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Backward Euler Method
For example, approximate  using backward Euler

at the first step , we get

to compute , let  
and solve  (e.g. using Newton’s method)

Implicit methods are more complicated and 
more computationally expensive to make one time step

However, they can be more stable and accurate (to be seen shortly)

y =′ 2 sin(ty)
k = 0

y  =1 y  +0 h sin(t  y  )1 1

y  1 F (y  ) =1 y  −1 y  −0 h sin(t  y  )1 1

F (y  ) =1 0
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Trapezoid Method
Higher-order quadrature leads to more accurate methods

Apply  Newton–Cotes (trapezoid rule) to  
based on interpolation points , 

to get the trapezoid method

n = 1  f(s, y(s))ds∫
t  k

t  k+1

t  k t  k+1

 f(s, y(s))ds ≈∫
t  k

t  k+1

 (f(t  , y  ) +
2
h

k k f(t  , y  ))k+1 k+1

y  =k+1 y  +k  f(t , y  ) + f(t  , y  )
2
h

( k k k+1 k+1 )
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One-Step Methods
The three methods we have considered so far have the form

where the choice of the function  determines our method

These are called one-step methods:  depends only on 

In a multistep method,  depends on more values  
(will be discussed briefly later)

  

y  k+1

y  k+1

y  k+1

= y  + hΦ(t  , y  ;h)   (explicit)k k k

= y  + hΦ(t  , y  ;h)   (implicit)k k+1 k+1

= y  + hΦ(t  , y  , t  , y  ;h) (implicit)k k k k+1 k+1

Φ

y  k+1 y  k

y  k+1 y  , y  , y  , …k k−1 k−2
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Convergence

75



Convergence
We now consider whether one-step methods converge 
to the exact solution as 

Convergence is a crucial property since we want to be able 
to approach the exact solution at an arbitrary tolerance 
by taking a sufficiently small 

h → 0

h > 0
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Convergence
Define the global error  
as the total accumulated error at 

Define the truncation error  as the error introduced at one step , 
starting from the exact solution, divided by 

For example, the truncation error of an explicit one-step method is

e  k

t = t  k

e  =k y(t  ) −k y  k

T  k k

h

T  =k  −
h

y(t  ) − y(t  )k+1 k Φ(t  , y(t  );h)k k
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Convergence
The truncation error defined above determines 
the local error introduced by the ODE approximation

For example, suppose , then for the case above we have

Therefore,  is the error introduced in one step of our ODE approximation

The local error accumulates and determines the global error

Now let’s consider the global error of the Euler method in detail

y  =k y(t  )k

hT  =k y(t  ) −k+1 y  −k hΦ(t  , y  ;h) =k k y(t  ) −k+1 y  k+1

hTk
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Convergence
Theorem: Suppose we apply forward Euler method to

for steps , where  satisfies a Lipschitz condition

where  is called a Lipschitz constant. 
Then the global error is bounded as

where  is the truncation error of the method

y =′ f(t, y)

k = 0, 1, … ,M − 1 f

∣f(t,u) − f(t, v)∣ ≤ L  ∣u −f v∣,

L  ∈f R  >0

∣e  ∣ ≤k   ∣T  ∣ , k =
L  f

e − 1( L  t  f k )
[

0≤j≤k−1
max j ] 0, 1, … ,M

T  j
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Convergence
Proof (1/3)

From the definition of the truncation error, we have

Subtracting  gives

therefore

y(t  ) =k+1 y(t  ) +k hf(t  , y(t  );h) +k k hT  k

y  =k+1 y  +k hf(t  , y  ;h)k k

e  =k+1 e  +k h f(t  , y(t  )) − f(t  , y  ) +[ k k k k ] hT  k

∣e  ∣ ≤k+1 ∣e  ∣ +k hL  ∣e  ∣ +f k h∣T  ∣ =k (1 + hL  )∣e  ∣ +f k h∣T  ∣k
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Convergence
Proof (2/3)

This gives a geometric progression, e.g. for  we have

In general

k = 2

  

∣e  ∣3 ≤ (1 + hL  )∣e  ∣ + h∣T  ∣f 2 2

≤ (1 + hL  )((1 + hL  )∣e  ∣ + h∣T  ∣) + h∣T  ∣f f 1 1 2

≤ (1 + hL  ) h∣T  ∣ + (1 + hL  )h∣T  ∣ + h∣T  ∣f
2

0 f 1 2

≤ h  ∣T  ∣  (1 + hL  )[
0≤j≤2
max j ]

j=0

∑
2

f
j

∣e  ∣ ≤k h  ∣T  ∣  (1 +[
0≤j≤k−1

max j ]
j=0

∑
k−1

hL  )f j
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Convergence
Proof (3/3)

Use the formula for the sum

with , to get

Finally, use the bound  
to get the desired result

 r =
j=0

∑
k−1

j
 

1 − r

1 − rk

r = (1 + hL  )f

∣e  ∣ ≤k   ∣T  ∣ ((1 +
L  f

1
[

0≤j≤k−1
max j ] hL  ) −f

k 1)

1 + hL  ≤f exp(hL  )f
□

82



Convergence: Lipschitz Condition
A simple case where we can calculate a Lipschitz constant 
is if  and  is continuously differentiable

Then from the mean value theorem we have

for 

Therefore, a Lipschitz constant is given by

y ∈ R f

∣f(t,u) − f(t, v)∣ =  (t, θ)  ∣u −
∂y
∂f

v∣,

θ ∈ (u, v)

L  =f  ∣f  (t, θ)∣
 

t∈[0,t  ]M

θ∈(u,v)

max y
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Convergence: Lipschitz Condition
However, the Lipschitz condition is weaker, 

 does not have to be continuously differentiable

For example, let , 
then , 
and therefore 

f

f(x) = ∣x∣
∣f(x) − f(y)∣ = ∣∣x∣ − ∣y∣∣ ≤ ∣x − y∣

L  =f 1
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Convergence
For a fixed  (i.e.  , as  and ), 
the factor  in the bound is a constant

Hence the global convergence rate for each fixed  
is given by the dependence of  on 

Our proof was for forward Euler, but the same dependence 
of global error on local error holds in general

We say that a method has order of accuracy  if

From our error bound, ODE methods with order  are convergent

t t = kh h → 0 k → ∞
(e −L  tf 1)/L  f

t

T  k h

p

∣T  ∣ =k O(h )p

≥ 1
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Order of Accuracy
Forward Euler is first order accurate

Tk =  − f(t  , y(t  ))
h

y(t  ) − y(t  )k+1 k
k k

=  − y (t  )
h

y(t  ) − y(t  )k+1 k ′
k

=  − y (t  )
h

y(t  ) + hy (t  ) + h y (θ)/2 − y(t  )k
′

k
2 ′′

k ′
k

=  y (θ)
2
h ′′
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Order of Accuracy
Backward Euler is first order accurate

Tk =  − f(t  , y(t  ))
h

y(t  ) − y(t  )k+1 k
k+1 k+1

=  − y (t  )
h

y(t  ) − y(t  )k+1 k ′
k+1

=  − y (t  )
h

y(t  ) − y(t  ) + hy (t  ) − h y (θ)/2k+1 k+1
′

k+1
2 ′′

′
k+1

= −  y (θ)
2
h ′′
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Order of Accuracy
Trapezoid method is second order accurate

