Applied Mathematics 205

 Unit 3. Numerical Calculus

 Unit 3. Numerical Calculus}

Lecturer: Petr Karnakov

October 5, 2022

Motivation

- Since the time of Newton, calculus has been ubiquitous in science
- Calculus problems that arise in applications typically do not have closed-form solutions
- Numerical approximation is essential
- In this Unit we will consider
- numerical integration
- numerical differentiation
- numerical methods for ordinary differential equations
- numerical methods for partial differential equations

Integration

- The process of approximating a definite integral using a numerical method is called quadrature
- The Riemann sum suggests how to perform quadrature

- We will examine more accurate/efficient quadrature methods

Integration

- Question: Why is quadrature important?
- We know how to evaluate many integrals analytically,

$$
\int_{0}^{1} e^{x} \mathrm{~d} x \quad \text { or } \quad \int_{0}^{\pi} \cos x \mathrm{~d} x
$$

- But how about

$$
\int_{1}^{2000} \exp (\sin (\cos (\sinh (\cosh (\arctan (\log (x))))))) d x
$$

Integration

- We can numerically approximate this integral using scipy.integrate.quad()

```
>>> import scipy
>>> from math import *
>>> def f(x):
    return exp(sin(cos(\operatorname{cinh}(\operatorname{cosh}(\operatorname{atan}(\operatorname{log}(x)))))))
>>> scipy.integrate.quad(f, 1, 2000)
(1514.7806778270256, 4.231109731546272e-06)
```


Integration

- Quadrature also generalizes naturally to higher dimensions, and allows us to compute integrals on irregular domains
- For example, we can approximate an integral on a triangle based on a finite sum of samples at quadrature points

people.sc.fsu.edu/~jburkardt/cpp_src/triangle_fekete_rule_test

Integration

- And then evaluate integrals in complex geometries by triangulating the domain

Differentiation

- Numerical differentiation is another fundamental tool
- We have already discussed the most common, intuitive approach to numerical differentiation: finite differences
- Examples
- $f^{\prime}(x)=\frac{f(x+h)-f(x)}{h}+\mathcal{O}(h)$
- $f^{\prime}(x)=\frac{f(x)-f(x-h)}{h}+\mathcal{O}(h)$
- $f^{\prime}(x)=\frac{f(x+h)-f(x-h)}{2 h}+\mathcal{O}\left(h^{2}\right)$
- $f^{\prime \prime}(x)=\frac{f(x+h)-2 f(x)+f(x-h)}{h^{2}}+\mathcal{O}\left(h^{2}\right)$
forward difference
backward difference centered difference
centered, second derivative

Differentiation

- We will see how to derive these and other finite difference formulas and quantify their accuracy
- Wide range of choices, with trade-offs in terms of
- accuracy
- stability
- complexity

Differentiation

- In Unit 0, we saw that finite differences can be sensitive to rounding error when h is "too small"
- But in most applications we obtain sufficient accuracy with h large enough that rounding error is still negligible
- Hence finite differences generally work very well and provide a very popular approach to solving problems involving derivatives

ODEs

- The most common situation in which we need to approximate derivatives is to solve differential equations
- Ordinary Differential Equations (ODEs):

Differential equations involving functions of one variable

- Examples of problems
- initial value problem (IVP) for a first order ODE

$$
\begin{aligned}
& y^{\prime}(t)=y^{2}(t)+t^{4}-6 t \\
& y(0)=y_{0}
\end{aligned}
$$

- boundary value problem (BVP) for a second order ODE

$$
\begin{aligned}
& y^{\prime \prime}(x)+2 x y(x)=1 \\
& y(0)=y(1)=0
\end{aligned}
$$

ODEs: IVP

- Newton's second law of motion

$$
y^{\prime \prime}(t)=\frac{F\left(t, y, y^{\prime}\right)}{m}, \quad y(0)=y_{0}, \quad y^{\prime}(0)=v_{0}
$$

where $y(t) \in \mathbb{R}$ is the position of a particle of mass m at time $t \geq 0$

- This is a scalar ODE to simulate one particle
- An N-body problem involves a system of N interacting particles
- For example, F can be gravitational force due to other particles, and the force on particle i depends on positions of the other particles

ODEs: IVP

- N-body problems are the basis of many cosmological simulations
- Recall the galaxy formation simulations from Unit 0

- Computationally expensive when N is large!

ODEs: BVP

- Boundary value problems for ODEs are also important in many circumstances
- The steady-state heat equation for the temperature $u(x)$

$$
-u^{\prime \prime}(x)=f(x), \quad u(-1)=0, \quad u^{\prime}(1)=0
$$

- apply a heat source $f(x)=1-x^{2}$
- impose zero temperature at $x=-1$
- insulate at $x=1$
- Here $u(x)$ is the temperature of a 1D rod

ODEs: BVP

- We can approximate the equation $-u^{\prime \prime}(x)=f(x)$ with finite differences

$$
-\frac{u(x+h)-2 u(x)+u(x-h)}{h^{2}}=f(x)
$$

and impose $u(-1)=0$ and $u(1)-u(1-h)=0$

PDEs

- It is also natural to introduce time-dependence
- Now $u(x, t)$ is a function of x and t so derivatives of u are partial derivatives and we obtain a partial differential equation (PDE)
- The time-dependent heat equation for $u(x, t)$

$$
\frac{\partial u}{\partial t}-\frac{\partial^{2} u}{\partial x^{2}}=f(x)
$$

with initial conditions $u(x, 0)=0$ and boundary conditions $u(-1, t)=0, \frac{\partial u}{\partial x}(1, t)=0$

- This is an initial-boundary value problem (IBVP)

PDEs

- Again, we can approximate the equation $\frac{\partial u}{\partial t}-\frac{\partial^{2} u}{\partial x^{2}}=f(x)$ with finite differences

$$
\frac{u(x, t)-u(x, t-\Delta t)}{\Delta t}-\frac{u(x+h, t)-2 u(x, t)+u(x-h, t)}{h^{2}}=f(x)
$$

and impose $u(x, 0)=0, u(-1, t)=0$, and $u(1, t)-u(1-h, t)=0$

PDEs

- This extends to 2D and 3D domains
- The time-dependent heat equation in a 3 D domain $\Omega \subset \mathbb{R}^{3}$ for the temperature $u(x, y, z, t)$

$$
\frac{\partial u}{\partial t}-\frac{\partial^{2} u}{\partial x^{2}}-\frac{\partial^{2} u}{\partial y^{2}}-\frac{\partial^{2} u}{\partial z^{2}}=f(x, y, z)
$$

with initial conditions $u(x, y, z, 0)=u_{0}(x, y, z)$ and boundary conditions $u=0$ on $\partial \Omega$

PDEs

- This equation is typically written as

$$
\begin{aligned}
\frac{\partial u}{\partial t}-\nabla^{2} u & =f(x, y, z) \\
\text { where } \nabla^{2} u=\nabla \cdot \nabla u & =\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}+\frac{\partial^{2} u}{\partial z^{2}}
\end{aligned}
$$

- Here we have
- the Laplacian $\nabla^{2}=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}$
- the gradient $\nabla=\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right)$

PDEs

- We can add a transport term to the heat equation to obtain the convection-diffusion equation

$$
\frac{\partial u}{\partial t}+\mathbf{w} \cdot \nabla u-\nabla^{2} u=f(x, y)
$$

- Now $u(x, t)$ models the concentration of some substance in a medium moving with velocity $\mathbf{w}(x, y, t) \in \mathbb{R}^{2}$

PDEs

- The Navier-Stokes equations describe the motion of viscous liquids

$$
\frac{\partial \mathbf{u}}{\partial t}+(\mathbf{u} \cdot \nabla) \mathbf{u}=-\nabla p+\nu \nabla^{2} \mathbf{u}
$$

together with the continuity equation (the liquid is incompressible)

$$
\nabla \cdot \mathbf{u}=0
$$

for the unknown velocity \mathbf{u} and pressure p, where ν is the viscosity

PDEs

- Numerical methods for PDEs are a major topic in scientific computing
- Recall examples from Unit 0

CFD

Geophysics

- In the course, we will focus on the finite difference method
- Alternative methods: finite element, finite volume, spectral, boundary element, particles, ...

Summary

- Numerical calculus includes a wide range of topics and has important applications
- We will consider various algorithms and analyze their stability, accuracy, and efficiency

Quadrature

- Suppose we want to evaluate the integral $I(f)=\int_{a}^{b} f(x) \mathrm{d} x$
- We can proceed as follows
- approximate f using a polynomial interpolant p_{n}
- define $Q_{n}(f)=\int_{a}^{b} p_{n}(x) \mathrm{d} x$ we can integrate polynomials exactly
- $Q_{n}(f)$ provides a quadrature formula, and we should have $Q_{n}(f) \approx I(f)$
- A quadrature rule based on an interpolant p_{n} at $n+1$ equally spaced points in $[a, b]$ is known as Newton-Cotes formula of order n

Newton-Cotes Quadrature

- Let $x_{k}=a+k h, k=0,1, \ldots, n$, where $h=(b-a) / n$
- We write the interpolant of f in the Lagrange form as

$$
p_{n}(x)=\sum_{k=0}^{n} f\left(x_{k}\right) L_{k}(x), \quad \text { where } \quad L_{k}(x)=\prod_{i=0, i \neq k}^{n} \frac{x-x_{i}}{x_{k}-x_{i}}
$$

- Then
$Q_{n}(f)=\int_{a}^{b} p_{n}(x) \mathrm{d} x=\sum_{k=0}^{n} f\left(x_{k}\right) \int_{a}^{b} L_{k}(x) \mathrm{d} x=\sum_{k=0}^{n} w_{k} f\left(x_{k}\right)$
where $w_{k}=\int_{a}^{b} L_{k}(x) \mathrm{d} x \in \mathbb{R}$ is the k-th quadrature weight

Newton-Cotes Quadrature

- Note that quadrature weights do not depend on f, so they can be precomputed and stored
- trapezoid rule: $Q_{1}(f)=\frac{b-a}{2}[f(a)+f(b)]$
- Simpson's rule: $Q_{2}(f)=\frac{b-a}{6}\left[f(a)+4 f\left(\frac{a+b}{2}\right)+f(b)\right]$
- We can develop higher-order Newton-Cotes formulas in the same way

Error Estimates

- Let $E_{n}(f)=I(f)-Q_{n}(f)$
- Then

$$
\begin{aligned}
E_{n}(f) & =\int_{a}^{b} f(x) \mathrm{d} x-\sum_{k=0}^{n} w_{k} f\left(x_{k}\right) \\
& =\int_{a}^{b} f(x) \mathrm{d} x-\sum_{k=0}^{n}\left(\int_{a}^{b} L_{k}(x) \mathrm{d} x\right) f\left(x_{k}\right) \\
& =\int_{a}^{b} f(x) \mathrm{d} x-\int_{a}^{b}\left(\sum_{k=0}^{n} L_{k}(x) f\left(x_{k}\right)\right) \mathrm{d} x \\
& =\int_{a}^{b} f(x) \mathrm{d} x-\int_{a}^{b} p_{n}(x) \mathrm{d} x \\
& =\int_{a}^{b}\left(f(x)-p_{n}(x)\right) \mathrm{d} x
\end{aligned}
$$

- From Unit 1, we have an expression for $f(x)-p_{n}(x)$

Error Estimates

- Recall

$$
f(x)-p_{n}(x)=\frac{f^{n+1}(\theta)}{(n+1)!}\left(x-x_{0}\right) \ldots\left(x-x_{n}\right)
$$

- Hence

$$
\begin{aligned}
& \left|E_{n}(f)\right| \leq \frac{M_{n+1}}{(n+1)!} \int_{a}^{b}\left|\left(x-x_{0}\right)\left(x-x_{1}\right) \cdots\left(x-x_{n}\right)\right| \mathrm{d} x \\
& \text { where } M_{n+1}=\max _{\theta \in[a, b]}\left|f^{n+1}(\theta)\right|
\end{aligned}
$$

Error Estimates

- For the trapezoid rule, the error bound is

$$
\left|E_{1}(f)\right| \leq \frac{(b-a)^{3}}{12} M_{2}
$$

- The bound for E_{n} depends directly on the integrand f (via M_{n+1})
- Just like with the Lebesgue constant, it is informative to be able to compare quadrature rules independently of the integrand

Error Estimates: Another Perspective

- Theorem: If Q_{n} integrates polynomials of degree n exactly, then $\exists C_{n}>0$ such that $\left|E_{n}(f)\right| \leq C_{n} \min _{p \in \mathbb{P}_{n}}\|f-p\|_{\infty}$
- Proof: For any $p \in \mathbb{P}_{n}$, we have

$$
\begin{aligned}
\left|E_{n}(f)\right| & =\left|I(f)-Q_{n}(f)\right| \\
& \leq|I(f)-I(p)|+\left|I(p)-Q_{n}(f)\right| \\
& =|I(f-p)|+\left|Q_{n}(f-p)\right| \\
& \leq \int_{a}^{b} \mathrm{~d} x\|f-p\|_{\infty}+\left(\sum_{k=0}^{n}\left|w_{k}\right|\right)\|f-p\|_{\infty} \\
& =C_{n}\|f-p\|_{\infty}
\end{aligned}
$$

where $C_{n}=b-a+\sum_{k=0}^{n}\left|w_{k}\right|$ does not depend on p

Error Estimates

- Hence a convenient way to compare accuracy of quadrature rules is to compare the polynomial degree they integrate exactly
- Newton-Cotes of order n is based on polynomial interpolation, hence in general integrates polynomials of degree n exactly
- Also follows from the fact that $M_{n+1}=0$ for a polynomial of degree n

