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Motivation
This unit will cover nonlinear equations and optimization

So far we have mostly focused on linear problems
linear least squares (linear combination of basis functions)
linear physical laws (idealized behavior, small deformations)
discretizations of linear PDEs (wave equation, heat equation)

However, important applications lead to nonlinear problems
nonlinear least squares (nonlinear dependency on parameters)
nonlinear physical models (realistic materials, large deformations)
discretizations of nonlinear PDEs (Navier-Stokes)
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Motivation: Nonlinear Equations
Some familiar problems can be reduced to nonlinear equations

For example, computing the points and weights of Gauss quadrature

with  unknown parameters  and 

Require that quadrature is exact on monomials of degree up to 

 f(x)dx ≈∫
−1

1

 w  f(x  )
k=0

∑
n

k k

2n + 2 x  , … ,x  0 n w  , … ,w  0 n

2n + 1
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Motivation: Nonlinear Equations
For , this leads to a system of nonlinear equationsn = 1
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1

=  xdx = 0∫
−1
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=  x dx = 2/3∫
−1

1
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=  x dx = 0∫
−1

1
3
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Motivation: Nonlinear Equations
A general system of  equations for  unknowns

where 

We will focus on the case , 
i.e. equal number of equations and unknowns

Cases  can be formulated as nonlinear least squares

m n

F (x) = 0

F : R →n Rm

m = n

m = n
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Motivation: Nonlinear Equations
One class of nonlinear equations is polynomial equations, 
i.e.   is a polynomial

The simplest case is a quadratic equation

A closed-form solution is given by

F (x)

ax +2 bx + c = 0

x =  

2a
−b ±  b − 4ac2

6



Motivation: Nonlinear Equations
There are also closed-form solutions for polynomial equations 
of degree three and four, due to Ferrari and Cardano (~1540)

However, the Abel–Ruffini theorem states that equations 
of degree five or higher have no general solution in radicals

Therefore, they have to be solved numerically with an iterative algorithm
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Motivation: Nonlinear Equations
There are many iterative methods for nonlinear equations

One is the bisection method for a scalar equation 

where 

Assume  and bisect the interval 
depending on the sign of 

f(x) = 0

f ∈ C[a, b]

f(a)f(b) < 0
f(  )2

a+b
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Motivation: Nonlinear Equations

def f(x): 
    return x * x - 4 * np.sin(x) 
 
# Initial interval, assume f(a)*f(b)<0. 
a = 1 
b = 3 
tol = 1e-3 
 
# Bisection search. 
while b - a > tol: 
    print('a={:.5f} b={:.5f} f(a)={:.5f} f(b)={:.5f}
          .format(a, b, f(a), f(b))) 
    c = 0.5 * (b + a)
    if f(a) * f(c) < 0: 
        b = c 
    else: 
        a = c 

[examples/unit4/bisection.py]

a=1.00000 b=3.00000 f(a)=-2.36588 f(b)=8.43552 
a=1.00000 b=2.00000 f(a)=-2.36588 f(b)=0.36281 
a=1.50000 b=2.00000 f(a)=-1.73998 f(b)=0.36281 
a=1.75000 b=2.00000 f(a)=-0.87344 f(b)=0.36281 
a=1.87500 b=2.00000 f(a)=-0.30072 f(b)=0.36281 
a=1.87500 b=1.93750 f(a)=-0.30072 f(b)=0.01985 
a=1.90625 b=1.93750 f(a)=-0.14326 f(b)=0.01985 
a=1.92188 b=1.93750 f(a)=-0.06241 f(b)=0.01985 
a=1.92969 b=1.93750 f(a)=-0.02145 f(b)=0.01985 
a=1.93359 b=1.93750 f(a)=-0.00085 f(b)=0.01985 
a=1.93359 b=1.93555 f(a)=-0.00085 f(b)=0.00949 
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Motivation: Nonlinear Equations
Bisection is a robust method in 1D, 
but it needs an initial guess  
and does not generalize to higher dimensions

We will consider alternative methods
fixed-point iteration
Newton’s method

f(a)f(b) < 0
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Motivation: Optimization
A related topic is optimization

Has important applications in science and engineering

Examples
find the shape of a racing car that maximizes downforce
design a bridge to minimize its weight
find the path of an airplane that minimizes fuel consumption

Solving nonlinear equations can be viewed 
as optimization of the residuals
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Motivation: Optimization
Optimization can be constrained, 
i.e. parameters have to satisfy equations or inequalities

Examples
find the shape of a racing car that maximizes downforce, 
subject to a constant drag
design a bridge to minimize its weight, 
subject to a constant critical load
find the path of an airplane that minimizes fuel consumption, 
but avoids certain territories
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Motivation: Optimization
All these problems can be formulated as constrained minimization