Let’s prove this using a quadrature error bound, recall that

so the truncation error is

 =
h

y(t  ) − y(t  )k+1 k
  f(s, y(s))ds

h

1
∫
t  k

t  k+1

T  =k   f(s, y(s))ds −
h

1
∫
t  k

t  k+1

 f(t  , y(t  )) + f(t  , y(t  ))
2
1

[ k k k+1 k+1 ]
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Order of Accuracy
Then

Therefore,  is determined by the trapezoid quadrature rule 
error for the integrand  on 

Recall that trapezoid quadrature rule error bound 
depends on  and hence

  

T  k =   f(s, y(s))ds −  f(t  , y(t  )) + f(t  , y(t  ))
h

1
[∫

t  k

t  k+1

2
h

( k k k+1 k+1 )]

=   y (s)ds −  y (t ) + y (t )
h

1
[∫

t  k

t  k+1
′

2
h

( ′
k

′
k+1 )]

T  k

y′ t ∈ [t  , t  ]k k+1

(b − a) =3 (t  −k+1 t  ) =k
3 h3

T  =k O(h )2
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Order of Accuracy
The table below shows global error at  for ,  
solved using forward Euler and trapezoid methods

2.0e-2 2.67e-2 9.06e-05

1.0e-2 1.35e-2 2.26e-05

5.0e-3 6.76e-3 5.66e-06

2.5e-3 3.39e-3 1.41e-06

t = 1 y =′ y y(0) = 1

h E  Euler E  trap

h → h/2 ⟹ E  →Euler E  /2Euler

h → h/2 ⟹ E  →trap E  /4trap
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Stability
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Stability
So far we have discussed convergence of numerical methods 
for initial value problems for ODEs, i.e. asymptotic behavior as 

It is also crucial to consider stability of numerical methods: 
for what values of  is the method stable?

We want the method to be stable for as large a step size as possible

Taking fewer larger steps can be more efficient

h → 0

h
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Stability
In this context, the key idea is that we want our methods to inherit the
stability properties of the ODE

If an ODE is unstable, then we can’t expect our discretization to be stable

But if an ODE is stable, we want our discretization to be stable as well

Hence we first discuss ODE stability, independent of numerical
discretization
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ODE Stability
Consider an ODE , and

let  be the solution for initial condition 
let  be the solution for initial condition 

The ODE is stable if: 
for every ,  such that

for all 

Small input perturbation leads to small perturbation in the solution

y =′ f(t, y)
y(t) y(0) = y  0

 (t)ŷ  (0) =ŷ   ŷ0

ϵ > 0 ∃δ > 0

∥   −ŷ0 y  ∥ ≤0 δ ⟹ ∥  (t) −ŷ y(t)∥ ≤ ϵ

t ≥ 0
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ODE Stability
A stronger form of stability, asymptotic stability: 

 as , perturbations decay over time

These two definitions of stability are properties of the ODE, 
independent of any numerical algorithm

In ODEs (and PDEs), it is standard to use stability to refer to sensitivity 
of both the mathematical problem and numerical approximations

∥  (t) −ŷ y(t)∥ → 0 t → ∞
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Example: ODE Stability
Stability of  for different values of 

solution  for 
perturbed solution  for 
difference 

 
asymptotically stable

 
stable

 
unstable

y =′ λy λ

y = y  e0
λt y  =0 1

 =ŷ   eŷ0
λt

  =ŷ0 0.9
∣  −ŷ y∣ = ∣   −ŷ0 y  ∣e0

λt

λ = −1 λ = 0 λ = 1
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ODE Stability
More generally, we can allow  to be a complex number: 

Then 

The key issue for stability is now the sign of 
 asymptotically stable
 stable
 unstable

λ λ = a + ib

y(t) = y  e =0
(a+ib)t y e e =0

at ibt y  e (cos(bt) +0
at i sin(bt))

a = Re(λ)
Re(λ) < 0 ⟹
Re(λ) = 0 ⟹
Re(λ) > 0 ⟹
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ODE Stability
Understanding the stability of a scalar equation  
can extend to the case , where 

Suppose that  is diagonalizable, so that we have 
the eigenvalue decomposition , where

, where the  are eigenvalues
 is matrix with eigenvectors as columns, 

Then,

where  and 

y =′ λy

y =′ Ay y ∈ R ,A ∈n Rn×n

A

A = V ΛV −1

Λ = diag(λ  ,λ  , … ,λ  )1 2 n λ  j

V v  , v  , … , v  1 2 n

y =′ Ay = V ΛV y ⟹−1 V y =−1 ′ ΛV y ⟹−1 z = Λz′

z = V y−1 z  =0 V y  

−1
0
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ODE Stability
Hence we have  decoupled ODEs for , 
and the stability of  is determined by  for each 

Since  and  are related by the matrix , 
then if all  are stable then all  will also be stable

If Re  for  then  is a stable ODE

Next we consider stability of numerical approximations to ODEs

n z

z  i λ  i i

z y V

z  i y  i

(λ  ) ≤i 0 i = 1, … ,n y =′ Ay
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ODE Stability
Numerical approximation to an ODE is stable if: 
for every ,  such that

for all 

Key idea: We want to develop numerical methods
that mimic the stability properties of the exact solution

That is, if the ODE is unstable, 
we should not expect the numerical approximation to be stable

ϵ > 0 ∃δ > 0

∥   −ŷ0 y  ∥ ≤0 δ ⟹ ∥   −ŷk y  ∥ ≤k ϵ

k ≥ 0
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Stability
Since ODE stability is problem dependent, 
we need a standard test problem

The standard test problem is the simple scalar ODE

Behavior of a discretization on this test problem 
gives insight into behavior in general

Ideally, to reproduce stability of the ODE , 
we want our discretization to be stable for all Re

y =′ λy

y =′ λy

(λ) ≤ 0
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Stability: Forward Euler
Consider forward Euler discretization of 

Here  is called the amplification factor

Stability means 

Let , then 

y =′ λy

y  =k+1 y  +k hλy  =k (1 + hλ)y  ⟹k y  = (1 + hλ) y  k
k

0

1 + hλ

∣1 + hλ∣ ≤ 1

hλ = a + ib ∣1 + a + ib∣ ≤2 1 ⟹2 (1 + a) +2 b ≤2 1
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Stability: Forward Euler
Therefore, forward Euler is stable for  
inside the circle of radius 1 centered at 

This is a subset of the left-half plane 

We say that the forward Euler method is conditionally stable: 
if , we have to restrict  to ensure stability

hλ ∈ C
(−1, 0)

Re(hλ) ≤ 0

Re(λ) ≤ 0 h
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Stability: Forward Euler
For example, given , we require

Hence “larger negative ” implies tighter restriction on :

See , forward Euler stability

λ < 0

−2 ≤ hλ ≤ 0 ⟹ h ≤ −2/λ

λ h

   

λ = −10

λ = −200

⟹

⟹

h ≤ 0.2

h ≤ 0.01

[examples/unit3/euler_stab.py]
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Stability: Backward Euler
In comparison, consider backward Euler for 

Here the amplification factor is  
and the stability condition is 

y =′ λy

y  =k+1 y  +k hλy  ⟹k+1 y  = (  ) y  k 1−hλ
1 k

0

 1−hλ
1

 ≤∣1−hλ∣
1 1
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Stability: Backward Euler
Let , then , i.e.   