Runge's Phenomenon Again

- However, Newton-Cotes formulas are based on interpolation at equally spaced points
- Hence they're susceptible to Runge's phenomenon, and we expect them to be inaccurate for large n
- Question: How does this show up in our error bound?

$$
\left|E_{n}(f)\right| \leq C_{n} \min _{p \in \mathbb{P}_{n}}\|f-p\|_{\infty}
$$

Runge Phenomenon Again

- Answer: In the constant C_{n}
- Recall that $C_{n}=b-a+\sum_{k=0}^{n}\left|w_{k}\right|$, and that $w_{k}=\int_{a}^{b} L_{k}(x) \mathrm{d} x$

- If the L_{k} blow up due to equally spaced points, so does C_{n}

Runge Phenomenon Again

- In fact, we know that $\sum_{k=0}^{n} w_{k}=b-a$, why?
- This tells us that if all the w_{k} are positive, then

$$
C_{n}=b-a+\sum_{k=0}^{n}\left|w_{k}\right|=b-a+\sum_{k=0}^{n} w_{k}=2(b-a)
$$

- If weights are positive, then C_{n} is a constant (independent of n) and the quadrature converges to the exact integral

$$
Q_{n}(f) \rightarrow I(f) \quad \text { as } n \rightarrow \infty
$$

Runge Phenomenon Again

- But with Newton-Cotes, quadrature weights become negative for $n>8$ (in example above, $L_{10}(x)$ would clearly yield $w_{10}<0$)
- Key point: Newton-Cotes is not useful for large n
- However, there are two natural ways to get quadrature rules that converge as $n \rightarrow \infty$
- integrate piecewise polynomial interpolant
- do not use equally spaced interpolation points
- We consider piecewise polynomial-based quadrature rules first

Composite Quadrature Rules

- Integrating a piecewise polynomial interpolant leads to a composite quadrature rule
- Suppose we divide $[a, b]$ into m subintervals, each of width $h=(b-a) / m$, and $x_{i}=a+i h, i=0,1, \ldots, m$
- Then we have

$$
I(f)=\int_{a}^{b} f(x) \mathrm{d} x=\sum_{i=1}^{m} \int_{x_{i-1}}^{x_{i}} f(x) \mathrm{d} x
$$

Composite Trapezoid Rule

- Composite trapezoid rule: Apply trapezoid rule to each interval

$$
\int_{x_{i-1}}^{x_{i}} f(x) \mathrm{d} x \approx \frac{1}{2} h\left[f\left(x_{i-1}\right)+f\left(x_{i}\right)\right]
$$

- The composite quadrature is denoted as

$$
\begin{aligned}
Q_{1, h}(f) & =\sum_{i=1}^{m} \frac{1}{2} h\left[f\left(x_{i-1}\right)+f\left(x_{i}\right)\right] \\
& =h\left[\frac{1}{2} f\left(x_{0}\right)+f\left(x_{1}\right)+\cdots+f\left(x_{m-1}\right)+\frac{1}{2} f\left(x_{m}\right)\right]
\end{aligned}
$$

Composite Trapezoid Rule

- Composite trapezoid rule error analysis

$$
E_{1, h}(f)=I(f)-Q_{1, h}(f)=\sum_{i=1}^{m}\left[\int_{x_{i-1}}^{x_{i}} f(x) \mathrm{d} x-\frac{1}{2} h\left[f\left(x_{i-1}\right)+f\left(x_{i}\right)\right]\right]
$$

- Hence,

$$
\begin{aligned}
\left|E_{1, h}(f)\right| & \leq \sum_{i=1}^{m}\left|\int_{x_{i-1}}^{x_{i}} f(x) \mathrm{d} x-\frac{1}{2} h\left[f\left(x_{i-1}\right)+f\left(x_{i}\right)\right]\right| \\
& \leq \frac{h^{3}}{12} \sum_{i=1}^{m} \max _{\theta \in\left[x_{i-1}, x_{i}\right]}\left|f^{\prime \prime}(\theta)\right| \\
& \leq \frac{h^{3}}{12} m\left\|f^{\prime \prime}\right\|_{\infty} \\
& =\frac{h^{2}}{12}(b-a)\left\|f^{\prime \prime}\right\|_{\infty}
\end{aligned}
$$

Composite Simpson Rule

- We can obtain composite Simpson's rule in the same way
- Suppose that $[a, b]$ is divided into $2 m$ intervals by the points $x_{i}=a+i h, i=0, \ldots, 2 m$, where $h=(b-a) / 2 m$
- Applying Simpson's rule on each interval $\left[x_{2 i-2}, x_{2 i}\right], i=1, \ldots, m$ yields

$$
\begin{gathered}
Q_{2, h}(f)=\frac{h}{3}\left[f\left(x_{0}\right)+4 f\left(x_{1}\right)+2 f\left(x_{2}\right)+4 f\left(x_{3}\right)+\cdots\right. \\
\left.+2 f\left(x_{2 m-2}\right)+4 f\left(x_{2 m-1}\right)+f\left(x_{2 m}\right)\right]
\end{gathered}
$$

- See [examples/unit3/quadcomp.py] with composite trapezoid and Simpson's rules

Adaptive Quadrature

- Composite quadrature rules are very flexible, can be applied to intervals of variable sizes
- We should use smaller intervals where f varies rapidly, and larger intervals where f varies slowly
- This can be achieved by adaptive quadrature:

1. Initialize to $m=1$ (one interval)
2. On each interval, evaluate quadrature rule and estimate quadrature error
3. If error estimate is larger than a given tolerance on interval i, subdivide into two smaller intervals and return to step 2

- Question: How can we estimate the quadrature error on an interval?

Adaptive Quadrature

- One straightforward way to estimate quadrature error on interval i is to compare to a more refined result for interval i
- Let $I^{i}(f)$ denote the exact integral and $Q_{h}^{i}(f)$ denote quadrature approximation on interval i
- Let $\hat{Q}_{h}^{i}(f)$ denote a more refined quadrature approximation on interval i, e.g. obtained by subdividing interval i
- Then for the error on interval i, we have

$$
\left|I^{i}(f)-Q_{h}^{i}(f)\right| \leq\left|I^{i}(f)-\hat{Q}_{h}^{i}(f)\right|+\left|\hat{Q}_{h}^{i}(f)-Q_{h}^{i}(f)\right|
$$

- Suppose we can neglect $\left|I^{i}(f)-\hat{Q}_{h}^{i}(f)\right|$ so that we use $\left|\hat{Q}_{h}^{i}(f)-Q_{h}^{i}(f)\right|$ as a computable estimator for $\left|I^{i}(f)-Q_{h}^{i}(f)\right|$

Gauss Quadrature

- Next we consider the second approach to developing more accurate quadrature rules: unevenly spaced quadrature points
- Recall that we can compare accuracy of quadrature rules based on the polynomial degree that is integrated exactly
- So far, we have only used equally spaced points
- More accurate quadrature rules can be derived by choosing the x_{i} to maximize the degree of polynomials integrated exactly
- Resulting family of quadrature rules is called Gauss quadrature

Gauss Quadrature

- With $n+1$ quadrature points and $n+1$ quadrature weights, we have $2 n+2$ parameters to choose
- We might hope to integrate a polynomial with $2 n+2$ parameters, i.e. of degree $2 n+1$
- It can be shown that this is possible and leads to Gauss quadrature
- Again the idea is to integrate a polynomial interpolant, but we choose a specific set of interpolation points:
Gauss quadrature points are roots of a Legendre polynomial

Gauss Quadrature

- Legendre polynomials $\left\{P_{0}, P_{1}, \ldots, P_{n}\right\}$ form an orthogonal basis for \mathbb{P}_{n} in the L_{2} inner product

$$
\int_{-1}^{1} P_{m}(x) P_{n}(x) \mathrm{d} x= \begin{cases}\frac{2}{2 n+1}, & m=n \\ 0, & m \neq n\end{cases}
$$

Gauss Quadrature

- Legendre polynomials satisfy a recurrence relation

$$
\begin{aligned}
P_{0}(x) & =1 \\
P_{1}(x) & =x \\
(n+1) P_{n+1}(x) & =(2 n+1) x P_{n}(x)-n P_{n-1}(x)
\end{aligned}
$$

- The first six Legendre polynomials

Gauss Quadrature

- We can find the roots of $P_{n}(x)$ and derive the n-point Gauss quadrature rule in the same way as for Newton-Cotes: integrate the Lagrange interpolant
- Gauss quadrature rules have been extensively tabulated for $x \in[-1,1]$

Number of points	Quadrature points	Quadrature weights
1	0	2
2	$-1 / \sqrt{3}, 1 / \sqrt{3}$	1,1
3	$-\sqrt{3 / 5}, 0, \sqrt{3 / 5}$	$5 / 9,8 / 9,5 / 9$
\ldots	\ldots	\ldots

- Key point: Gauss quadrature weights are always positive, so Gauss quadrature converges as $n \rightarrow \infty$

Gauss Quadrature Points

- Points cluster toward ± 1 which prevents Runge's phenomenon!

Finite Differences

Finite Differences

- Finite differences approximate a derivative of function

$$
f: \mathbb{R} \rightarrow \mathbb{R}
$$

using samples of f on a finite set of points

- The points often form a uniform grid, so the approximation at point x involves values

$$
\ldots, \quad f(x-2 h), \quad f(x-h), \quad f(x), \quad f(x+h), f(x+2 h), \ldots
$$

Finite Differences

- An approximation of the first derivative at point x can be derived from Taylor expansion about x evaluated at $x+h$

$$
f(x+h)=f(x)+f^{\prime}(x) h+\frac{f^{\prime \prime}(x)}{2} h^{2}+\frac{f^{\prime \prime \prime}(x)}{6} h^{3}+\cdots
$$

- Solving for $f^{\prime}(x)$ we get the forward difference formula

$$
\begin{aligned}
f^{\prime}(x) & =\frac{f(x+h)-f(x)}{h}-\frac{f^{\prime \prime}(x)}{2} h+\cdots \\
& \approx \frac{f(x+h)-f(x)}{h}
\end{aligned}
$$

- Here we neglected an $\mathcal{O}(h)$ term

Finite Differences

- The same expansion evaluated at $x-h$

$$
f(x-h)=f(x)-f^{\prime}(x) h+\frac{f^{\prime \prime}(x)}{2} h^{2}-\frac{f^{\prime \prime \prime}(x)}{6} h^{3}+\cdots
$$

yields the backward difference formula

$$
f^{\prime}(x) \approx \frac{f(x)-f(x-h)}{h}
$$

- Again, we neglected an $\mathcal{O}(h)$ term

Finite Differences

- Subtracting Taylor expansions for $f(x+h)$ and $f(x-h)$ gives the centered difference formula

$$
\begin{aligned}
f^{\prime}(x) & =\frac{f(x+h)-f(x-h)}{2 h}-\frac{f^{\prime \prime \prime}(x)}{6} h^{2}+\cdots \\
& \approx \frac{f(x+h)-f(x-h)}{2 h}
\end{aligned}
$$

- This one has a higher order, we neglected an $\mathcal{O}\left(h^{2}\right)$ term

Finite Differences

- Adding Taylor expansions for $f(x+h)$ and expansion for $f(x-h)$ gives the centered difference formula for the second derivative

$$
\begin{aligned}
f^{\prime \prime}(x) & =\frac{f(x+h)-2 f(x)+f(x-h)}{h^{2}}-\frac{f^{(4)}(x)}{12} h^{2}+\cdots \\
& \approx \frac{f(x+h)-2 f(x)+f(x-h)}{h^{2}}
\end{aligned}
$$

- Again, we neglected an $\mathcal{O}\left(h^{2}\right)$ term

Finite Difference Stencils

- The pattern of points involved in a finite difference approximation is called a stencil
- Examples of stencils, x_{i} is the point of interest

Finite Differences

- By evaluating a Taylor expansion on stencils with more points, we can derive:
- approximations with a higher order of accuracy
- approximations for higher derivatives
- However, there is a more systematic way: differentiate an interpolant

Finite Differences

- Linear interpolant through $(x, f(x))$ and $(x+h, f(x+h))$ is

$$
p_{1}(t)=f(x) \frac{x+h-t}{h}+f(x+h) \frac{t-x}{h}
$$

- Differentiating p_{1} gives

$$
p_{1}^{\prime}(t)=\frac{f(x+h)-f(x)}{h}
$$

which is the forward difference formula

- Exercise: Derive the backward difference formula using interpolation

Finite Differences

- Quadratic interpolant p_{2} from interpolation points $x-h, x, x+h$ gives the centered difference formula for $f^{\prime}(x)$:
- differentiate p_{2} to get a linear polynomial p_{2}^{\prime}
- evaluate $p_{2}^{\prime}(x)$ to get centered difference formula for $f^{\prime}(x)$
- Also, $p_{2}^{\prime \prime}(x)$ gives the centered difference formula for $f^{\prime \prime}$
- This approach can be applied to
- higher degree interpolants (higher order, higher derivatives)
- unevenly spaced points (adaptive approximations)

Differentiation Matrices

- So far we have talked about finite difference formulas to approximate $f^{\prime}(x)$ at a single point x
- Now consider a grid $x_{1}, \ldots, x_{n} \in \mathbb{R}$ and vectors of
- values $F=\left[f\left(x_{1}\right), \ldots, f\left(x_{n}\right)\right]^{T} \in \mathbb{R}^{n}$
- derivatives $F^{\prime}=\left[f^{\prime}\left(x_{1}\right), \ldots, f^{\prime}\left(x_{n}\right)\right]^{T} \in \mathbb{R}^{n}$
- approximations $\tilde{F}^{\prime}=\left[\tilde{f}^{\prime}\left(x_{1}\right), \ldots, \tilde{f}^{\prime}\left(x_{n}\right)\right]^{T} \in \mathbb{R}^{n}$
- Introduce a mapping

$$
D: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}
$$

from values F to approximations \tilde{F}^{\prime}

Differentiation Matrices

- Since the exact differentiation is a linear operation, it is natural to assume that D is a linear mapping, i.e. $D(\alpha F+\beta G)=\alpha D F+\beta D G$
- Then D corresponds to a square matrix $D \in \mathbb{R}^{n \times n}$ called a differentiation matrix
- Row i of D corresponds to the finite difference formula for $f^{\prime}\left(x_{i}\right)$

$$
D_{(i,:)} F \approx f^{\prime}\left(x_{i}\right)
$$

- Note that discretizations of PDEs often involve nonlinear approximations of derivatives (will be considered later)

Example: Differentiation Matrix

- Forward difference corresponds to a bidiagonal matrix with elements $D_{i i}=-\frac{1}{h}, D_{i, i+1}=\frac{1}{h}$

```
>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> n = 11
>>> h=1/(n - 1)
>>> D = np.diag(-np.ones(n) / h) + np.diag(np.ones(n - 1) / h,
>>> plt.spy(D)
>>> plt.show()
```


Example: Differentiation Matrix

- But the last row is incorrect, $D_{n, n+1}=\frac{1}{h}$ is ignored!