Given an objective function  and a set , 
find  such that  

Here  is the feasible set which describes the constraints, 
usually defined by equations or inequalities

If , then the minimization is unconstrained

Maximization of  is equivalent to minimization of 

f : R →n R S ⊂ Rn

x ∈∗ S f(x ) ≤∗ f(x) ∀x ∈ S

S

S = Rn

f −f
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Motivation: Optimization
The standard way to write an optimization problem is

with
objective function 
equality constraints 
inequality constraints 

 f(x) subject to g(x) =
x

min 0 and h(x) ≤ 0

f : R →n R
g : R →n Rm

h : R →n Rp
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Motivation: Optimization
For example, consider a cylinder with radius  and height 

Minimize the surface area of a cylinder subject to a constraint on its volume

We will return to this example later

x  1 x  2

 f(x  ,x ) =
x

min 1 2 2πx  (x  +1 1 x  )2

 subject to g(x  ,x  ) =1 2 πx  x  −1
2

2 V = 0
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Motivation: Optimization
If ,  and  are all affine (i.e.  , linear plus constant), 
then the optimization problem is called a linear programming

Here the term “program” is a synonym for “plan”, 
has nothing to do with computer software

The feasible set is a polyhedron and the minimum is found on its vertex

f g h f(x) = Ax + b
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Motivation: Optimization
If the objective function or any of the constraints are nonlinear 
then we have a nonlinear optimization problem or nonlinear programming

We will consider several different approaches to nonlinear optimization

Optimization routines typically use local information 
about a function to iteratively approach its local minimum
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Motivation: Optimization
In some cases an optimizer can find a global minimum

Extra conditions on the function (e.g. convexity) can help
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Motivation: Optimization
But in general, global optimization is difficult

The optimizer can get “stuck” in local minimum
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Motivation: Optimization
This can get even harder in higher dimensions
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Motivation: Optimization
We will focus on methods for finding local minima

Global optimization is important, but not possible in general 
without extra conditions on the objective function

Global optimization usually relies on heuristics
try several different initial guesses (multistart methods)
simulated annealing (add decaying noise)
genetic methods (use a hierarchy of samples)
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Nonlinear Equations
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Fixed-Point Iteration
Consider iteration

For example, recall Heron’s method for finding  from HW0

Denote 

x  =k+1 g(x  )k

 a

x  =k+1  x  +  

2
1

( k
x  k

a
)

g  (x) =heron  x + a/x2
1 ( )
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Fixed-Point Iteration
Suppose  is such that , then we call  a fixed point of 

For example, we see that  is a fixed point of  since

A fixed-point iteration terminates once a fixed point is reached, 
since if  then we get 

Also, if  converges as , it must converge to a fixed point

Let , then

α ∈ R g(α) = α α g

 a g  heron

g  (  ) =heron a   + a/  =
2
1

( a a)  a

g(x  ) =k x  k x  =k+1 x  k

x  =k+1 g(x  )k k → ∞

α = lim  x  k→∞ k

α =  x  =
k→∞
lim k+1  g(x  ) =

k→∞
lim k g(  x  ) =

k→∞
lim k g(α)
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Fixed-Point Iteration
Therefore, for example, if Heron’s method converges, it converges to 

There are sufficient conditions for convergence of a fixed-point iteration

Recall that  satisfies a Lipschitz condition in an interval  if

for some 

If , then  is called a contraction

 a

g [a, b]

∣g(x) − g(y)∣ ≤ L∣x − y∣, ∀x, y ∈ [a, b]

L > 0

L < 1 g
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Fixed-Point Iteration
Theorem: Suppose that  is a contraction on  
and  is a fixed point of  (i.e.  ), where  and  
Then the fixed point iteration converges to  for any 

Proof: Take  from the Lipschitz condition. Then

which implies

and, since ,  as 

This also shows that each iteration reduces the error by factor 

g [α − δ,α + δ]
α g g(α) = α α ∈ R δ > 0

α x  ∈0 [α − δ,α + δ]

L < 1

∣x  −k α∣ = ∣g(x  ) −k−1 g(α)∣ ≤ L∣x  −k−1 α∣,

∣x  −k α∣ ≤ L ∣x  −k
0 α∣

L < 1 ∣x  −k α∣ → 0 k → ∞

L
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Fixed-Point Iteration
Recall that if , we can obtain a Lipschitz constant from 

We now use this result to show that if , 
then there is a neighborhood of  on which  is a contraction

This tells us that we can verify convergence of a fixed point iteration 
by checking the gradient of 

g ∈ C [a, b]1 g′

L =  ∣g (θ)∣
θ∈[a,b]
max ′

∣g (α)∣ <′ 1
α g

g
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Fixed-Point Iteration
By continuity of , for any , there is  
such that for any  we have 