If Re , this is satisfied for any 

We say that the backward Euler method is unconditionally stable: 
if , no restriction on  for stability

hλ = a + ib 1 ≤2 ∣1 − (a + ib)∣2 (1 − a) +2 b ≥2 1

(λ) ≤ 0 h > 0

Re(λ) ≤ 0 h
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Stability
Generally, implicit methods have larger stability regions than explicit 
and therefore allow us to take larger time steps

But explicit methods require less work per step 
since we do not need to solve for 

Therefore there is a tradeoff: 
the choice of method should depend on the problem

y  k+1
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Stability Regions
ODE 

 
 

forward Euler 
 
 

backward Euler 
 

 
y =′ λy

y(t) = y  e0
λt

∣e ∣ ≤λ 1

y  =k+1 y  +k hλy  k

y  =k y  (1 +0 hλ)k

∣1 + hλ∣ ≤ 1

y  =k+1 y  +k hλy  k+1

y  =k y  /(1 −0 hλ)k

∣1/(1 − hλ)∣ ≤ 1
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Runge–Kutta Methods
Runge–Kutta (RK) methods are a popular class of one-step methods

Aim to achieve higher order accuracy by combining evaluations of  
at several points in 

RK methods all fit within a general framework, 
which can be described in terms of Butcher tableaus

We will first consider two RK examples: 
two evaluations of  and four evaluations of 

Extra reading: 

f

[t  , t  ]k k+1

f f

Butcher, 1996. A history of Runge-Kutta methods
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Runge–Kutta Methods
A family of Runge–Kutta methods 
with two intermediate evaluations is defined by

Forward Euler method is a member of this family, 
with  and 

It can be shown that certain combinations of  
yield a second-order method

  

k  1

k  2

y  k+1

= f(t  , y  )k k

= f(t  + αh, y  + βhk  )k k 1

= y  + h(ak  + bk  )k 1 2

a = 1 b = 0

a, b,α,β
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Runge–Kutta Methods
Second-order methods with two stages

midpoint method ( , , )

Heun’s method ( , )

Ralston’s method ( , , , )

See 

α = β = 1/2 a = 0 b = 1

y  =k+1 y  +k hf(t  +k  h, y  +2
1

k  hf(t  , y  ))2
1

k k

α = β = 1 a = b = 1/2

y  =k+1 y  +k  h[f(t  , y  ) +2
1

k k f(t  +k h, y  +k hf(t  , y  ))]k k

α = 2/3 β = 2/3 a = 1/4 b = 3/4

y  =k+1 y  +k  h[f(t  , y  ) +4
1

k k 3f(t  +k  , y  +3
2h

k  f(t  , y  ))]3
2h

k k

[examples/unit3/rk_order2.py]
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Runge–Kutta Methods
The classical fourth-order Runge-Kutta method RK4 
(available in scipy.integrate.solve_ivp) 

It can be shown that the truncation error of RK4 is 

  

k  1

k  2

k  3

k  4

y  k+1

= f(t  , y  )k k

= f(t  + h/2, y  + hk  /2)k k 1

= f(t  + h/2, y  + hk  /2)k k 2

= f(t  + h, y  + hk  )k k 3

= y  +  h(k  + 2k  + 2k  + k  )k 6
1

1 2 3 4

T  =k O(h )4
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Runge–Kutta Methods: Stability
Stability regions of -stage Runge–Kutta methods of order  
(do not depend on a particular method)

p p
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Butcher tableau
Any explicit Runge–Kutta method with  stages can be represented 
using a triangular grid of coefficients called the Butcher tableau

The -th intermediate step is

The solution is updated as

s + 1

      

α  0

α  1

⋮
α  s

β  1,0

⋮
β  s,0

γ  0

β  s,1

γ  1

…
…

β  s,s−1

γ  s−1 γ  s

i

k  =i f(t  +k α  h, y  +i k h  β  k  )∑j=0
i−1

i,j j

y  =k+1 y  +k h  γ  k  ∑j=0
s

j j

114



Richardson Extrapolation
Richardson extrapolation is a general approach 
to analyze error and improve accuracy

Treats the approximation as a “black box”

Assume that  is an approximation to  that depends 
on a discretization parameter  and the error has the form

Some parameters here may be known or unknown
exact solution 
order of accuracy 
factor of the leading error term 

Y (h) y

h > 0

Y (h) − y = Ch +p O(h )p+1

y

p

C
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Richardson Extrapolation
We can evaluate  for various  to eliminate the unknowns

For example, if  is known we can evaluate  and 

Y (h) h

p Y (2h) Y (h)

  

Y (2h) − y

Y (h) − y

= C2 h + O(h )p p p+1

= Ch + O(h )p p+1
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Richardson Extrapolation
If we multiply the second equation by 

and eliminate , we get a higher-order approximation to 

The corresponding error estimate is

2p

  

Y (2h) − y

2 (Y (h) − y)p

= C2 h + O(h )p p p+1

= C2 h + O(h )p p p+1

C2 hp p y

y =  [2 Y (h) −
2 − 1p

1 p Y (2h)] + O(h )p+1

Y (h) − y =  [Y (2h) −
2 − 1p

1
Y (h)] + O(h )p+1
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Error Estimation
How can we compute the solution error 
without knowing the exact solution?

Two approaches to estimate the error
Richardson extrapolation
include an error estimate in the derivation of the method
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Error Estimation
First approach: Richardson extrapolation

Let  be an approximation to  
by a Runge–Kutta method of order  with a time step 

Evaluate  and  to construct an approximation of order 

The corresponding error estimate is

See  and  
applying Richardson extrapolation to each step of forward Euler (i.e.  )

Y (h) y(t)
p h

Y (h) − y(t) = Ch +p O(h )p+1

Y (h) Y (h/2) p + 1

y(t) =  [2 Y (h/2) −
2 − 1p

1 p Y (h)] + O(h )p+1

Y (h/2) − y(t) =  [Y (h) −
2 − 1p

1
Y (h/2)] + O(h )p+1

[examples/unit3/richardson.py] [examples/unit3/richardson2.py]
t = h
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Error Estimation
Second approach: derive Butcher tableaus with 
an additional higher-order formula for estimating error

Fehlberg’s order 4(5) method RKF45
 is order 4,  is order 5,  is an error estimatey  k+1   ŷk+1 y  −k+1   ŷk+1

       

0
 4

1

 

8
3

 13
12

1

 2
1

y  k+1

  ŷk+1

 4
1

 

32
3

 2197
1932

 

216
439

 27
−8

 216
25

 

135
16

 

32
9

−  2197
7200

−8

2

0

0

 2197
7296

 

513
3680

 2565
−3544

 2565
1408

 

12825
6656

−  

4104
845

 4104
1859

 4104
2197

 

56430
28561

 40
−11

−  5
1

−  

50
9

0
 

55
2

Fehlberg, 1969. Low-order classical Runge-Kutta formulas with stepsize
control and their application to some heat transfer problems. NASA
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Higher-Order Methods
Fehlberg’s order 7(8) method RKF78

See implementation in 
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0
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27
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61
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1025
4496

0
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107
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301
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289
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0
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0
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0
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[examples/unit3/fehlberg.py]