Example: Differentiation Matrix

- Boundary points need different formulas
- For example, use the backward difference in the last row

$$
D_{n, n-1}=-\frac{1}{h}, D_{n n}=\frac{1}{h}
$$

- See [examples/unit3/diff_matr.py]

Initial Value Problems for ODEs

Initial Value Problems for ODEs

- An initial value problem for an ODE has the form

$$
y^{\prime}(t)=f(t, y(t)), \quad y(0)=y_{0}
$$

where

- $y(t) \in \mathbb{R}^{n}$ is an unknown vector function
- $f: \mathbb{R} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is the right-hand side
- $y(0)=y_{0} \in \mathbb{R}^{n}$ is the initial condition
- The order of an ODE is the highest-order derivative that appears
- Therefore, $y^{\prime}(t)=f(t, y)$ is a first order ODE

Initial Value Problems for ODEs

- We only consider first order ODEs since higher order problems can be transformed to first order by introducing extra variables
- For example, recall Newton's second law:

$$
y^{\prime \prime}(t)=\frac{F\left(t, y, y^{\prime}\right)}{m}, \quad y(0)=y_{0}, \quad y^{\prime}(0)=v_{0}
$$

- Introduce $v=y^{\prime}$, then the original problem is equivalent to

$$
\begin{aligned}
v^{\prime}(t) & =\frac{F(t, y, v)}{m} \\
y^{\prime}(t) & =v(t)
\end{aligned}
$$

and $y(0)=y_{0}, v(0)=v_{0}$

Example: A Predator-Prey Model

- The Lotka-Volterra equation is a two-variable nonlinear ODE that models the evolution of populations of two species

$$
y^{\prime}=\left[\begin{array}{c}
y_{1}\left(\alpha_{1}-\beta_{1} y_{2}\right) \\
y_{2}\left(-\alpha_{2}+\beta_{2} y_{1}\right)
\end{array}\right] \equiv f(y)
$$

- Unknowns are the populations y_{1} (prey) and y_{2} (predator)
- Parameters are α_{1} (birth rate), α_{2} (death rate), β_{1}, and β_{2} (interactions)
- See [examples/unit3/lotka_volterra.py]
- prey - predator

ODEs in Python

- scipy. integrate has functions to solve initial value problems for ODEs
- odeint(), uses lsoda() from FORTRAN library odepack
- solve_ivp(), modern alternative with various methods

Forward Euler Method

- Suppose we want to compute an approximate solution to

$$
y^{\prime}=f(t, y), \quad y(0)=y_{0}
$$

at points $t_{k}=k h$ for $k=0,1, \ldots$

- Denote the approximation as $y_{k} \approx y\left(t_{k}\right)$
- Forward Euler method: use forward difference for y^{\prime}

$$
\frac{y_{k+1}-y_{k}}{h}=f\left(t_{k}, y_{k}\right), \quad k=0,1, \ldots
$$

- See [examples/unit3/euler.py], Lotka-Volterra solved with forward Euler

Forward Euler Method

- Quadrature-based interpretation: integrating the ODE $y^{\prime}=f(t, y)$ from t_{k} to t_{k+1} gives

$$
y\left(t_{k+1}\right)=y\left(t_{k}\right)+\int_{t_{k}}^{t_{k+1}} f(s, y(s)) \mathrm{d} s
$$

- Apply $n=0$ Newton-Cotes quadrature to $\int_{t_{k}}^{t_{k+1}} f(s, y(s)) \mathrm{d} s$ based on interpolation point t_{k}

$$
\int_{t_{k}}^{t_{k+1}} f(s, y(s)) \mathrm{d} s \approx\left(t_{k+1}-t_{k}\right) f\left(t_{k}, y_{k}\right)=h f\left(t_{k}, y_{k}\right)
$$

to get the forward Euler method

$$
y_{k+1}=y_{k}+h f\left(t_{k}, y_{k}\right)
$$

Backward Euler Method

- We can derive other methods using the same quadrature-based approach
- Apply $n=0$ Newton-Cotes quadrature to $\int_{t_{k}}^{t_{k+1}} f(s, y(s)) \mathrm{d} s$ based on interpolation point t_{k+1}

$$
\int_{t_{k}}^{t_{k+1}} f(s, y(s)) \mathrm{d} s \approx\left(t_{k+1}-t_{k}\right) f\left(t_{k+1}, y_{k+1}\right)=h f\left(t_{k+1}, y_{k+1}\right)
$$

to get the backward Euler method

$$
y_{k+1}=y_{k}+h f\left(t_{k+1}, y_{k+1}\right)
$$

Backward Euler Method

- Forward Euler method is an explicit method: we have an explicit formula for y_{k+1} in terms of y_{k}

$$
y_{k+1}=y_{k}+h f\left(t_{k}, y_{k}\right)
$$

- Backward Euler is an implicit method: we have to solve a nonlinear equation for y_{k+1}

$$
y_{k+1}=y_{k}+h f\left(t_{k+1}, y_{k+1}\right)
$$

Backward Euler Method

- For example, approximate $y^{\prime}=2 \sin (t y)$ using backward Euler
- at the first step $k=0$, we get

$$
y_{1}=y_{0}+h \sin \left(t_{1} y_{1}\right)
$$

- to compute y_{1}, let $F\left(y_{1}\right)=y_{1}-y_{0}-h \sin \left(t_{1} y_{1}\right)$ and solve $F\left(y_{1}\right)=0$ (e.g. using Newton's method)
- Implicit methods are more complicated and more computationally expensive to make one time step
- However, they can be more stable and accurate (to be seen shortly)

Trapezoid Method

- Higher-order quadrature leads to more accurate methods
- Apply $n=1$ Newton-Cotes (trapezoid rule) to $\int_{t_{k}}^{t_{k+1}} f(s, y(s)) \mathrm{d} s$ based on interpolation points t_{k}, t_{k+1}

$$
\int_{t_{k}}^{t_{k+1}} f(s, y(s)) \mathrm{d} s \approx \frac{h}{2}\left(f\left(t_{k}, y_{k}\right)+f\left(t_{k+1}, y_{k+1}\right)\right)
$$

to get the trapezoid method

$$
y_{k+1}=y_{k}+\frac{h}{2}\left(f\left(t_{k}, y_{k}\right)+f\left(t_{k+1}, y_{k+1}\right)\right)
$$

One-Step Methods

- The three methods we have considered so far have the form

$$
\begin{array}{lr}
y_{k+1}=y_{k}+h \Phi\left(t_{k}, y_{k} ; h\right) \\
y_{k+1}=y_{k}+h \Phi\left(t_{k+1}, y_{k+1} ; h\right) \\
y_{k+1}=y_{k}+h \Phi\left(t_{k}, y_{k}, t_{k+1}, y_{k+1} ; h\right) & \text { (implicit) } \\
\text { (implicit) }
\end{array}
$$

where the choice of the function Φ determines our method

- These are called one-step methods: y_{k+1} depends only on y_{k}
- In a multistep method, y_{k+1} depends on more values $y_{k}, y_{k-1}, y_{k-2}, \ldots$ (will be discussed briefly later)

Convergence

Convergence

- We now consider whether one-step methods converge to the exact solution as $h \rightarrow 0$
- Convergence is a crucial property since we want to be able to approach the exact solution at an arbitrary tolerance by taking a sufficiently small $h>0$

Convergence

- Define the global error e_{k} as the total accumulated error at $t=t_{k}$

$$
e_{k}=y\left(t_{k}\right)-y_{k}
$$

- Define the truncation error T_{k} as the error introduced at one step k, starting from the exact solution, divided by h
- For example, the truncation error of an explicit one-step method is

$$
T_{k}=\frac{y\left(t_{k+1}\right)-y\left(t_{k}\right)}{h}-\Phi\left(t_{k}, y\left(t_{k}\right) ; h\right)
$$

Convergence

- The truncation error defined above determines the local error introduced by the ODE approximation
- For example, suppose $y_{k}=y\left(t_{k}\right)$, then for the case above we have

$$
h T_{k}=y\left(t_{k+1}\right)-y_{k}-h \Phi\left(t_{k}, y_{k} ; h\right)=y\left(t_{k+1}\right)-y_{k+1}
$$

- Therefore, $h T_{k}$ is the error introduced in one step of our ODE approximation
- The local error accumulates and determines the global error
- Now let's consider the global error of the Euler method in detail

Convergence

- Theorem: Suppose we apply forward Euler method to

$$
y^{\prime}=f(t, y)
$$

for steps $k=0,1, \ldots, M-1$, where f satisfies a Lipschitz condition

$$
|f(t, u)-f(t, v)| \leq L_{f}|u-v|
$$

where $L_{f} \in \mathbb{R}_{>0}$ is called a Lipschitz constant.
Then the global error is bounded as

$$
\left|e_{k}\right| \leq \frac{\left(e^{L_{f} t_{k}}-1\right)}{L_{f}}\left[\max _{0 \leq j \leq k-1}\left|T_{j}\right|\right], \quad k=0,1, \ldots, M
$$

where T_{j} is the truncation error of the method

Convergence

Proof (1/3)

- From the definition of the truncation error, we have

$$
y\left(t_{k+1}\right)=y\left(t_{k}\right)+h f\left(t_{k}, y\left(t_{k}\right) ; h\right)+h T_{k}
$$

- Subtracting $y_{k+1}=y_{k}+h f\left(t_{k}, y_{k} ; h\right)$ gives

$$
e_{k+1}=e_{k}+h\left[f\left(t_{k}, y\left(t_{k}\right)\right)-f\left(t_{k}, y_{k}\right)\right]+h T_{k}
$$

therefore

$$
\left|e_{k+1}\right| \leq\left|e_{k}\right|+h L_{f}\left|e_{k}\right|+h\left|T_{k}\right|=\left(1+h L_{f}\right)\left|e_{k}\right|+h\left|T_{k}\right|
$$

Convergence

Proof (2/3)

- This gives a geometric progression, e.g. for $k=2$ we have

$$
\begin{aligned}
\left|e_{3}\right| & \leq\left(1+h L_{f}\right)\left|e_{2}\right|+h\left|T_{2}\right| \\
& \leq\left(1+h L_{f}\right)\left(\left(1+h L_{f}\right)\left|e_{1}\right|+h\left|T_{1}\right|\right)+h\left|T_{2}\right| \\
& \leq\left(1+h L_{f}\right)^{2} h\left|T_{0}\right|+\left(1+h L_{f}\right) h\left|T_{1}\right|+h\left|T_{2}\right| \\
& \leq h\left[\max _{0 \leq j \leq 2}\left|T_{j}\right|\right] \sum_{j=0}^{2}\left(1+h L_{f}\right)^{j}
\end{aligned}
$$

- In general

$$
\left|e_{k}\right| \leq h\left[\max _{0 \leq j \leq k-1}\left|T_{j}\right|\right] \sum_{j=0}^{k-1}\left(1+h L_{f}\right)^{j}
$$

Convergence

Proof (3/3)

- Use the formula for the sum

$$
\begin{gathered}
\sum_{j=0}^{k-1} r^{j}=\frac{1-r^{k}}{1-r} \\
\text { with } r=\left(1+h L_{f}\right), \text { to get } \\
\left|e_{k}\right| \leq \frac{1}{L_{f}}\left[\max _{0 \leq j \leq k-1}\left|T_{j}\right|\right]\left(\left(1+h L_{f}\right)^{k}-1\right)
\end{gathered}
$$

- Finally, use the bound $1+h L_{f} \leq \exp \left(h L_{f}\right)$ to get the desired result \square

Convergence: Lipschitz Condition

- A simple case where we can calculate a Lipschitz constant is if $y \in \mathbb{R}$ and f is continuously differentiable
- Then from the mean value theorem we have

$$
|f(t, u)-f(t, v)|=\left|\frac{\partial f}{\partial y}(t, \theta)\right||u-v|
$$

for $\theta \in(u, v)$

- Therefore, a Lipschitz constant is given by

$$
L_{f}=\max _{\substack{t \in\left[0, t_{M}\right] \\ \theta \in(u, v)}}\left|f_{y}(t, \theta)\right|
$$

Convergence: Lipschitz Condition

- However, the Lipschitz condition is weaker, f does not have to be continuously differentiable
- For example, let $f(x)=|x|$, then $|f(x)-f(y)|=||x|-|y|| \leq|x-y|$, and therefore $L_{f}=1$

Convergence

- For a fixed t (i.e. $t=k h$, as $h \rightarrow 0$ and $k \rightarrow \infty$), the factor $\left(e^{L_{f} t}-1\right) / L_{f}$ in the bound is a constant
- Hence the global convergence rate for each fixed t is given by the dependence of T_{k} on h
- Our proof was for forward Euler, but the same dependence of global error on local error holds in general
- We say that a method has order of accuracy p if

$$
\left|T_{k}\right|=\mathcal{O}\left(h^{p}\right)
$$

- From our error bound, ODE methods with order ≥ 1 are convergent

Order of Accuracy

- Forward Euler is first order accurate

$$
\begin{aligned}
T_{k} & =\frac{y\left(t_{k+1}\right)-y\left(t_{k}\right)}{h}-f\left(t_{k}, y\left(t_{k}\right)\right) \\
& =\frac{y\left(t_{k+1}\right)-y\left(t_{k}\right)}{h}-y^{\prime}\left(t_{k}\right) \\
& =\frac{y\left(t_{k}\right)+h y^{\prime}\left(t_{k}\right)+h^{2} y^{\prime \prime}(\theta) / 2-y\left(t_{k}\right)}{h}-y^{\prime}\left(t_{k}\right) \\
& =\frac{h}{2} y^{\prime \prime}(\theta)
\end{aligned}
$$

Order of Accuracy

- Backward Euler is first order accurate

$$
\begin{aligned}
T_{k} & =\frac{y\left(t_{k+1}\right)-y\left(t_{k}\right)}{h}-f\left(t_{k+1}, y\left(t_{k+1}\right)\right) \\
& =\frac{y\left(t_{k+1}\right)-y\left(t_{k}\right)}{h}-y^{\prime}\left(t_{k+1}\right) \\
& =\frac{y\left(t_{k+1}\right)-y\left(t_{k+1}\right)+h y^{\prime}\left(t_{k+1}\right)-h^{2} y^{\prime \prime}(\theta) / 2}{h}-y^{\prime}\left(t_{k+1}\right) \\
& =-\frac{h}{2} y^{\prime \prime}(\theta)
\end{aligned}
$$

Order of Accuracy

- Trapezoid method is second order accurate
- Let's prove this using a quadrature error bound, recall that

$$
\frac{y\left(t_{k+1}\right)-y\left(t_{k}\right)}{h}=\frac{1}{h} \int_{t_{k}}^{t_{k+1}} f(s, y(s)) \mathrm{d} s
$$

so the truncation error is

$$
T_{k}=\frac{1}{h} \int_{t_{k}}^{t_{k+1}} f(s, y(s)) \mathrm{d} s-\frac{1}{2}\left[f\left(t_{k}, y\left(t_{k}\right)\right)+f\left(t_{k+1}, y\left(t_{k+1}\right)\right)\right]
$$

Order of Accuracy

- Then

$$
\begin{aligned}
T_{k} & =\frac{1}{h}\left[\int_{t_{k}}^{t_{k+1}} f(s, y(s)) \mathrm{d} s-\frac{h}{2}\left(f\left(t_{k}, y\left(t_{k}\right)\right)+f\left(t_{k+1}, y\left(t_{k+1}\right)\right)\right)\right] \\
& =\frac{1}{h}\left[\int_{t_{k}}^{t_{k+1}} y^{\prime}(s) \mathrm{d} s-\frac{h}{2}\left(y^{\prime}\left(t_{k}\right)+y^{\prime}\left(t_{k+1}\right)\right)\right]
\end{aligned}
$$

- Therefore, T_{k} is determined by the trapezoid quadrature rule error for the integrand y^{\prime} on $t \in\left[t_{k}, t_{k+1}\right]$
- Recall that trapezoid quadrature rule error bound depends on $(b-a)^{3}=\left(t_{k+1}-t_{k}\right)^{3}=h^{3}$ and hence

$$
T_{k}=\mathcal{O}\left(h^{2}\right)
$$

Order of Accuracy

- The table below shows global error at $t=1$ for $y^{\prime}=y, y(0)=1$ solved using forward Euler and trapezoid methods

$$
\begin{array}{ccc}
h & E_{\text {Euler }} & E_{\text {trap }} \\
\hline 2.0 \mathrm{e}-2 & 2.67 \mathrm{e}-2 & 9.06 \mathrm{e}-05 \\
\hline 1.0 \mathrm{e}-2 & 1.35 \mathrm{e}-2 & 2.26 \mathrm{e}-05 \\
\hline 5.0 \mathrm{e}-3 & 6.76 \mathrm{e}-3 & 5.66 \mathrm{e}-06 \\
\hline 2.5 \mathrm{e}-3 & 3.39 \mathrm{e}-3 & 1.41 \mathrm{e}-06 \\
h \rightarrow h / 2 \Longrightarrow E_{\text {Euler }} \rightarrow E_{\text {Euler }} / 2 \\
h \rightarrow h / 2 \Longrightarrow E_{\text {trap }} \rightarrow E_{\text {trap }} / 4
\end{array}
$$

Stability

Stability

- So far we have discussed convergence of numerical methods for initial value problems for ODEs, i.e. asymptotic behavior as $h \rightarrow 0$
- It is also crucial to consider stability of numerical methods: for what values of h is the method stable?
- We want the method to be stable for as large a step size as possible
- Taking fewer larger steps can be more efficient

Stability

- In this context, the key idea is that we want our methods to inherit the stability properties of the ODE
- If an ODE is unstable, then we can't expect our discretization to be stable
- But if an ODE is stable, we want our discretization to be stable as well
- Hence we first discuss ODE stability, independent of numerical discretization

ODE Stability

- Consider an ODE $y^{\prime}=f(t, y)$, and
- let $y(t)$ be the solution for initial condition $y(0)=y_{0}$
- let $\hat{y}(t)$ be the solution for initial condition $\hat{y}(0)=\hat{y}_{0}$
- The ODE is stable if:
for every $\epsilon>0, \exists \delta>0$ such that

$$
\left\|\hat{y}_{0}-y_{0}\right\| \leq \delta \Longrightarrow\|\hat{y}(t)-y(t)\| \leq \epsilon
$$

for all $t \geq 0$

- Small input perturbation leads to small perturbation in the solution

ODE Stability

- A stronger form of stability, asymptotic stability: $\|\hat{y}(t)-y(t)\| \rightarrow 0$ as $t \rightarrow \infty$, perturbations decay over time
- These two definitions of stability are properties of the ODE, independent of any numerical algorithm
- In ODEs (and PDEs), it is standard to use stability to refer to sensitivity of both the mathematical problem and numerical approximations

Example: ODE Stability

- Stability of $y^{\prime}=\lambda y$ for different values of λ
- solution $y=y_{0} e^{\lambda t}$ for $y_{0}=1$
- perturbed solution $\hat{y}=\hat{y}_{0} e^{\lambda t}$ for $\hat{y}_{0}=0.9$
- difference $|\hat{y}-y|=\left|\hat{y}_{0}-y_{0}\right| e^{\lambda t}$

asymptotically stable

stable

unstable

ODE Stability

- More generally, we can allow λ to be a complex number: $\lambda=a+i b$
- Then $y(t)=y_{0} e^{(a+i b) t}=y_{0} e^{a t} e^{i b t}=y_{0} e^{a t}(\cos (b t)+i \sin (b t))$
- The key issue for stability is now the sign of $a=\operatorname{Re}(\lambda)$
- $\operatorname{Re}(\lambda)<0 \Longrightarrow$ asymptotically stable
- $\operatorname{Re}(\lambda)=0 \Longrightarrow$ stable
- $\operatorname{Re}(\lambda)>0 \Longrightarrow$ unstable

ODE Stability

- Understanding the stability of a scalar equation $y^{\prime}=\lambda y$ can extend to the case $y^{\prime}=A y$, where $y \in \mathbb{R}^{n}, A \in \mathbb{R}^{n \times n}$
- Suppose that A is diagonalizable, so that we have the eigenvalue decomposition $A=V \Lambda V^{-1}$, where
- $\Lambda=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right)$, where the λ_{j} are eigenvalues
- V is matrix with eigenvectors as columns, $v_{1}, v_{2}, \ldots, v_{n}$
- Then,

$$
y^{\prime}=A y=V \Lambda V^{-1} y \Longrightarrow V^{-1} y^{\prime}=\Lambda V^{-1} y \Longrightarrow z^{\prime}=\Lambda z
$$

where $z=V^{-1} y$ and $z_{0}=V^{-1} y_{0}$

ODE Stability

- Hence we have n decoupled ODEs for z, and the stability of z_{i} is determined by λ_{i} for each i
- Since z and y are related by the matrix V, then if all z_{i} are stable then all y_{i} will also be stable
- If $\operatorname{Re}\left(\lambda_{i}\right) \leq 0$ for $i=1, \ldots, n$ then $y^{\prime}=A y$ is a stable ODE
- Next we consider stability of numerical approximations to ODEs

ODE Stability

- Numerical approximation to an ODE is stable if: for every $\epsilon>0, \exists \delta>0$ such that

$$
\left\|\hat{y}_{0}-y_{0}\right\| \leq \delta \Longrightarrow\left\|\hat{y}_{k}-y_{k}\right\| \leq \epsilon
$$

for all $k \geq 0$

- Key idea: We want to develop numerical methods that mimic the stability properties of the exact solution
- That is, if the ODE is unstable, we should not expect the numerical approximation to be stable

Stability

- Since ODE stability is problem dependent, we need a standard test problem
- The standard test problem is the simple scalar ODE

$$
y^{\prime}=\lambda y
$$

- Behavior of a discretization on this test problem gives insight into behavior in general
- Ideally, to reproduce stability of the ODE $y^{\prime}=\lambda y$, we want our discretization to be stable for all $\operatorname{Re}(\lambda) \leq 0$

Stability: Forward Euler

- Consider forward Euler discretization of $y^{\prime}=\lambda y$

$$
y_{k+1}=y_{k}+h \lambda y_{k}=(1+h \lambda) y_{k} \Longrightarrow y_{k}=(1+h \lambda)^{k} y_{0}
$$

- Here $1+h \lambda$ is called the amplification factor
- Stability means $|1+h \lambda| \leq 1$
- Let $h \lambda=a+i b$, then $|1+a+i b|^{2} \leq 1^{2} \Longrightarrow(1+a)^{2}+b^{2} \leq 1$

Stability: Forward Euler

- Therefore, forward Euler is stable for $h \lambda \in \mathbb{C}$ inside the circle of radius 1 centered at $(-1,0)$
- This is a subset of the left-half plane $\operatorname{Re}(h \lambda) \leq 0$

- We say that the forward Euler method is conditionally stable: if $\operatorname{Re}(\lambda) \leq 0$, we have to restrict h to ensure stability

Stability: Forward Euler

- For example, given $\lambda<0$, we require

$$
-2 \leq h \lambda \leq 0 \Longrightarrow h \leq-2 / \lambda
$$

- Hence "larger negative λ " implies tighter restriction on h :

$$
\begin{array}{rr}
\lambda=-10 & \Longrightarrow \quad h \leq 0.2 \\
\lambda=-200 & \Longrightarrow \quad h \leq 0.01
\end{array}
$$

- See [examples/unit3/euler_stab.py], forward Euler stability

Stability: Backward Euler

- In comparison, consider backward Euler for $y^{\prime}=\lambda y$

$$
y_{k+1}=y_{k}+h \lambda y_{k+1} \Longrightarrow y_{k}=\left(\frac{1}{1-h \lambda}\right)^{k} y_{0}
$$

- Here the amplification factor is $\frac{1}{1-h \lambda}$ and the stability condition is $\frac{1}{|1-h \lambda|} \leq 1$

Stability: Backward Euler

- Let $h \lambda=a+i b$, then $1^{2} \leq|1-(a+i b)|^{2}$, i.e. $(1-a)^{2}+b^{2} \geq 1$

- If $\operatorname{Re}(\lambda) \leq 0$, this is satisfied for any $h>0$
- We say that the backward Euler method is unconditionally stable: if $\operatorname{Re}(\lambda) \leq 0$, no restriction on h for stability

Stability

- Generally, implicit methods have larger stability regions than explicit and therefore allow us to take larger time steps
- But explicit methods require less work per step since we do not need to solve for y_{k+1}
- Therefore there is a tradeoff:
the choice of method should depend on the problem

Stability Regions

ODE

$$
\begin{gathered}
y^{\prime}=\lambda y \\
y(t)=y_{0} e^{\lambda t} \\
\left|e^{\lambda}\right| \leq 1
\end{gathered}
$$

forward Euler

$$
\begin{gathered}
y_{k+1}=y_{k}+h \lambda y_{k} \\
y_{k}=y_{0}(1+h \lambda)^{k} \\
|1+h \lambda| \leq 1
\end{gathered}
$$

backward Euler

$$
\begin{gathered}
y_{k+1}=y_{k}+h \lambda y_{k+1} \\
y_{k}=y_{0} /(1-h \lambda)^{k} \\
|1 /(1-h \lambda)| \leq 1
\end{gathered}
$$

Runge-Kutta Methods

- Runge-Kutta (RK) methods are a popular class of one-step methods
- Aim to achieve higher order accuracy by combining evaluations of f at several points in $\left[t_{k}, t_{k+1}\right]$
- RK methods all fit within a general framework, which can be described in terms of Butcher tableaus
- We will first consider two RK examples: two evaluations of f and four evaluations of f
- Extra reading: Butcher, 1996. A history of Runge-Kutta methods

Runge-Kutta Methods

- A family of Runge-Kutta methods with two intermediate evaluations is defined by

$$
\begin{aligned}
k_{1} & =f\left(t_{k}, y_{k}\right) \\
k_{2} & =f\left(t_{k}+\alpha h, y_{k}+\beta h k_{1}\right) \\
y_{k+1} & =y_{k}+h\left(a k_{1}+b k_{2}\right)
\end{aligned}
$$