Fehlberg, 1968. Classical fifth-, sixth-, seventh-, and eighth-order 
Runge-Kutta formulas with stepsize control. NASA
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Higher-Order Methods: Stability
Stability region of Fehlberg’s order 7 method (13 stages) 
compared to order  Runge–Kutta methodsp
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Stiff systems
A system of linear ODEs

is called stiff if the eigenvalues of  differ greatly in magnitude

Recall that if  with a diagonal matrix of eigenvalues , 
then substitution  reduces the system to .
Therefore, eigenvalues determine the timescales

If the differences in eigenvalues are large, 
we need to resolve multiple timescales simultaneously

y =′ Ay

A

A = V ΛV −1 Λ
y = V z z =′ Λz
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Stiff systems
Suppose we are interested only in the slow components of the solution 
and can ignore the fast components

However, an explicit method will need to resolve the fast components 
to avoid instability

Therefore, it may be beneficial to use an implicit method for stiff systems
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Stiff systems
From a practical point of view, an ODE is considered stiff 
if there is a significant benefit in using an implicit method instead of explicit

In particular, the time step required for stability is much smaller 
than what is required for accuracy

Consider ,  where

which has ,  and exact solution

See  and 

y =′ Ay y  =0 [1, 0]T

A =   [
998

−999
1998

−1999 ]

λ  =1 −1 λ  =2 −1000

y(t) =  [
2e − e−t −1000t

−e + e−t −1000t ]

[examples/unit3/stiff.py] [examples/unit3/stiff2.py]
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Multistep Methods
To obtain a high-order approximation 
one-step methods use multiple function evaluations

Can we reuse data from earlier time steps instead?

This is the idea of multistep methods

If  then the method is explicit

Interpolate the solution and integrate the interpolant 
to derive the parameters

y  =k+1  α  y  +
i=1

∑
m

i k+1−i h  β  f(t  , y  )
i=0

∑
m

i k+1−i k+1−i

β  =0 0
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Multistep Methods
See , second-order Adams–Bashforth method

Question: Multistep methods require data from 
several earlier time steps, so how do we initialize?

Answer: The standard approach is to use a one-step method 
and then move to multistep after collecting enough data

Advantages of one-step methods over multistep
one-step methods are “self-starting”, only need the initial condition
easier to adapt the time step size

[examples/unit3/adams.py]
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Boundary Value Problems for ODEs
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Boundary Value Problems for ODEs
Consider a second-order linear ODE

for  with given parameters  
and function 

The terms in this ODE have standard names
diffusion term 
advection term 
reaction term 
source term 

−αu (x) +′′ βu (x) +′ γu(x) = f(x)

x ∈ [a, b] α,β, γ ∈ R
f : R → R

−αu (x)′′

βu (x)′

γu(x)
f(x)
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Boundary Value Problems for ODEs
A boundary value problem (BVP) for a second-order linear ODE 
consists of

and boundary conditions (BCs) at  and 

Standard types of boundary conditions
Dirichlet condition: 
Neumann condition: 
Robin (or “mixed”) condition: 

−αu (x) +′′ βu (x) +′ γu(x) = f(x)

x = a x = b

u(a) = c  1

u (a) =′ c  1

u (a) +′ c  u(a) =2 c  3
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Shooting Method
The shooting method solves the boundary value problem 
iteratively by solving an initial value problem at each iteration

To form a correct IVP starting from  for a second-order equation, 
we need two conditions at 

one condition is part of the BVP
another condition is imposed with an unknown parameter

For example, with two Dirichlet conditions  and , 
we can additionally specify 

Solve the IVP, and somehow update  to improve the error 

Not widely used as it relies on nonlinear optimization 
and does not generalize to PDEs

x = a

x = a

u(a) = c  1 u(b) = c  2

u (a) =′ g

g ∣u(b) − c  ∣2
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Shooting Method: Example
Steady-state diffusion-reaction equation ( )

Dirichlet conditions:  and  
and extra Neumann condition: 

Iteration:  with 

See 

α = 1, γ = −5

−αu (x) +′′ γu(x) = 0, x ∈ [0, 1]

u(0) = 0 u(1) = 0.5
u(0) = g

g  =new g + η(0.5 − u(1)) η = 2

[examples/unit3/shooting.py]
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ODEs: BVP
A more general approach is to formulate a coupled system 
of equations for the BVP based on a finite difference approximation

Suppose we have a grid

where 

Then our approximation to  is represented by a vector , 
where 

x  =i a + ih, i = 0, 1, … ,n − 1

h = (b − a)/(n − 1)

u(x) U ∈ Rn

U  ≈i u(x  )i
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ODEs: BVP
Recall the ODE

Let’s develop an approximation for each term in the ODE

For the reaction term , we have the pointwise approximation

−αu (x) +′′ βu (x) +′ γu(x) = f(x), x ∈ [a, b]

γu

γU  ≈i γu(x  )i
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ODEs: BVP
Similarly, for the derivatives

Let  be the differentiation matrix for the second derivative
Let  be the differentiation matrix for the first derivative

Then  and 

Hence, we obtain , where  is

Similarly, we represent the right hand side by sampling  at the grid points, 
so we introduce , where 

D  ∈2 Rn×n

D  ∈1 Rn×n

−α(D  U)  ≈2 i −αu (x  )′′
i β(D  U)  ≈1 i βu (x  )′

i

(AU)  ≈i −αu (x  ) +′′
i βu (x  ) +′

i γu(x  )i A ∈ Rn×n

A = −αD  + βD  + γI2 1

f

F ∈ Rn F  =i f(x  )i
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ODEs: BVP
Therefore, we obtain the linear system for  

We have converted a linear differential equation 
into a linear algebraic equation

Similarly, we can convert a nonlinear differential 
equation into a nonlinear algebraic system

Now we need to account for the boundary conditions

U ∈ Rn

AU = F
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ODEs: BVP
Dirichlet boundary conditions 
we need to impose , 

Since we fix  and , they are no longer variables: 
we can eliminate them from our linear system

However, instead of removing rows and columns from , 
it is more convenient to

“zero out” first row of , then set  and 
“zero out” last row of , then set  and 

U  =0 c  1 U  =n−1 c  2

U  0 U  n−1

A

A A(0, 0) = 1 F  =0 c  1

A A(n − 1,n − 1) = 1 F  =n−1 c  2
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ODEs: BVP
See 

Convergence study:

error

, as expected due to second-order differentiation matrices

[examples/unit3/ode_bvp.py]

h

2.0 × 10−2 5.07 × 10−3

1.0 × 10−2 1.26 × 10−3

5.0 × 10−3 3.17 × 10−4

2.5 × 10−3 7.92 × 10−5

O(h )2
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Method of Manufactured Solutions
The method of manufactured solutions 
is a technique for testing the implementation
1. choose a solution  that satisfies the boundary conditions
2. substitute into the ODE to get a right-hand side 
3. compute the ODE approximation with  from step 2
4. verify that you get the expected convergence rate 

for the approximation to 

For example, consider  and set 

u

f

f

u

x ∈ [0, 1] u(x) = e sin(2πx)x

  

f(x) = −αu (x) + βu (x) + γu(x)′′ ′

= −αe 4π cos(2πx) + (1 − 4π ) sin(2πx) +x [ 2 ]

+ βe sin(2πx) + 2π cos(2πx) + γe sin(2πx)x [ ] x
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Derivatives in BCs
Question: How would we impose the Robin boundary condition 

, and preserve the  convergence rate?