- Forward Euler method is a member of this family, with $a=1$ and $b=0$
- It can be shown that certain combinations of a, b, α, β yield a second-order method

Runge-Kutta Methods

- Second-order methods with two stages
- midpoint method $(\alpha=\beta=1 / 2, a=0, b=1)$

$$
y_{k+1}=y_{k}+h f\left(t_{k}+\frac{1}{2} h, y_{k}+\frac{1}{2} h f\left(t_{k}, y_{k}\right)\right)
$$

- Heun's method ($\alpha=\beta=1, a=b=1 / 2)$

$$
y_{k+1}=y_{k}+\frac{1}{2} h\left[f\left(t_{k}, y_{k}\right)+f\left(t_{k}+h, y_{k}+h f\left(t_{k}, y_{k}\right)\right)\right]
$$

- Ralston's method $(\alpha=2 / 3, \beta=2 / 3, a=1 / 4, b=3 / 4)$

$$
y_{k+1}=y_{k}+\frac{1}{4} h\left[f\left(t_{k}, y_{k}\right)+3 f\left(t_{k}+\frac{2 h}{3}, y_{k}+\frac{2 h}{3} f\left(t_{k}, y_{k}\right)\right)\right]
$$

- See [examples/unit3/rk_order2.py]

Runge-Kutta Methods

- The classical fourth-order Runge-Kutta method RK4 (available in scipy.integrate.solve_ivp)

$$
\begin{aligned}
k_{1} & =f\left(t_{k}, y_{k}\right) \\
k_{2} & =f\left(t_{k}+h / 2, y_{k}+h k_{1} / 2\right) \\
k_{3} & =f\left(t_{k}+h / 2, y_{k}+h k_{2} / 2\right) \\
k_{4} & =f\left(t_{k}+h, y_{k}+h k_{3}\right) \\
y_{k+1} & =y_{k}+\frac{1}{6} h\left(k_{1}+2 k_{2}+2 k_{3}+k_{4}\right)
\end{aligned}
$$

- It can be shown that the truncation error of RK4 is $T_{k}=\mathcal{O}\left(h^{4}\right)$

Runge-Kutta Methods: Stability

- Stability regions of p-stage Runge-Kutta methods of order p (do not depend on a particular method)

Butcher tableau

- Any explicit Runge-Kutta method with $s+1$ stages can be represented using a triangular grid of coefficients called the Butcher tableau

- The i-th intermediate step is

$$
k_{i}=f\left(t_{k}+\alpha_{i} h, y_{k}+h \sum_{j=0}^{i-1} \beta_{i, j} k_{j}\right)
$$

- The solution is updated as

$$
y_{k+1}=y_{k}+h \sum_{j=0}^{s} \gamma_{j} k_{j}
$$

Richardson Extrapolation

- Richardson extrapolation is a general approach to analyze error and improve accuracy
- Treats the approximation as a "black box"
- Assume that $Y(h)$ is an approximation to y that depends on a discretization parameter $h>0$ and the error has the form

$$
Y(h)-y=C h^{p}+\mathcal{O}\left(h^{p+1}\right)
$$

- Some parameters here may be known or unknown
- exact solution y
- order of accuracy p
- factor of the leading error term C

Richardson Extrapolation

- We can evaluate $Y(h)$ for various h to eliminate the unknowns
- For example, if p is known we can evaluate $Y(2 h)$ and $Y(h)$

$$
\begin{aligned}
Y(2 h)-y & =C 2^{p} h^{p}+\mathcal{O}\left(h^{p+1}\right) \\
Y(h)-y & =C h^{p}+\mathcal{O}\left(h^{p+1}\right)
\end{aligned}
$$

Richardson Extrapolation

- If we multiply the second equation by 2^{p}

$$
\begin{aligned}
Y(2 h)-y & =C 2^{p} h^{p}+\mathcal{O}\left(h^{p+1}\right) \\
2^{p}(Y(h)-y) & =C 2^{p} h^{p}+\mathcal{O}\left(h^{p+1}\right)
\end{aligned}
$$

and eliminate $C 2^{p} h^{p}$, we get a higher-order approximation to y

$$
y=\frac{1}{2^{p}-1}\left[2^{p} Y(h)-Y(2 h)\right]+\mathcal{O}\left(h^{p+1}\right)
$$

- The corresponding error estimate is

$$
Y(h)-y=\frac{1}{2^{p}-1}[Y(2 h)-Y(h)]+\mathcal{O}\left(h^{p+1}\right)
$$

Error Estimation

- How can we compute the solution error without knowing the exact solution?
- Two approaches to estimate the error
- Richardson extrapolation
- include an error estimate in the derivation of the method

Error Estimation

- First approach: Richardson extrapolation
- Let $Y(h)$ be an approximation to $y(t)$ by a Runge-Kutta method of order p with a time step h

$$
Y(h)-y(t)=C h^{p}+\mathcal{O}\left(h^{p+1}\right)
$$

- Evaluate $Y(h)$ and $Y(h / 2)$ to construct an approximation of order $p+1$

$$
y(t)=\frac{1}{2^{p}-1}\left[2^{p} Y(h / 2)-Y(h)\right]+\mathcal{O}\left(h^{p+1}\right)
$$

- The corresponding error estimate is

$$
Y(h / 2)-y(t)=\frac{1}{2^{p}-1}[Y(h)-Y(h / 2)]+\mathcal{O}\left(h^{p+1}\right)
$$

- See [examples/unit3/richardson.py] and [examples/unit3/richardson2.py] applying Richardson extrapolation to each step of forward Euler (i.e. $t=h$)

Error Estimation

- Second approach: derive Butcher tableaus with an additional higher-order formula for estimating error
- Fehlberg's order 4(5) method RKF45
- y_{k+1} is order $4, \hat{y}_{k+1}$ is order $5, y_{k+1}-\hat{y}_{k+1}$ is an error estimate

| 0 | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\frac{1}{4}$ | $\frac{1}{4}$ | | | | | |
| $\frac{3}{8}$ | $\frac{3}{32}$ | $\frac{9}{32}$ | | | | |
| $\frac{12}{13}$ | $\frac{1932}{2197}$ | $-\frac{7200}{2197}$ | $\frac{7296}{2197}$ | | | |
| 1 | $\frac{439}{216}$ | -8 | $\frac{3680}{513}$ | $-\frac{845}{4104}$ | | |
| $\frac{1}{2}$ | $\frac{8}{27}$ | 2 | $\frac{-3544}{2565}$ | $\frac{1859}{4104}$ | $\frac{-11}{40}$ | |
| y_{k+1} | $\frac{25}{25}$ | 0 | $\frac{14085}{2565}$ | $\frac{21974}{4104}$ | $-\frac{1}{5}$ | 0 |
| \hat{y}_{k+1} | $\frac{16}{135}$ | 0 | $\frac{6656}{12825}$ | $\frac{2561}{5643}$ | $-\frac{9}{50}$ | $\frac{2}{55}$ |

- Fehlberg, 1969. Low-order classical Runge-Kutta formulas with stepsize control and their application to some heat transfer problems. NASA

Higher-Order Methods

- Fehlberg's order 7(8) method RKF78

0														
$\frac{2}{27}$	$\frac{2}{27}$													
$\frac{1}{9}$	$\frac{1}{36}$	$\frac{1}{12}$												
$\frac{1}{6}$	$\frac{1}{24}$	0	$\frac{1}{8}$											
$\frac{5}{12}$	$\frac{5}{12}$	0	$-\frac{25}{16}$	$\frac{25}{16}$										
$\frac{1}{2}$	$\frac{1}{20}$	0	0	$\frac{1}{4}$	$\frac{1}{5}$									
$\frac{5}{6}$	$-\frac{25}{108}$	0	0	$\frac{125}{108}$	$-\frac{65}{27}$	$\frac{125}{54}$								
$\frac{1}{6}$	$\frac{31}{300}$	0	0	0	$\frac{61}{225}$	$-\frac{2}{9}$	$\frac{13}{900}$							
$\frac{2}{3}$	2	0	0	$-\frac{53}{6}$	$\frac{704}{45}$	$-\frac{107}{9}$	$\frac{67}{90}$	3						
$\frac{1}{3}$	$-\frac{91}{108}$	0	0	$\frac{23}{108}$	$-\frac{976}{135}$	$\frac{311}{54}$	$-\frac{19}{60}$	$\frac{17}{6}$	$-\frac{1}{12}$					
1	$\frac{2383}{4100}$	0	0	$-\frac{341}{164}$	$\frac{4496}{1025}$	$-\frac{301}{82}$	$\frac{2133}{4100}$	$\frac{45}{82}$	$\frac{45}{164}$	$\frac{18}{41}$				
0	$\frac{3}{205}$	0	0	0	0	$-\frac{6}{41}$	$-\frac{3}{205}$	$-\frac{3}{41}$	$\frac{3}{41}$	$\frac{6}{41}$	0			
1	$-\frac{1777}{4100}$	0	0	$-\frac{341}{164}$	$\frac{4496}{1025}$	$-\frac{289}{82}$	$\frac{2193}{4100}$	$\frac{51}{82}$	$\frac{33}{164}$	$\frac{12}{41}$	0	1		
y_{k+1}	$\frac{41}{840}$	0	0	0	0	$\frac{34}{105}$	$\frac{9}{35}$	$\frac{9}{35}$	$\frac{9}{280}$	$\frac{9}{280}$	$\frac{41}{840}$	0	0	
\hat{y}_{k+1}	0	0	0	0	0	$\frac{34}{105}$	$\frac{9}{35}$	$\frac{9}{35}$	$\frac{9}{280}$	$\frac{9}{280}$	0	$\frac{41}{840}$	$\frac{41}{840}$	

- See implementation in [examples/unit3/fehlberg.py]
- Fehlberg, 1968. Classical fifth-, sixth-, seventh-, and eighth-order Runge-Kutta formulas with stepsize control. NASA

Higher-Order Methods: Stability

- Stability region of Fehlberg's order 7 method (13 stages) compared to order p Runge-Kutta methods

Stiff systems

- A system of linear ODEs

$$
y^{\prime}=A y
$$

is called stiff if the eigenvalues of A differ greatly in magnitude

- Recall that if $A=V \Lambda V^{-1}$ with a diagonal matrix of eigenvalues Λ, then substitution $y=V z$ reduces the system to $z^{\prime}=\Lambda z$. Therefore, eigenvalues determine the timescales
- If the differences in eigenvalues are large, we need to resolve multiple timescales simultaneously

Stiff systems

- Suppose we are interested only in the slow components of the solution and can ignore the fast components
- However, an explicit method will need to resolve the fast components to avoid instability
- Therefore, it may be beneficial to use an implicit method for stiff systems

Stiff systems

- From a practical point of view, an ODE is considered stiff if there is a significant benefit in using an implicit method instead of explicit
- In particular, the time step required for stability is much smaller than what is required for accuracy
- Consider $y^{\prime}=A y, y_{0}=[1,0]^{T}$ where

$$
A=\left[\begin{array}{cc}
998 & 1998 \\
-999 & -1999
\end{array}\right]
$$

which has $\lambda_{1}=-1, \lambda_{2}=-1000$ and exact solution

$$
y(t)=\left[\begin{array}{c}
2 e^{-t}-e^{-1000 t} \\
-e^{-t}+e^{-1000 t}
\end{array}\right]
$$

- See [examples/unit3/stiff.py] and [examples/unit3/stiff2.py]

Multistep Methods

- To obtain a high-order approximation one-step methods use multiple function evaluations
- Can we reuse data from earlier time steps instead?
- This is the idea of multistep methods

$$
y_{k+1}=\sum_{i=1}^{m} \alpha_{i} y_{k+1-i}+h \sum_{i=0}^{m} \beta_{i} f\left(t_{k+1-i}, y_{k+1-i}\right)
$$

- If $\beta_{0}=0$ then the method is explicit
- Interpolate the solution and integrate the interpolant to derive the parameters

Multistep Methods

- See [examples/unit3/adams.py], second-order Adams-Bashforth method
- Question: Multistep methods require data from several earlier time steps, so how do we initialize?
- Answer: The standard approach is to use a one-step method and then move to multistep after collecting enough data
- Advantages of one-step methods over multistep
- one-step methods are "self-starting", only need the initial condition
- easier to adapt the time step size

Boundary Value Problems for ODEs

Boundary Value Problems for ODEs

- Consider a second-order linear ODE

$$
-\alpha u^{\prime \prime}(x)+\beta u^{\prime}(x)+\gamma u(x)=f(x)
$$

for $x \in[a, b]$ with given parameters $\alpha, \beta, \gamma \in \mathbb{R}$ and function $f: \mathbb{R} \rightarrow \mathbb{R}$

- The terms in this ODE have standard names
- diffusion term $-\alpha u^{\prime \prime}(x)$
- advection term $\beta u^{\prime}(x)$
- reaction term $\gamma u(x)$
- source term $f(x)$

Boundary Value Problems for ODEs

- A boundary value problem (BVP) for a second-order linear ODE consists of

$$
-\alpha u^{\prime \prime}(x)+\beta u^{\prime}(x)+\gamma u(x)=f(x)
$$

and boundary conditions (BCs) at $x=a$ and $x=b$

- Standard types of boundary conditions
- Dirichlet condition: $u(a)=c_{1}$
- Neumann condition: $u^{\prime}(a)=c_{1}$
- Robin (or "mixed") condition: $u^{\prime}(a)+c_{2} u(a)=c_{3}$

Shooting Method

- The shooting method solves the boundary value problem iteratively by solving an initial value problem at each iteration
- To form a correct IVP starting from $x=a$ for a second-order equation, we need two conditions at $x=a$
- one condition is part of the BVP
- another condition is imposed with an unknown parameter
- For example, with two Dirichlet conditions $u(a)=c_{1}$ and $u(b)=c_{2}$, we can additionally specify $u^{\prime}(a)=g$
- Solve the IVP, and somehow update g to improve the error $\left|u(b)-c_{2}\right|$
- Not widely used as it relies on nonlinear optimization and does not generalize to PDEs

Shooting Method: Example

- Steady-state diffusion-reaction equation $(\alpha=1, \gamma=-5)$

$$
-\alpha u^{\prime \prime}(x)+\gamma u(x)=0, \quad x \in[0,1]
$$

- Dirichlet conditions: $u(0)=0$ and $u(1)=0.5$ and extra Neumann condition: $u(0)=g$
- Iteration: $g_{\text {new }}=g+\eta(0.5-u(1))$ with $\eta=2$

- See [examples/unit3/shooting.py]

ODEs: BVP

- A more general approach is to formulate a coupled system of equations for the BVP based on a finite difference approximation
- Suppose we have a grid

$$
x_{i}=a+i h, \quad i=0,1, \ldots, n-1
$$

where $h=(b-a) /(n-1)$

- Then our approximation to $u(x)$ is represented by a vector $U \in \mathbb{R}^{n}$, where $U_{i} \approx u\left(x_{i}\right)$

ODEs: BVP

- Recall the ODE

$$
-\alpha u^{\prime \prime}(x)+\beta u^{\prime}(x)+\gamma u(x)=f(x), \quad x \in[a, b]
$$

- Let's develop an approximation for each term in the ODE
- For the reaction term γu, we have the pointwise approximation

$$
\gamma U_{i} \approx \gamma u\left(x_{i}\right)
$$

ODEs: BVP

- Similarly, for the derivatives
- Let $D_{2} \in \mathbb{R}^{n \times n}$ be the differentiation matrix for the second derivative
- Let $D_{1} \in \mathbb{R}^{n \times n}$ be the differentiation matrix for the first derivative
- Then $-\alpha\left(D_{2} U\right)_{i} \approx-\alpha u^{\prime \prime}\left(x_{i}\right)$ and $\beta\left(D_{1} U\right)_{i} \approx \beta u^{\prime}\left(x_{i}\right)$
- Hence, we obtain $(A U)_{i} \approx-\alpha u^{\prime \prime}\left(x_{i}\right)+\beta u^{\prime}\left(x_{i}\right)+\gamma u\left(x_{i}\right)$, where $A \in \mathbb{R}^{n \times n}$ is

$$
A=-\alpha D_{2}+\beta D_{1}+\gamma \mathrm{I}
$$

- Similarly, we represent the right hand side by sampling f at the grid points, so we introduce $F \in \mathbb{R}^{n}$, where $F_{i}=f\left(x_{i}\right)$

ODEs: BVP

- Therefore, we obtain the linear system for $U \in \mathbb{R}^{n}$

$$
A U=F
$$

- We have converted a linear differential equation into a linear algebraic equation
- Similarly, we can convert a nonlinear differential equation into a nonlinear algebraic system
- Now we need to account for the boundary conditions

ODEs: BVP

- Dirichlet boundary conditions
we need to impose $U_{0}=c_{1}, U_{n-1}=c_{2}$
- Since we fix U_{0} and U_{n-1}, they are no longer variables: we can eliminate them from our linear system
- However, instead of removing rows and columns from A, it is more convenient to
- "zero out" first row of A, then set $A(0,0)=1$ and $F_{0}=c_{1}$
- "zero out" last row of A, then set $A(n-1, n-1)=1$ and $F_{n-1}=c_{2}$

ODEs: BVP

- See [examples/unit3/ode_bvp.py]
- Convergence study:

h	error
2.0×10^{-2}	5.07×10^{-3}
1.0×10^{-2}	1.26×10^{-3}
5.0×10^{-3}	3.17×10^{-4}
2.5×10^{-3}	7.92×10^{-5}

- $O\left(h^{2}\right)$, as expected due to second-order differentiation matrices

Method of Manufactured Solutions

- The method of manufactured solutions
is a technique for testing the implementation

1. choose a solution u that satisfies the boundary conditions
2. substitute into the ODE to get a right-hand side f
3. compute the ODE approximation with f from step 2
4. verify that you get the expected convergence rate for the approximation to u

- For example, consider $x \in[0,1]$ and set $u(x)=e^{x} \sin (2 \pi x)$

$$
\begin{aligned}
f(x) & =-\alpha u^{\prime \prime}(x)+\beta u^{\prime}(x)+\gamma u(x) \\
& =-\alpha e^{x}\left[4 \pi \cos (2 \pi x)+\left(1-4 \pi^{2}\right) \sin (2 \pi x)\right]+ \\
& +\beta e^{x}[\sin (2 \pi x)+2 \pi \cos (2 \pi x)]+\gamma e^{x} \sin (2 \pi x)
\end{aligned}
$$

Derivatives in BCs

- Question: How would we impose the Robin boundary condition $u^{\prime}(b)+c_{2} u(b)=c_{3}$, and preserve the $O\left(h^{2}\right)$ convergence rate?
- Option 1: Introduce a ghost node at $x_{n}=b+h$, this node is involved in both the BC and the ($n-1$)-th matrix row
- Employ central difference approx. to $u^{\prime}(b)$ to get approx. B.C.:

$$
\frac{U_{n}-U_{n-2}}{2 h}+c_{2} U_{n-1}=c_{3}
$$

or equivalently

$$
U_{n}=U_{n-2}-2 h c_{2} U_{n-1}+2 h c_{3}
$$

Derivatives in BCs

- The $(n-1)$-th equation is

$$
-\alpha \frac{U_{n-2}-2 U_{n-1}+U_{n}}{h^{2}}+\beta \frac{U_{n}-U_{n-2}}{2 h}+\gamma U_{n-1}=F_{n-1}
$$

- We can substitute our expression for U_{n} into the above equation, and hence eliminate U_{n}

$$
\left(-\frac{2 \alpha c_{3}}{h}+\beta c_{3}\right)-\frac{2 \alpha}{h^{2}} U_{n-2}+\left(\frac{2 \alpha}{h^{2}}\left(1+h c_{2}\right)-\beta c_{2}+\gamma\right) U_{n-1}=F_{n-1}
$$

- Set $F_{n-1} \leftarrow F_{n-1}-\left(-\frac{2 \alpha c_{3}}{h}+\beta c_{3}\right)$, we get $n \times n$ system $A U=F$
- Option 2: Use a one-sided finite-difference formula for $u^{\prime}(b)$ in the Robin BC

Partial Differential Equations

Partial Differential Equations

- As discussed in the introduction, it is a natural extension to consider Partial Differential Equations (PDEs)
- There are three main classes of PDEs:

equation type	prototypical example	equation
hyperbolic	wave equation	$u_{t t}-u_{x x}=0$
parabolic	heat equation	$u_{t}-u_{x x}=f$
elliptic	Poisson equation	$u_{x x}+u_{y y}=f$

- Question: Where do these names come from?

Partial Differential Equations

- Answer: The names are related to conic sections
- General second-order PDEs have the form

$$
a u_{x x}+b u_{x y}+c u_{y y}+d u_{x}+e u_{y}+f u+g=0
$$

- This looks like the quadratic function

$$
q(x, y)=a x^{2}+b x y+c y^{2}+d x+e y
$$

PDEs: Hyperbolic

- Wave equation: $u_{t t}-u_{x x}=0$
- Corresponding quadratic function is $q(x, t)=t^{2}-x^{2}$
- $q(x, t)=c$ gives a hyperbola, e.g. for $c=0,2,4,6$, we have

PDEs: Parabolic

- Heat equation: $u_{t}-u_{x x}=0$
- Corresponding quadratic function is $q(x, t)=t-x^{2}$
- $q(x, t)=c$ gives a parabola, e.g. for $c=0,2,4,6$, we have

PDEs: Elliptic

- Poisson equation: $u_{x x}+u_{y y}=f$
- Corresponding quadratic function is $q(x, y)=x^{2}+y^{2}$
- $q(x, y)=c$ gives an ellipse, e.g. for $c=0,2,4,6$, we have

PDEs

- In general, it is not so easy to classify PDEs using conic section naming
- Many problems don't strictly fit into the classification scheme (e.g. nonlinear, or higher order, or variable coefficient equations)
- Nevertheless, the names hyperbolic, parabolic, elliptic are the standard ways of describing PDEs, based on the criteria:
- Hyperbolic: time-dependent, conservative physical process, no steady state
- Parabolic: time-dependent, dissipative physical process, evolves towards steady state
- Elliptic: describes systems at equilibrium/steady-state

Hyperbolic PDEs

- We introduced the wave equation $u_{t t}-u_{x x}=0$ above
- Note that the system of first order PDEs

$$
\begin{aligned}
& u_{t}+v_{x}=0 \\
& v_{t}+u_{x}=0
\end{aligned}
$$

is equivalent to the wave equation, since

$$
u_{t t}=\left(u_{t}\right)_{t}=\left(-v_{x}\right)_{t}=-\left(v_{t}\right)_{x}=-\left(-u_{x}\right)_{x}=u_{x x}
$$

- This assumes that u, v are smooth, so we can switch the order of the partial derivatives

Hyperbolic PDEs

- Hence we will focus on the linear advection equation

$$
u_{t}+c u_{x}=0
$$

with initial condition $u(x, 0)=u_{0}(x)$, and $c \in \mathbb{R}$

- This equation is representative of hyperbolic PDEs in general
- This is a first order PDE and does not correspond to a conic section
- However, it is still considered hyperbolic since it is
- time-dependent
- conservative
- not evolving toward steady state

Hyperbolic PDEs

- We can see that $u(x, t)=u_{0}(x-c t)$ satisfies the PDE
- Let $z(x, t)=x-c t$, then from the chain rule we have

$$
\begin{aligned}
\frac{\partial}{\partial t} u_{0}(x-c t)+c \frac{\partial}{\partial x} u_{0}(x-c t) & =\frac{\partial}{\partial t} u_{0}(z(x, t))+c \frac{\partial}{\partial x} u_{0}(z(x, t)) \\
& =u_{0}^{\prime}(z) \frac{\partial z}{\partial t}+c u_{0}^{\prime}(z) \frac{\partial z}{\partial x} \\
& =-c u_{0}^{\prime}(z)+c u_{0}^{\prime}(z) \\
& =0
\end{aligned}
$$

Hyperbolic PDEs

- This tells us that the equation transports (or advects) the initial condition with "speed" c

$$
u_{t}+c u_{x}=0
$$

- For example, with $c=1$ and an initial condition $u_{0}(x)=e^{-(1-x)^{2}}$

Characteristics

- We can understand the behavior of hyperbolic PDEs in more detail by considering characteristics
- Characteristics are paths $(X(t), t)$ in the $x t$-plane on which the solution is constant
- For $u_{t}+c u_{x}=0$ we have $X(t)=X_{0}+c t$, since

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t} u(X(t), t) & =u_{t}(X(t), t)+u_{x}(X(t), t) \frac{\mathrm{d} X(t)}{\mathrm{d} t} \\
& =u_{t}(X(t), t)+c u_{x}(X(t), t) \\
& =0
\end{aligned}
$$

Characteristics

- Hence $u(X(t), t)=u(X(0), 0)=u_{0}\left(X_{0}\right)$, i.e. the initial condition is transported along characteristics
- Characteristics have important implications for the direction of flow of information, and for boundary conditions

$c>0$, must impose BC at $x=a$ cannot impose BC at $x=b$

$c<0$, must impose BC at $x=b$ cannot impose BC at $x=a$

Characteristics

- More generally, if we have a non-zero right-hand side in the PDE, then the situation is a bit more complicated on each characteristic
- Consider $u_{t}+c u_{x}=f(t, x, u(t, x))$, and $X(t)=X_{0}+c t$

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t} u(X(t), t) & =u_{t}(X(t), t)+u_{x}(X(t), t) \frac{\mathrm{d} X(t)}{\mathrm{d} t} \\
& =u_{t}(X(t), t)+c u_{x}(X(t), t) \\
& =f(t, X(t), u(X(t), t))
\end{aligned}
$$

- In this case, the solution is no longer constant on $(X(t), t)$, but we have reduced a PDE to a set of ODEs, so that

$$
u(X(t), t)=u_{0}\left(X_{0}\right)+\int_{0}^{t} f(t, X(t), u(X(t), t) \mathrm{d} t
$$

Characteristics

- We can also find characteristics for advection with a variable coefficient
- Exercise: Verify that the characteristic curve for

$$
u_{t}+c(t, x) u_{x}=0
$$

is given by

$$
X^{\prime}(t)=c(X(t), t)
$$

- In this case, we have to solve an ODE to obtain the curve $(X(t), t)$ in the $x t$-plane

Example: Variable Speed in Space

- Equation: $u_{t}+c u_{x}=0$ with $c(x, t)=x-1$
- Characteristics satisfy $X^{\prime}(t)=c(X(t), t)$ with solution $X(t)=1+\left(X_{0}-1\right) e^{t}$
- Characteristics "bend away" from $x=1$

Example: Variable Speed in Time

- Equation: $u_{t}+c u_{x}=0$ with $c(x, t)=t-1$
- Characteristics satisfy $X^{\prime}(t)=c(X(t), t)$ with solution $X(t)=X_{0}+\frac{1}{2} t^{2}-t$
- The same shape shifted along x