Option 1: Introduce a ghost node at , 
this node is involved in both the BC and the -th matrix row

Employ central difference approx. to  to get approx. B.C.:

or equivalently

u (b) +′ c  u(b) =2 c  3 O(h )2

x  =n b + h

(n − 1)

u (b)′

 +
2h

U  − U  n n−2
c  U  =2 n−1 c  ,3

U  =n U  −n−2 2hc  U  +2 n−1 2hc  3
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Derivatives in BCs
The -th equation is

We can substitute our expression for  into the above equation, 
and hence eliminate 

Set , we get  system 

Option 2: Use a one-sided finite-difference formula for  in the Robin BC

(n − 1)

−α  +
h2

U  − 2U  + U  n−2 n−1 n
β  +

2h
U  − U  n n−2

γU  =n−1 F  n−1

U  n

U  n

−  + βc  −(
h

2αc  3
3)  U  +

h2

2α
n−2  (1 + hc  ) − βc  + γ U  =(

h2

2α
2 2 ) n−1 F  n−1

F  ←n−1 F  −n−1 −  + βc  (
h

2αc  3
3) n × n AU = F

u (b)′
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Partial Differential Equations
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Partial Differential Equations
As discussed in the introduction, it is a natural extension to consider Partial
Differential Equations (PDEs)

There are three main classes of PDEs:

equation type prototypical example equation

hyperbolic wave equation

parabolic heat equation

elliptic Poisson equation

Question: Where do these names come from?

u  −tt u  =xx 0

u  −t u  =xx f

u  +xx u  =yy f
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Partial Differential Equations
Answer: The names are related to conic sections

General second-order PDEs have the form

This looks like the quadratic function

au  +xx bu  +xy cu  +yy du  +x eu  +y fu + g = 0

q(x, y) = ax +2 bxy + cy +2 dx + ey
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PDEs: Hyperbolic
Wave equation: 

Corresponding quadratic function is 

 gives a hyperbola, e.g. for , we have

u  −tt u  =xx 0

q(x, t) = t −2 x2

q(x, t) = c c = 0, 2, 4, 6
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PDEs: Parabolic
Heat equation: 

Corresponding quadratic function is 

 gives a parabola, e.g. for , we have

u  −t u  =xx 0

q(x, t) = t − x2

q(x, t) = c c = 0, 2, 4, 6
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PDEs: Elliptic
Poisson equation: 

Corresponding quadratic function is 

 gives an ellipse, e.g. for , we have

u  +xx u  =yy f

q(x, y) = x +2 y2

q(x, y) = c c = 0, 2, 4, 6
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PDEs
In general, it is not so easy to classify PDEs using conic section naming

Many problems don’t strictly fit into the classification scheme 
(e.g. nonlinear, or higher order, or variable coefficient equations)

Nevertheless, the names hyperbolic, parabolic, elliptic are the standard ways
of describing PDEs, based on the criteria:

Hyperbolic: time-dependent, conservative physical process, 
no steady state
Parabolic: time-dependent, dissipative physical process, 
evolves towards steady state
Elliptic: describes systems at equilibrium/steady-state
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Hyperbolic PDEs
We introduced the wave equation  above

Note that the system of first order PDEs

is equivalent to the wave equation, since

This assumes that ,  are smooth, 
so we can switch the order of the partial derivatives

u  −tt u  =xx 0

u  + vt x

v  + ut x

= 0

= 0

u  =tt (u  )  =t t (−v  )  =x t −(v  )  =t x −(−u  )  =x x uxx

u v
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Hyperbolic PDEs
Hence we will focus on the linear advection equation

with initial condition , and 

This equation is representative of hyperbolic PDEs in general

This is a first order PDE and does not correspond to a conic section

However, it is still considered hyperbolic since it is
time-dependent
conservative
not evolving toward steady state

u  +t cu  =x 0

u(x, 0) = u  (x)0 c ∈ R
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Hyperbolic PDEs
We can see that  satisfies the PDE

Let , then from the chain rule we have

u(x, t) = u  (x −0 ct)

z(x, t) = x − ct

  

 u  (x − ct) + c  u  (x − ct)
∂t
∂

0 ∂x
∂

0 =  u  (z(x, t)) + c  u  (z(x, t))
∂t
∂

0 ∂x
∂

0

= u  (z)  + cu  (z)  0
′

∂t
∂z

0
′

∂x
∂z

= −cu  (z) + cu  (z)0
′

0
′

= 0
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Hyperbolic PDEs
This tells us that the equation transports (or advects) 
the initial condition with “speed” 

For example, with  and an initial condition 

c

u  +t cu  =x 0

c = 1 u  (x) =0 e−(1−x)2
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Characteristics
We can understand the behavior of hyperbolic PDEs in more detail 
by considering characteristics

Characteristics are paths  in the -plane 
on which the solution is constant

For  we have , since

(X(t), t) xt

u  +t cu  =x 0 X(t) = X  +0 ct

  

 u(X(t), t)
dt
d

= u  (X(t), t) + u  (X(t), t)  t x dt
dX(t)

= u  (X(t), t) + cu  (X(t), t)t x

= 0
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Characteristics
Hence , 
i.e. the initial condition is transported along characteristics

Characteristics have important implications for the direction of 
flow of information, and for boundary conditions

 
, must impose BC at 

cannot impose BC at 

 
, must impose BC at  

cannot impose BC at 

u(X(t), t) = u(X(0), 0) = u  (X  )0 0

c > 0 x = a

x = b

c < 0 x = b

x = a
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Characteristics
More generally, if we have a non-zero right-hand side in the PDE, 
then the situation is a bit more complicated on each characteristic

Consider , and 

In this case, the solution is no longer constant on , 
but we have reduced a PDE to a set of ODEs, so that

u  +t cu  =x f(t,x,u(t,x)) X(t) = X  +0 ct

 u(X(t), t)
dt
d

= u  (X(t), t) + u  (X(t), t)  t x dt
dX(t)

= u  (X(t), t) + cu  (X(t), t)t x

= f(t,X(t),u(X(t), t))

(X(t), t)

u(X(t), t) = u  (X  ) +  f(t,X(t),u(X(t), t)dt0 0 ∫
0

t

155



Characteristics
We can also find characteristics for advection 
with a variable coefficient

Exercise: Verify that the characteristic curve for

is given by

In this case, we have to solve an ODE 
to obtain the curve  in the -plane

u  +t c(t,x)u  =x 0

X (t) =′ c(X(t), t)

(X(t), t) xt
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Example: Variable Speed in Space
Equation:  with 

Characteristics satisfy  
with solution 

Characteristics “bend away” from 

u  +t cu  =x 0 c(x, t) = x − 1

X (t) =′ c(X(t), t)
X(t) = 1 + (X  −0 1)et

x = 1
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Example: Variable Speed in Time
Equation:  with 

Characteristics satisfy  
with solution 

The same shape shifted along 

u  +t cu  =x 0 c(x, t) = t − 1

X (t) =′ c(X(t), t)
X(t) = X  +0  t −2

1 2 t

x
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Hyperbolic PDEs: Numerical Approximation
We now consider how to solve

using a finite difference method

Question: Why finite differences? Why not just use characteristics?