Hyperbolic PDEs: Numerical Approximation

- We now consider how to solve

$$
u_{t}+c u_{x}=0
$$

using a finite difference method

- Question: Why finite differences? Why not just use characteristics?
- Answer: Characteristics actually are a viable option for computational methods, and are used in practice
- However, characteristic methods can become very complicated in 2D or 3D, or for nonlinear problems
- Finite differences are a much more practical choice

Hyperbolic PDEs: Numerical Approximation

- We impose an initial condition and a boundary condition
- A finite difference approximation is performed on a grid in the $x t$-plane

Hyperbolic PDEs: Numerical Approximation

- The first step in developing a finite difference approximation is to consider the Courant-Friedrichs-Lewy (CFL) condition
- The CFL condition is a necessary condition for the convergence of a finite difference approximation of a hyperbolic problem
- Suppose we discretize $u_{t}+c u_{x}=0$ in space and time using the explicit scheme

$$
\frac{U_{j}^{n+1}-U_{j}^{n}}{\Delta t}+c \frac{U_{j}^{n}-U_{j-1}^{n}}{\Delta x}=0
$$

- Here $U_{j}^{n} \approx u\left(t_{n}, x_{j}\right)$, where $t_{n}=n \Delta t, x_{j}=j \Delta x$

Hyperbolic PDEs: Numerical Approximation

- This can be rewritten as

$$
\begin{aligned}
U_{j}^{n+1} & =U_{j}^{n}-\frac{c \Delta t}{\Delta x}\left(U_{j}^{n}-U_{j-1}^{n}\right) \\
& =(1-\nu) U_{j}^{n}+\nu U_{j-1}^{n}
\end{aligned}
$$

where

$$
\nu=\frac{c \Delta t}{\Delta x}
$$

- We can see that U_{j}^{n+1} depends only on U_{j}^{n} and U_{j-1}^{n}

Hyperbolic PDEs: Numerical Approximation

- The set of grid nodes on which U_{j}^{n+1} depends is called the domain of dependence of U_{j}^{n+1}

Hyperbolic PDEs: Numerical Approximation

- The domain of dependence of the exact solution $u\left(t_{n+1}, x_{j}\right)$ is determined by the characteristics passing through $\left(t_{n+1}, x_{j}\right)$
- The CFL condition states

For a convergent scheme, the domain of dependence of the PDE must lie within the domain of dependence of the numerical method

Hyperbolic PDEs: Numerical Approximation

- Domain of dependence of U_{j}^{n} : grid nodes •
- Domain of dependence of $u\left(t_{n+1}, x_{j}\right)$: solid line (characteristic)

- In this case, the scheme satisfies the CFL condition

Hyperbolic PDEs: Numerical Approximation

- With a larger advection speed c, the scheme does not satisfy the CFL condition

Hyperbolic PDEs: Numerical Approximation

- With a negative advection speed $(c<0)$,
the scheme does not satisfy the CFL condition

Hyperbolic PDEs: Numerical Approximation

- Question: What goes wrong if the CFL condition is violated?
- Answer: The exact solution $u(x, t)$ depends on initial value $u_{0}\left(x_{0}\right)$, which is outside the scheme's domain of dependence
- Therefore, the numerical approximation to $u(x, t)$ is "insensitive" to the value $u_{0}\left(x_{0}\right)$, which means that the method cannot be convergent

Hyperbolic PDEs: Numerical Approximation

- If $c>0$, then we require $\nu=\frac{c \Delta t}{\Delta x} \leq 1$ for the CFL condition to be satisfied

Hyperbolic PDEs: Numerical Approximation

- Note that CFL is only a necessary condition for convergence
- However, CFL is straightforward to test and allows us to easily reject improper schemes or parameters
- For example, for $u_{t}+c u_{x}=0$, the scheme with a backward difference

$$
\frac{U_{j}^{n+1}-U_{j}^{n}}{\Delta t}+c \frac{U_{j}^{n}-U_{j-1}^{n}}{\Delta x}=0
$$

cannot be convergent if $c<0$

- Question: How should we modify the scheme for $c<0$?

Hyperbolic PDEs: Upwind Method

- Answer: The method should account for the direction of "information flow"
- This motivates the upwind scheme for $u_{t}+c u_{x}=0$

$$
U_{j}^{n+1}= \begin{cases}U_{j}^{n}-c \frac{\Delta t}{\Delta x}\left(U_{j}^{n}-U_{j-1}^{n}\right), & \text { if } c>0 \\ U_{j}^{n}-c \frac{\Delta t}{\Delta x}\left(U_{j+1}^{n}-U_{j}^{n}\right), & \text { if } c<0\end{cases}
$$

- The upwind scheme satisfies CFL condition if $|\nu|=|c \Delta t / \Delta x| \leq 1$
- $\nu=c \Delta t / \Delta x$ is called the CFL number (or the Courant number)

Hyperbolic PDEs: Central Difference

- Another method that seems appealing is the central difference method

$$
\frac{U_{j}^{n+1}-U_{j}^{n}}{\Delta t}+c \frac{U_{j+1}^{n}-U_{j-1}^{n}}{2 \Delta x}=0
$$

- It satisfies CFL for $|\nu|=|c \Delta t / \Delta x| \leq 1$ both for $c>0$ and $c<0$
- However, we will see that this method is unstable

Hyperbolic PDEs: Accuracy

- Recall that truncation error is the residual of the numerical approximation evaluated on the exact solution
- For the $(c>0)$ upwind method, the truncation error is:

$$
T_{j}^{n}=\frac{u\left(t^{n+1}, x_{j}\right)-u\left(t^{n}, x_{j}\right)}{\Delta t}+c \frac{u\left(t^{n}, x_{j}\right)-u\left(t^{n}, x_{j-1}\right)}{\Delta x}
$$

- The order of accuracy is then the largest p such that

$$
T_{j}^{n}=\mathcal{O}\left((\Delta x)^{p}+(\Delta t)^{p}\right)
$$

Hyperbolic PDEs: Accuracy

- For the upwind method, we have
$T_{j}^{n}=\frac{1}{2}\left[\Delta t u_{t t}\left(t^{n}, x_{j}\right)-c \Delta x u_{x x}\left(t^{n}, x_{j}\right)\right]+$ h.o.t.
- Hence the upwind scheme is first order accurate

Hyperbolic PDEs: Accuracy

- Just like with ODEs, truncation error is related to convergence to the exact solution as $\Delta t, \Delta x \rightarrow 0$
- Note that to let $\Delta t, \Delta x \rightarrow 0$, we generally need to decide on a relationship between Δt and Δx
- For example, to let $\Delta t, \Delta x \rightarrow 0$ for the upwind scheme, we would set $\frac{c \Delta t}{\Delta x}=\nu \in(0,1]$.
This ensures CFL is satisfied for all $\Delta x, \Delta t$

Hyperbolic PDEs: Accuracy

- In general, convergence of a finite difference method for a PDE is related to both its truncation error and its stability
- Now we will consider how to analyze stability using the Fourier stability analysis (also called von Neumann analysis)

Hyperbolic PDEs: Stability

- Suppose that U_{j}^{n} is periodic on a $\operatorname{grid} x_{1}, x_{2}, \ldots, x_{n}$

Hyperbolic PDEs: Stability

- Then we can represent U_{j}^{n} as a linear combination of \sin and \cos functions, i.e. Fourier modes

- Equivalently, as a linear combination of complex exponentials, since $e^{i k x}=\cos (k x)+i \sin (k x)$ so that

$$
\sin (x)=\frac{1}{2 i}\left(e^{i x}-e^{-i x}\right), \quad \cos (x)=\frac{1}{2}\left(e^{i x}+e^{-i x}\right)
$$

Hyperbolic PDEs: Stability

- Let's focus on only one of the Fourier modes
- In particular, we consider the ansatz $U_{j}^{n}(k)=\lambda(k)^{n} e^{i k x_{j}}$, where k is the wave number and $\lambda(k) \in \mathbb{C}$
- Key idea: Suppose that $U_{j}^{n}(k)$ satisfies our
finite difference equation, then this will allow us to solve for $\lambda(k)$
- The value of $|\lambda(k)|$ indicates whether the Fourier mode $e^{i k x_{j}}$ is amplified or damped
- If $|\lambda(k)| \leq 1$ for all k then the scheme does not amplify any Fourier modes, therefore is stable

Hyperbolic PDEs: Stability

- We now perform Fourier stability analysis for the upwind scheme with $c>0$ (recall that $\nu=\frac{c \Delta t}{\Delta x}$):

$$
U_{j}^{n+1}=U_{j}^{n}-\nu\left(U_{j}^{n}-U_{j-1}^{n}\right)
$$

- Substituting in $U_{j}^{n}(k)=\lambda(k)^{n} e^{i k(j \Delta x)}$ gives

$$
\begin{aligned}
\lambda(k) e^{i k(j \Delta x)} & =e^{i k(j \Delta x)}-\nu\left(e^{i k(j \Delta x)}-e^{i k((j-1) \Delta x)}\right) \\
& =e^{i k(j \Delta x)}-\nu e^{i k(j \Delta x)}\left(1-e^{-i k \Delta x)}\right)
\end{aligned}
$$

- Then

$$
\lambda(k)=1-\nu\left(1-e^{-i k \Delta x}\right)=1-\nu(1-\cos (k \Delta x)+i \sin (k \Delta x))
$$

Hyperbolic PDEs: Stability

- It follows that

$$
\begin{aligned}
|\lambda(k)|^{2} & =[(1-\nu)+\nu \cos (k \Delta x)]^{2}+[\nu \sin (k \Delta x)]^{2} \\
& =(1-\nu)^{2}+\nu^{2}+2 \nu(1-\nu) \cos (k \Delta x) \\
& =1-2 \nu(1-\nu)(1-\cos (k \Delta x))
\end{aligned}
$$

and from the identity $(1-\cos (\theta))=2 \sin ^{2}\left(\frac{\theta}{2}\right)$, we have

$$
|\lambda(k)|^{2}=1-4 \nu(1-\nu) \sin ^{2}\left(\frac{1}{2} k \Delta x\right)
$$

- Due to the CFL condition, we first suppose that $0 \leq \nu \leq 1$
- Then $0 \leq 4 \nu(1-\nu) \sin ^{2}\left(\frac{1}{2} k \Delta x\right) \leq 1$, and therefore $|\lambda(k)| \leq 1$

Hyperbolic PDEs: Stability

- In contrast, consider stability of the central difference scheme

$$
\frac{U_{j}^{n+1}-U_{j}^{n}}{\Delta t}+c \frac{U_{j+1}^{n}-U_{j-1}^{n}}{2 \Delta x}=0
$$

- Recall that this also satisfies the CFL condition as long as $|\nu| \leq 1$
- But Fourier stability analysis yields

$$
\lambda(k)=1-\nu i \sin (k \Delta x) \Longrightarrow|\lambda(k)|^{2}=1+\nu^{2} \sin ^{2}(k \Delta x)
$$

and hence $|\lambda(k)|>1$ (unless $\sin (k \Delta x)=0)$, i.e. unstable!

Consistency

- We say that a numerical scheme is consistent with a PDE if its truncation error tends to zero as $\Delta x, \Delta t \rightarrow 0$
- For example, any first (or higher) order scheme is consistent

Lax Equivalence Theorem

- Then a fundamental theorem about finite difference schemes is the Lax equivalence theorem

For a consistent finite difference approximation to a
linear evolutionary problem, the stability of the scheme is necessary and sufficient for convergence

- This theorem refers to linear evolutionary problems, e.g. linear hyperbolic or parabolic PDEs
- Due to Peter Lax (born 1926, American mathematician)

Lax Equivalence Theorem

- We know how to check consistency: Derive the truncation error
- We know how to check stability: Fourier stability analysis
- Hence, from the Lax equivalence theorem, we have a general approach for verifying convergence
- Also, as with ODEs, convergence rate is determined by truncation error

Lax Equivalence Theorem

- Note that strictly speaking Fourier stability analysis only applies for periodic problems
- However, its conclusions on periodic problems generally hold in other cases
- Fourier stability analysis is the standard tool for examining stability of finite-difference methods for PDEs
- See [examples/unit3/advection.py], one-sided and central difference schemes for the advection equation

Hyperbolic PDEs: Semi-discretization

- So far, we have developed full discretizations (both space and time) of the advection equation, and considered accuracy and stability
- However, it can be helpful to consider semi-discretizations, where we discretize only in space, or only in time
- For example, discretizing $u_{t}+c(t, x) u_{x}=0$ in space using a backward difference formula gives

$$
\frac{\partial U_{j}(t)}{\partial t}+c_{j}(t) \frac{U_{j}(t)-U_{j-1}(t)}{\Delta x}=0, \quad j=1, \ldots, n
$$

Hyperbolic PDEs: Semi-discretization

- This gives a system of ODEs, $U_{t}=f(t, U(t))$, where $U(t) \in \mathbb{R}^{n}$ and

$$
f_{j}(t, U(t))=-c_{j}(t) \frac{U_{j}(t)-U_{j-1}(t)}{\Delta x}
$$

- Forward Euler applied to that system yields the first-order upwind scheme

$$
\frac{U_{j}^{n+1}-U_{j}^{n}}{\Delta t}=f\left(t^{n}, U^{n}\right)=-c_{j}^{n} \frac{U_{j}^{n}-U_{j-1}^{n}}{\Delta x}
$$

- Backward Euler yields the implicit first-order upwind

$$
\frac{U_{j}^{n+1}-U_{j}^{n}}{\Delta t}=f\left(t^{n+1}, U^{n+1}\right)=-c_{j}^{n+1} \frac{U_{j}^{n+1}-U_{j-1}^{n+1}}{\Delta x}
$$