Answer: Characteristics actually are a viable option for computational
methods, and are used in practice

However, characteristic methods can become very complicated in 2D or 3D,
or for nonlinear problems

Finite differences are a much more practical choice

u  +t cu  =x 0

159



Hyperbolic PDEs: Numerical Approximation
We impose an initial condition and a boundary condition

A finite difference approximation is performed on a grid in the -planext
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Hyperbolic PDEs: Numerical Approximation
The first step in developing a finite difference approximation 
is to consider the Courant–Friedrichs–Lewy (CFL) condition

The CFL condition is a necessary condition for the convergence
of a finite difference approximation of a hyperbolic problem

Suppose we discretize  in space and time using the explicit
scheme

Here , where , 

u  +t cu  =x 0

 +
Δt

U  − U  j
n+1

j
n

c  =
Δx

U  − U  j
n

j−1
n

0

U  ≈j
n u(t  ,x  )n j t  =n nΔt x  =j jΔx
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Hyperbolic PDEs: Numerical Approximation
This can be rewritten as

where

We can see that  depends only on  and 

Uj
n+1 = U  −  (U  − U  )j

n

Δx

cΔt
j
n

j−1
n

= (1 − ν)U  + νU  j
n

j−1
n

ν =  

Δx

cΔt

U  

j
n+1 U  j

n U  j−1
n
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Hyperbolic PDEs: Numerical Approximation
The set of grid nodes on which  depends 
is called the domain of dependence of 

U  j
n+1

U  

j
n+1
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Hyperbolic PDEs: Numerical Approximation
The domain of dependence of the exact solution  
is determined by the characteristics passing through 

The CFL condition states

u(t  ,x )n+1 j

(t  ,x  )n+1 j

For a convergent scheme, the domain of dependence of
the PDE must lie within the domain of dependence of the
numerical method
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Hyperbolic PDEs: Numerical Approximation
Domain of dependence of : grid nodes •
Domain of dependence of : solid line (characteristic)

In this case, the scheme satisfies the CFL condition

U  j
n

u(t  ,x  )n+1 j
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Hyperbolic PDEs: Numerical Approximation
With a larger advection speed , 
the scheme does not satisfy the CFL condition

c
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Hyperbolic PDEs: Numerical Approximation
With a negative advection speed ( ), 
the scheme does not satisfy the CFL condition

c < 0
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Hyperbolic PDEs: Numerical Approximation
Question: What goes wrong if the CFL condition is violated?

Answer: The exact solution  depends on initial value , 
which is outside the scheme’s domain of dependence

Therefore, the numerical approximation to  is “insensitive” 
to the value , which means that the method cannot be convergent

u(x, t) u  (x  )0 0

u(x, t)
u  (x  )0 0
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Hyperbolic PDEs: Numerical Approximation
If , then we require  
for the CFL condition to be satisfied
c > 0 ν =  ≤Δx

cΔt 1
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Hyperbolic PDEs: Numerical Approximation
Note that CFL is only a necessary condition for convergence

However, CFL is straightforward to test and allows us 
to easily reject improper schemes or parameters

For example, for , the scheme with a backward difference

cannot be convergent if 

Question: How should we modify the scheme for ?

u  +t cu  =x 0

+
Δt

U  − U  j
n+1

j
n

c  =
Δx

U  − U  j
n

j−1
n

0

c < 0

c < 0
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Hyperbolic PDEs: Upwind Method
Answer: The method should account for the direction of “information flow”

This motivates the upwind scheme for 

The upwind scheme satisfies CFL condition if 

 is called the CFL number (or the Courant number)

u  +t cu  =x 0

U  =j
n+1

 {
U  − c  (U  − U  ), if c > 0j
n

Δx
Δt

j
n

j−1
n

U  − c  (U  − U  ), if c < 0j
n

Δx
Δt

j+1
n

j
n

∣ν∣ = ∣cΔt/Δx∣ ≤ 1

ν = cΔt/Δx
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Hyperbolic PDEs: Central Difference
Another method that seems appealing is the central difference method

It satisfies CFL for  both for  and 

However, we will see that this method is unstable

+
Δt

U  − U  j
n+1

j
n

c  =
2Δx

U  − U  j+1
n

j−1
n

0

∣ν∣ = ∣cΔt/Δx∣ ≤ 1 c > 0 c < 0
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Hyperbolic PDEs: Accuracy
Recall that truncation error is 
the residual of the numerical approximation 
evaluated on the exact solution

For the ( ) upwind method, the truncation error is:

The order of accuracy is then the largest  such that

c > 0

T  =j
n

 +
Δt

u(t ,x  ) − u(t ,x  )n+1
j

n
j

c  

Δx

u(t ,x  ) − u(t ,x  )n
j

n
j−1

p

T  =j
n O((Δx) +p (Δt) )p
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Hyperbolic PDEs: Accuracy
For the upwind method, we have

Hence the upwind scheme is first order accurate

T  =j
n

 Δtu  (t ,x  ) − cΔxu  (t ,x  ) +
2
1

[ tt
n

j xx
n

j ] h.o.t.
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Hyperbolic PDEs: Accuracy
Just like with ODEs, truncation error is related to convergence 
to the exact solution as 

Note that to let , we generally need to decide 
on a relationship between  and 

For example, to let  for the upwind scheme, 
we would set . 
This ensures CFL is satisfied for all 

Δt, Δx → 0

Δt, Δx → 0
Δt Δx

Δt, Δx → 0
 =Δx

cΔt ν ∈ (0, 1]
Δx, Δt
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Hyperbolic PDEs: Accuracy
In general, convergence of a finite difference method for a PDE 
is related to both its truncation error and its stability

Now we will consider how to analyze stability using 
the Fourier stability analysis (also called von Neumann analysis)
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Hyperbolic PDEs: Stability
Suppose that  is periodic on a grid U  j

n x  ,x  , … ,x  1 2 n
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Hyperbolic PDEs: Stability
Then we can represent  as a linear combination 
of  and  functions, i.e. Fourier modes

Equivalently, as a linear combination of complex exponentials, 
since  so that

U  j
n

sin cos

e =ikx cos(kx) + i sin(kx)

sin(x) =  (e −2i
1 ix e ), cos(x) =−ix

 (e +2
1 ix e )−ix
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Hyperbolic PDEs: Stability
Let’s focus on only one of the Fourier modes

In particular, we consider the ansatz , 
where  is the wave number and 

Key idea: Suppose that  satisfies our 
finite difference equation, then this will allow us to solve for 

The value of  indicates whether 
the Fourier mode  is amplified or damped

If  for all  then the scheme 
does not amplify any Fourier modes, therefore is stable

U  (k) =j
n λ(k) en ikx  j

k λ(k) ∈ C
U  (k)j
n

λ(k)

∣λ(k)∣
eikx  j

∣λ(k)∣ ≤ 1 k
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Hyperbolic PDEs: Stability
We now perform Fourier stability analysis for 
the upwind scheme with  (recall that ):

Substituting in  gives

Then

c > 0 ν =  Δx
cΔt

U  =j
n+1 U  −j

n ν(U  −j
n U  )j−1

n

U  (k) =j
n λ(k) en ik(jΔx)

λ(k)eik(jΔx) = e − ν(e − e )ik(jΔx) ik(jΔx) ik((j−1)Δx)

= e − νe (1 − e )ik(jΔx) ik(jΔx) −ikΔx)

λ(k) = 1 − ν(1 − e ) =−ikΔx 1 − ν(1 − cos(kΔx) + i sin(kΔx))
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Hyperbolic PDEs: Stability
It follows that

and from the identity , we have

Due to the CFL condition, we first suppose that 

Then , and therefore 

  

∣λ(k)∣2 = [(1 − ν) + ν cos(kΔx)] + [ν sin(kΔx)]2 2

= (1 − ν) + ν + 2ν(1 − ν) cos(kΔx)2 2

= 1 − 2ν(1 − ν)(1 − cos(kΔx))

(1 − cos(θ)) = 2 sin (  )2
2
θ

∣λ(k)∣ = 1 − 4ν(1 − ν) sin  kΔx2 2 (
2
1

)

0 ≤ ν ≤ 1

0 ≤ 4ν(1 − ν) sin  kΔx ≤2 ( 2
1 ) 1 ∣λ(k)∣ ≤ 1
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Hyperbolic PDEs: Stability
In contrast, consider stability of the central difference scheme

Recall that this also satisfies the CFL condition as long as 

But Fourier stability analysis yields

and hence  (unless ), i.e. unstable!