Hyperbolic PDEs: Method of Lines

- We can also use a "black box" ODE solver (e.g. scipy.integrate.odeint) to solve the system of ODEs
- This "black box" approach is called the method of lines
- The name "lines" is because we solve each $U_{j}(t)$ for a fixed x_{j}, i.e. a line in the $x t$-plane
- We let the ODE solver to choose step size Δt to obtain a stable and accurate scheme

Wave Equation

- We now briefly return to the wave equation:

$$
u_{t t}-c^{2} u_{x x}=0
$$

- In one spatial dimension, this models vibrations of a string

Wave Equation

- Many schemes have been proposed for the wave equation, as well as other hyperbolic systems in general
- One good option is to use central difference approximations for both $u_{t t}$ and $u_{x x}$

$$
\frac{U_{j}^{n+1}-2 U_{j}^{n}+U_{j}^{n-1}}{\Delta t^{2}}-c^{2} \frac{U_{j+1}^{n}-2 U_{j}^{n}+U_{j-1}^{n}}{\Delta x^{2}}=0
$$

- Key points
- truncation error analysis \Longrightarrow second-order accurate
- Fourier stability analysis \Longrightarrow stable for $0 \leq c \Delta t / \Delta x \leq 1$
- two-step method in time, need a one-step method to "get started"
- See [examples/unit3/wave.py] and [examples/unit3/wave_audio.py]

Wave Equation: Example

- Wave equation with forcing

$$
u_{t t}-u_{x x}=f
$$

- Energy $\int u_{t}^{2} d x$
- Sound $\int u_{x}^{2} d x$ (change in arc length)
- Forcing $f=x \sin (\omega(t) t)$

$$
\omega(t)=a t+b
$$

Heat Equation

- The canonical parabolic equation is the heat equation

$$
u_{t}-\alpha u_{x x}=f(t, x)
$$

where α is the thermal diffusivity

- By rescaling x and t, we can assume $\alpha=1$
- To form an initial-boundary value problem, we impose
- initial condition $u(0, x)=u_{0}(x)$
- boundary conditions on both endpoints the domain

Heat Equation

- A natural idea would be to discretize $u_{x x}$ with a central difference, and employ forward Euler in time

$$
\frac{U_{j}^{n+1}-U_{j}^{n}}{\Delta t}-\frac{U_{j-1}^{n}-2 U_{j}^{n}+U_{j+1}^{n}}{\Delta x^{2}}=0
$$

- Or we could use backward Euler in time

$$
\frac{U_{j}^{n+1}-U_{j}^{n}}{\Delta t}-\frac{U_{j-1}^{n+1}-2 U_{j}^{n+1}+U_{j+1}^{n+1}}{\Delta x^{2}}=0
$$

Heat Equation

- Or we could do the midpoint rule in time

$$
\frac{U_{j}^{n+1}-U_{j}^{n}}{\Delta t}-\frac{1}{2} \frac{U_{j-1}^{n+1}-2 U_{j}^{n+1}+U_{j+1}^{n+1}}{\Delta x^{2}}-\frac{1}{2} \frac{U_{j-1}^{n}-2 U_{j}^{n}+U_{j+1}^{n}}{\Delta x^{2}}=0
$$

- This is called the Crank-Nicolson method
- Extra reading: Crank \& Nicolson, 1947. A practical method for numerical evaluation of solutions of partial differential equations of the heatconduction type

θ-Method

- The θ-method is a family of methods that includes all of the above $\frac{U_{j}^{n+1}-U_{j}^{n}}{\Delta t}-\theta \frac{U_{j-1}^{n+1}-2 U_{j}^{n+1}+U_{j+1}^{n+1}}{\Delta x^{2}}-(1-\theta) \frac{U_{j-1}^{n}-2 U_{j}^{n}+U_{j+1}^{n}}{\Delta x^{2}}=0$
where $\theta \in[0,1]$ is a parameter
- $\theta=0 \Longrightarrow$ forward Euler
- $\theta=\frac{1}{2} \Longrightarrow$ Crank-Nicolson
- $\theta=1 \Longrightarrow$ backward Euler
- For the θ-method, we can
- perform Fourier stability analysis
- calculate the truncation error

θ-Method: Stability

- Fourier stability analysis. Set $U_{j}^{n}(k)=\lambda(k)^{n} e^{i k(j \Delta x)}$ to get

$$
\lambda(k)=\frac{1-4(1-\theta) \mu \sin ^{2}\left(\frac{1}{2} k \Delta x\right)}{1+4 \theta \mu \sin ^{2}\left(\frac{1}{2} k \Delta x\right)}
$$

where $\mu=\Delta t / \Delta x^{2}$

- In general, $\mu=\alpha \Delta t / \Delta x^{2}$ is dimensionless (sometimes called the diffusion number, or diffusion CFL number)
- Here we cannot get $\lambda(k)>1$, hence only concern is $\lambda(k)<-1$
- Let's find conditions for stability, i.e. we want $\lambda(k) \geq-1$

$$
1-4(1-\theta) \mu \sin ^{2}\left(\frac{1}{2} k \Delta x\right) \geq-\left[1+4 \theta \mu \sin ^{2}\left(\frac{1}{2} k \Delta x\right)\right]
$$

θ-Method: Stability

- Or equivalently

$$
4 \mu(1-2 \theta) \sin ^{2}\left(\frac{1}{2} k \Delta x\right) \leq 2
$$

- For $\theta \in[0.5,1]$ this inequality is always satisfied, hence the θ-method is unconditionally stable (i.e. stable independent of μ)
- For $\theta \in[0,0.5)$, the "most unstable" Fourier mode is at $k=\pi / \Delta x$, since this maximizes the factor $\sin ^{2}\left(\frac{1}{2} k \Delta x\right)$

θ-Method: Stability

- Note that this corresponds to the highest frequency mode that can be represented on our grid, since with $k=\pi / \Delta x$ we have

$$
e^{i k(j \Delta x)}=e^{\pi i j}=\left(e^{\pi i}\right)^{j}=(-1)^{j}
$$

- The $k=\pi / \Delta x$ "sawtooth" mode

θ-Method: Stability

- This sawtooth mode is stable (and so all modes are stable) if

$$
4 \mu(1-2 \theta) \leq 2 \Longleftrightarrow \mu \leq \frac{1}{2(1-2 \theta)}
$$

- Therefore, the θ-method is conditionally stable for $\theta \in[0,0.5)$

θ-Method: Stability

- The θ-method is conditionally stable if $\theta \in[0,0.5)$ and unconditionally stable if $\theta \in[0.5,1]$
- Stability region in the μ - θ plane

θ-Method: Stability

- Note that θ in $[0,0.5)$ leads to a severe stability restriction, since Δt is quadratic in Δx

$$
\Delta t \leq \frac{(\Delta x)^{2}}{2(1-2 \theta)}
$$

- Recall that in the hyperbolic case, Δt is linear in Δx

$$
\Delta t \leq \frac{\Delta x}{c}
$$

- This indicates that spacial discretization of the heat equation results in a stiff system of ODEs

θ-Method: Accuracy

- The truncation error analysis gives

$$
\begin{aligned}
T_{j}^{n}= & \frac{u_{j}^{n+1}-u_{j}^{n}}{\Delta t}-\theta \frac{u_{j-1}^{n+1}-2 u_{j}^{n+1}+u_{j+1}^{n+1}}{\Delta x^{2}}-(1-\theta) \frac{u_{j-1}^{n}-2 u_{j}^{n}+u_{j+1}^{n}}{\Delta x^{2}} \\
= & {\left[u_{t}-u_{x x}\right]+\left[\left(\frac{1}{2}-\theta\right) \Delta t u_{x x t}-\frac{1}{12} \Delta x^{2} u_{x x x x}\right] } \\
& +\left[\frac{1}{24} \Delta t^{2} u_{t t t}-\frac{1}{8} \Delta t^{2} u_{x x t t}\right] \\
& \quad+\left[\frac{1}{12}\left(\frac{1}{2}-\theta\right) \Delta t \Delta x^{2} u_{x x x x t}-\frac{2}{6!} \Delta x^{4} u_{x x x x x x}\right]+\cdots
\end{aligned}
$$

- The term $u_{t}-u_{x x}$ in T_{j}^{n} vanishes since u solves the PDE

θ-Method: Accuracy

- The method is second order if $\theta=0.5$, and first order otherwise if $\theta \neq 0.5$
- The θ-method is consistent (i.e. truncation error tends to zero) and stable (conditionally stable for $\theta \in[0,0.5)$)
- Therefore, from the Lax equivalence theorem, the method is convergent

Heat Equation

- Note that the heat equation describes a diffusive process, so it tends to smooth out discontinuities
- See [examples/unit3/heat.py], forward Euler and Crank-Nicolson schemes for the heat equation

- This is qualitatively different to hyperbolic equations, e.g. the advection equation will just transport a discontinuity in u_{0}

Elliptic PDEs

- The canonical elliptic PDE is the Poisson equation

$$
u_{x x}+u_{y y}=f(x, y)
$$

for $(x, y) \in \Omega$ in the domain $\Omega \subset \mathbb{R}^{2}$

- This is generally written as $\nabla^{2} u=f($ or $\Delta u=f)$
- Options for boundary conditions on the domain boundary $\partial \Omega$
- Dirichlet, given value u
- Neumann, given normal derivative $\frac{\partial u}{\partial n}$
- Robin (mixed), given linear combination of both

Elliptic PDEs

- We will consider how to use a finite difference scheme to approximate this 2D Poisson equation
- First, introduce a uniform grid to discretize Ω

Elliptic PDEs

- Assume equal grid spacing $h=\Delta x=\Delta y$
- Then
- $x_{i}=i h, i=0,1,2 \ldots, N_{x}-1$,
- $y_{j}=j h, j=0,1,2, \ldots, N_{y}-1$,
- $U_{i, j} \approx u\left(x_{i}, y_{j}\right)$
- Use finite differences to approximate $u_{x x}$ and $u_{y y}$ on this grid

Elliptic PDEs

- Each derivative is approximated as

$$
\begin{aligned}
& u_{x x}\left(x_{i}, y_{j}\right)=\frac{u\left(x_{i-1}, y_{j}\right)-2 u\left(x_{i}, y_{j}\right)+u\left(x_{i+1}, y_{j}\right)}{h^{2}}+O\left(h^{2}\right) \\
& u_{y y}\left(x_{i}, y_{j}\right)=\frac{u\left(x_{i}, y_{j-1}\right)-2 u\left(x_{i}, y_{j}\right)+u\left(x_{i}, y_{j+1}\right)}{h^{2}}+O\left(h^{2}\right)
\end{aligned}
$$

- The Laplacian is approximated as

$$
\begin{aligned}
& u_{x x}\left(x_{i}, y_{j}\right)+u_{y y}\left(x_{i}, y_{j}\right)= \\
& \frac{u\left(x_{i}, y_{j-1}\right)+u\left(x_{i-1}, y_{j}\right)-4 u\left(x_{i}, y_{j}\right)+u\left(x_{i+1}, y_{j}\right)+u\left(x_{i}, y_{j+1}\right)}{h^{2}}+O\left(h^{2}\right)
\end{aligned}
$$

Elliptic PDEs

- Using the grid values, the approximation to the Laplacian is

$$
u_{x x}+u_{y y} \approx \frac{U_{i, j-1}+U_{i-1, j}-4 U_{i, j}+U_{i+1, j}+U_{i, j+1}}{h^{2}}
$$

- This corresponds to a 5 -point stencil

Elliptic PDEs

- We represent the numerical solution as a vector $U \in \mathbb{R}^{N_{x} N_{y}}$
- We want to construct a differentiation matrix $D \in \mathbb{R}^{N_{x} N_{y} \times N_{x} N_{y}}$ that approximates the Laplacian
- Question: How many non-zero diagonals will D have?
- To construct D, we need to relate the entries of the one-dimensional vector U to the two-dimensional grid values $U_{i, j}$ (i.e. flatten the grid values)

Elliptic PDEs

- For instance, let's enumerate the nodes from 0 to $N_{x} N_{y}-1$ starting from the bottom row $j=0$ (i.e. row-major order)

- Let G denote the mapping from the 2D indexing to the 1D indexing
- From the above schematic we have

$$
G(i, j)=j N_{x}+i \quad \text { and therefore } \quad U_{G(i, j)}=U_{i, j}
$$

Elliptic PDEs

- Let's focus on node (i, j), this corresponds to entry $G(i, j)$ of U
- Due to the 5 -point stencil, row $G(i, j)$ of D will only have non-zeros in five columns with indices

$$
\begin{aligned}
G(i, j-1) & =G(i, j)-N_{x} \\
G(i-1, j) & =G(i, j)-1 \\
G(i, j) & =G(i, j) \\
G(i+1, j) & =G(i, j)+1 \\
G(i, j+1) & =G(i, j)+N_{x}
\end{aligned}
$$

Elliptic PDEs

- The discretization of the equations above applies in inner nodes, i.e. nodes with indices

$$
i>0, \quad i<N_{x}-1, \quad j>0, \quad \text { and } \quad j<N_{y}-1
$$

- Impose zero Dirichlet conditions

$$
U_{i, j}=0
$$

on the boundaries, i.e. nodes with indices

$$
i=0, \quad i=N_{x}-1, \quad j=0, \quad \text { or } \quad j=N_{y}-1
$$

- Other cases (e.g. Neumann conditions) will need to be discretized accordingly on each boundary

Elliptic PDEs

- For example, in the case $N_{x}=N_{y}=6$, matrix D has the following sparsity pattern

Elliptic PDEs

- Poisson equation $\nabla^{2} u=-10$
for $(x, y) \in \Omega=[0,1]^{2}$ with $u=0$ on $\partial \Omega$

- See [examples/unit3/poisson.py], solved using scipy.sparse