+
Δt

U  − U  j
n+1

j
n

c  =
2Δx

U  − U  j+1
n

j−1
n

0

ν ≤∣ ∣ 1

λ(k) = 1 − νi sin(kΔx) ⟹ ∣λ(k)∣ =2 1 + ν sin (kΔx)2 2

∣λ(k)∣ > 1 sin(kΔx) = 0
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Consistency
We say that a numerical scheme is consistent with a PDE 
if its truncation error tends to zero as 

For example, any first (or higher) order scheme is consistent

Δx, Δt → 0
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Lax Equivalence Theorem
Then a fundamental theorem about finite difference schemes 
is the Lax equivalence theorem

This theorem refers to linear evolutionary problems, 
e.g. linear hyperbolic or parabolic PDEs

Due to Peter Lax (born 1926, American mathematician)

For a consistent finite difference approximation to a
linear evolutionary problem, the stability of the scheme is
necessary and sufficient for convergence
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Lax Equivalence Theorem
We know how to check consistency: Derive the truncation error

We know how to check stability: Fourier stability analysis

Hence, from the Lax equivalence theorem, 
we have a general approach for verifying convergence

Also, as with ODEs, convergence rate is determined by truncation error
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Lax Equivalence Theorem
Note that strictly speaking Fourier stability analysis 
only applies for periodic problems

However, its conclusions on periodic problems generally hold in other cases

Fourier stability analysis is the standard tool for examining stability of
finite-difference methods for PDEs

See , one-sided and central difference 
schemes for the advection equation

[examples/unit3/advection.py]

186

https://github.com/pkarnakov/am205/tree/main/examples/unit3/advection.py


Hyperbolic PDEs: Semi-discretization
So far, we have developed full discretizations (both space and time) 
of the advection equation, and considered accuracy and stability

However, it can be helpful to consider semi-discretizations, 
where we discretize only in space, or only in time

For example, discretizing  in space using a backward
difference formula gives

u  +t c(t,x)u  =x 0

 +
∂t

∂U  (t)j
c  (t)  =j Δx

U  (t) − U  (t)j j−1 0, j = 1, … ,n
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Hyperbolic PDEs: Semi-discretization
This gives a system of ODEs, , where  and

Forward Euler applied to that system yields 
the first-order upwind scheme

Backward Euler yields the implicit first-order upwind

U =t f(t,U(t)) U(t) ∈ Rn

f  (t,U(t)) =j −c  (t)  j Δx

U  (t) − U  (t)j j−1

 =
Δt

U  − U  j
n+1

j
n

f(t ,U ) =n n −c   j
n

Δx

U  − U  j
n

j−1
n

 =
Δt

U  − U  j
n+1

j
n

f(t ,U ) =n+1 n+1 −c   j
n+1

Δx

U  − U  j
n+1

j−1
n+1
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Hyperbolic PDEs: Method of Lines
We can also use a “black box” ODE solver (e.g. scipy.integrate.odeint) 
to solve the system of ODEs

This “black box” approach is called the method of lines

The name “lines” is because we solve each  for a fixed , 
i.e. a line in the -plane

We let the ODE solver to choose step size  
to obtain a stable and accurate scheme

U  (t)j x  j

xt

Δt
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Wave Equation
We now briefly return to the wave equation:

In one spatial dimension, this models vibrations of a string

u  −tt c u  =2
xx 0
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Wave Equation
Many schemes have been proposed for the wave equation, 
as well as other hyperbolic systems in general

One good option is to use central difference approximations 
for both  and 

Key points
truncation error analysis  second-order accurate
Fourier stability analysis  stable for 
two-step method in time, need a one-step method to “get started”

See  and 

u  tt u  xx

 −
Δt2

U  − 2U  + U  j
n+1

j
n

j
n−1

c  =2

Δx2

U  − 2U  + U  j+1
n

j
n

j−1
n

0

⟹
⟹ 0 ≤ cΔt/Δx ≤ 1

[examples/unit3/wave.py] [examples/unit3/wave_audio.py]
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Wave Equation: Example 
Wave equation with forcing

Energy  

Sound  (change in arc length)

Forcing  
 u  −tt u  =xx f

u  dx∫ t
2

u  dx∫ x
2

f = x sin(ω(t)t)
ω(t) = at + b
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Heat Equation
The canonical parabolic equation is the heat equation

where  is the thermal diffusivity

By rescaling  and , we can assume 

To form an initial-boundary value problem, we impose
initial condition 
boundary conditions on both endpoints the domain

u  −t αu  =xx f(t,x)

α

x t α = 1

u(0,x) = u  (x)0
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Heat Equation
A natural idea would be to discretize  with a central difference, 
and employ forward Euler in time

Or we could use backward Euler in time 

u  xx

 −
Δt

U  − U  j
n+1

j
n

 =
Δx2

U  − 2U  + U  j−1
n

j
n

j+1
n

0

 −
Δt

U  − U  j
n+1

j
n

 =
Δx2

U  − 2U  + U  j−1
n+1

j
n+1

j+1
n+1

0
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Heat Equation
Or we could do the midpoint rule in time

This is called the Crank–Nicolson method

Extra reading: 

 −
Δt

U  − U  j
n+1

j
n

  −
2
1

Δx2

U  − 2U  + U  j−1
n+1

j
n+1

j+1
n+1

  =
2
1

Δx2

U  − 2U  + U  j−1
n

j
n

j+1
n

0

Crank & Nicolson, 1947. A practical method for numerical
evaluation of solutions of partial differential equations of the heat-
conduction type
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-Method

The -method is a family of methods that includes all of the above 

where  is a parameter
 forward Euler
 Crank–Nicolson
 backward Euler

For the -method, we can
perform Fourier stability analysis
calculate the truncation error

θ

θ

 −
Δt

U  − U  j
n+1

j
n

θ  −
Δx2

U  − 2U  + U  j−1
n+1

j
n+1

j+1
n+1

(1 − θ)  =
Δx2

U  − 2U  + U  j−1
n

j
n

j+1
n

0

θ ∈ [0, 1]
θ = 0 ⟹
θ =  ⟹2

1

θ = 1 ⟹

θ
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-Method: Stability

Fourier stability analysis. Set  to get

where 

In general,  is dimensionless 
(sometimes called the diffusion number, or diffusion CFL number)

Here we cannot get , hence only concern is 

Let’s find conditions for stability, i.e. we want 

θ

U  (k) =j
n λ(k) en ik(jΔx)

λ(k) =  

1 + 4θμ sin  kΔx2 ( 2
1 )

1 − 4(1 − θ)μ sin  kΔx2 ( 2
1 )

μ = Δt/Δx2

μ = αΔt/Δx2

λ(k) > 1 λ(k) < −1

λ(k) ≥ −1

1 − 4(1 − θ)μ sin  kΔx ≥2 (
2
1

) − 1 + 4θμ sin  kΔx[ 2 (
2
1

)]
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-Method: Stability

Or equivalently

For  this inequality is always satisfied, 
hence the -method is unconditionally stable (i.e. stable independent of )

For , the “most unstable” Fourier mode is at , 
since this maximizes the factor 

θ

4μ(1 − 2θ) sin  kΔx ≤2 (
2
1

) 2

θ ∈ [0.5, 1]
θ μ

θ ∈ [0, 0.5) k = π/Δx

sin  kΔx2 ( 2
1 )
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-Method: Stability

Note that this corresponds to the highest frequency mode 
that can be represented on our grid, since with  we have

The  “sawtooth” mode

θ

k = π/Δx

e =ik(jΔx) e =πij (e ) =πi j (−1)j

k = π/Δx
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-Method: Stability

This sawtooth mode is stable (and so all modes are stable) if

Therefore, the -method is conditionally stable for 

θ

4μ(1 − 2θ) ≤ 2 ⟺ μ ≤  

2(1 − 2θ)
1

θ θ ∈ [0, 0.5)

200



-Method: Stability

The -method is conditionally stable if  
and unconditionally stable if 

Stability region in the -  plane

θ

θ θ ∈ [0, 0.5)
θ ∈ [0.5, 1]

μ θ
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-Method: Stability

Note that  in  leads to a severe stability restriction, 
since  is quadratic in 

Recall that in the hyperbolic case,  is linear in 

This indicates that spacial discretization of the heat equation 
results in a stiff system of ODEs

θ

θ [0, 0.5)
Δt Δx

Δt ≤  2(1−2θ)
(Δx)2

Δt Δx

Δt ≤  

c
Δx
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-Method: Accuracy

The truncation error analysis gives

The term  in  vanishes since  solves the PDE

θ

Tj
n =  − θ  − (1 − θ)  

Δt

u  − u  j
n+1

j
n

Δx2

u  − 2u  + u  j−1
n+1

j
n+1

j+1
n+1

Δx2

u  − 2u  + u  j−1
n

j
n

j+1
n

= [u  − u  ] + [(  − θ)Δtu  −  Δx u  ]t xx 2
1

xxt 12
1 2

xxxx

+ [  Δt u  −  Δt u  ]24
1 2

ttt 8
1 2

xxtt

+ [  (  − θ)ΔtΔx u  −  Δx u  ] + ⋯12
1

2
1 2

xxxxt 6!
2 4

xxxxxx

u  −t u  xx T  j
n u
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-Method: Accuracy

The method is second order if , and first order otherwise if 

The -method is consistent (i.e. truncation error tends to zero) 
and stable (conditionally stable for )

Therefore, from the Lax equivalence theorem, the method is convergent

θ

θ = 0.5 θ = 0.5

θ

θ ∈ [0, 0.5)

204



Heat Equation
Note that the heat equation describes a diffusive process, 
so it tends to smooth out discontinuities

See , 
forward Euler and Crank-Nicolson schemes for the heat equation

This is qualitatively different to hyperbolic equations, 
e.g. the advection equation will just transport a discontinuity in 

[examples/unit3/heat.py]

u  0
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Elliptic PDEs
The canonical elliptic PDE is the Poisson equation

for  in the domain 

This is generally written as  (or )

Options for boundary conditions on the domain boundary 
Dirichlet, given value 
Neumann, given normal derivative 
Robin (mixed), given linear combination of both

u  +xx u  =yy f(x, y)

(x, y) ∈ Ω Ω ⊂ R2

∇ u =2 f Δu = f

∂Ω
u

 ∂n
∂u
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Elliptic PDEs
We will consider how to use a finite difference scheme 
to approximate this 2D Poisson equation

First, introduce a uniform grid to discretize Ω
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Elliptic PDEs
Assume equal grid spacing 

Then
, , 
, ,

Use finite differences to approximate  and  on this grid

h = Δx = Δy

x  =i ih i = 0, 1, 2 … ,N  −x 1
y  =j jh j = 0, 1, 2, … ,N  −y 1
U  ≈i,j u(x  , y  )i j

u  xx u  yy
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Elliptic PDEs
Each derivative is approximated as

The Laplacian is approximated as

u  (x  , y  ) =xx i j  +
h2

u(x  , y  ) − 2u(x  , y  ) + u(x  , y  )i−1 j i j i+1 j
O(h )2

u  (x  , y  ) =yy i j  +
h2

u(x  , y  ) − 2u(x  , y  ) + u(x  , y  )i j−1 i j i j+1
O(h )2

u  (x  , y  ) +xx i j u  (x  , y  ) =yy i j

 +
h2

u(x  , y  ) + u(x  , y  ) − 4u(x  , y  ) + u(x  , y  ) + u(x  , y  )i j−1 i−1 j i j i+1 j i j+1
O(h )2
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Elliptic PDEs
Using the grid values, the approximation to the Laplacian is

This corresponds to a 5-point stencil

u  +xx u  ≈yy  

h2

U  + U  − 4U  + U  + U  i,j−1 i−1,j i,j i+1,j i,j+1
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Elliptic PDEs
We represent the numerical solution as a vector 

We want to construct a differentiation matrix  
that approximates the Laplacian

Question: How many non-zero diagonals will  have?

To construct , we need to relate the entries of 
the one-dimensional vector  to the two-dimensional grid values  
(i.e. flatten the grid values)

U ∈ RN  N  x y

D ∈ RN  N ×N  N  x y x y

D

D

U U  i,j

211



Elliptic PDEs
For instance, let’s enumerate the nodes from 0 to  
starting from the bottom row  (i.e. row-major order)

Let  denote the mapping from the 2D indexing to the 1D indexing

From the above schematic we have

N  N  −x y 1
j = 0

G

G(i, j) = jN  +x i and therefore U  =G(i,j) U  i,j
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Elliptic PDEs
Let’s focus on node , this corresponds to entry  of 

Due to the 5-point stencil, row  of  
will only have non-zeros in five columns with indices

(i, j) G(i, j) U

G(i, j) D

G(i, j − 1)

G(i − 1, j)

G(i, j)

G(i + 1, j)

G(i, j + 1)

= G(i, j) − N  x

= G(i, j) − 1

= G(i, j)

= G(i, j) + 1

= G(i, j) + N  x
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Elliptic PDEs
The discretization of the equations above 
applies in inner nodes, i.e. nodes with indices 

Impose zero Dirichlet conditions

on the boundaries, i.e. nodes with indices 

Other cases (e.g. Neumann conditions) will need to be discretized 
accordingly on each boundary

i > 0, i < N  −x 1, j > 0, and j < N  −y 1

U  =i,j 0

i = 0, i = N  −x 1, j = 0, or j = N  −y 1
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Elliptic PDEs
For example, in the case , 
matrix  has the following sparsity pattern

N  =x N  =y 6
D
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Elliptic PDEs
Poisson equation  
for  with  on 

See , solved using scipy.sparse

∇ u =2 −10
(x, y) ∈ Ω = [0, 1]2 u = 0 ∂Ω

[examples/unit3/poisson.py]
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