Therefore

Suppose  and set , 
then there is an interval , 
on which  is Lipschitz with 

Since , then  is a contraction in a neighborhood of 

∣g ∣′ ϵ > 0 δ > 0
x ∈ (α − δ,α + δ)  ∣g (x)∣ −′ ∣g (α)∣  ≤′ ϵ

 ∣g (x)∣ ≤
x∈(α−δ,α+δ)

max ′ ∣g (α)∣ +′ ϵ

∣g (α)∣ <′ 1 ϵ =  (1 −2
1 ∣g (α)∣)′

(α − δ,α + δ)
g L =  (1 +2

1 ∣g (α)∣)′

L < 1 g α
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Fixed-Point Iteration
Furthermore, as ,

Therefore, asymptotically, after each iteration 
the error decreases by a factor of 

k → ∞

 =
∣x  − α∣k

∣x  − α∣k+1
 →

∣x  − α∣k

∣g(x  ) − g(α)∣k ∣g (α)∣,′

∣g (α)∣′
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Fixed-Point Iteration
We say that an iteration converges linearly if, for some ,

An iteration converges superlinearly if

μ ∈ (0, 1)

  =
k→∞
lim

∣x  − α∣k

∣x  − α∣k+1
μ

  =
k→∞
lim

∣x − α∣k

∣x  − α∣k+1 0
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Fixed-Point Iteration
We can use these ideas to construct practical 
fixed-point iterations for solving 

For example, suppose 

From the plot, there is a root at 

f(x) = 0

f(x) = e −x x − 2

x ≈ 1.15
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Fixed-Point Iteration
Equation  is equivalent to , 
so we seek a fixed point of the iteration

Here , and  for all ,
therefore fixed point iteration will converge for 

We should get linear convergence with a factor about

f(x) = 0 x = log(x + 2)

x  =k+1 log(x  +k 2)

g(x) = log(x + 2) g (x) =′ 1/(x + 2) < 1 x > −1
x  >0 −1

g (1.15) =′ 1/(1.15 + 2) ≈ 0.32
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Fixed-Point Iteration
An alternative fixed-point iteration is to set

Therefore , and 

Hence , so we can’t guarantee convergence

In fact, the iteration diverges

x  =k+1 e −x  k 2, k = 0, 1, 2, …

g(x) = e −x 2 g (x) =′ ex

∣g (α)∣ >′ 1
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Fixed-Point Iteration
See , 
comparison of the two fixed-point iterations

[examples/unit4/fixed_point.py]
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https://github.com/pkarnakov/am205/tree/main/examples/unit4/fixed_point.py


Newton’s Method
Constructing fixed-point iterations is not straightforward

Need to rewrite  in a form  with certain properties on 

To obtain a more generally applicable iterative method, 
consider the following fixed-point iteration

corresponding to , for some function 

A fixed point  of  yields a solution to  
(except possibly when ), which is what we want

f(x) = 0 x = g(x) g

x  = x  − λ(x  )f(x  )k+1 k k k

g(x) = x − λ(x)f(x) λ

α g f(α) = 0
λ(α) = 0
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Newton’s Method
Recall that the asymptotic convergence rate is dictated by , 
so we want to have  to get superlinear convergence

Suppose (as stated above) that , then

To satisfy , we choose  to obtain

known as Newton’s method

∣g (α)∣′

∣g (α)∣ =′ 0

f(α) = 0

g (α) =′ 1 − λ (α)f(α) −′ λ(α)f (α) =′ 1 − λ(α)f (α)′

g (α) =′ 0 λ(x) = 1/f (x)′

x  =k+1 x  −k  

f (x  )′
k

f(x  )k
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Newton’s Method
Based on fixed-point iteration theory, 
Newton’s method is convergent since 

However, we need a different argument to understand 
the superlinear convergence rate properly

To do this, we use a Taylor expansion for  about 

for some 

∣g (α)∣ =′ 0 < 1

f(α) x  k

0 = f(α) = f(x  ) +k (α − x  )f (x  ) +k
′

k  f (θ  )
2

(α − x  )k 2
′′

k

θ  ∈k (α,x  )k
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Newton’s Method
Dividing through by  gives

or

Therefore, asymptotically, 
the error at iteration  is the square of the error at iteration 

This is referred to as quadratic convergence, which is very rapid

We need to be sufficiently close to  to get quadratic convergence 
(the result relied on Taylor expansion near )

f (x )′
k

x  −  −( k
f (x  )′

k

f(x  )k ) α =  (x  −
2f (x  )′

k

f (θ  )′′
k

k α)2

x  −k+1 α =  (x  −
2f (x  )′

k

f (θ  )′′
k

k α)2

k + 1 k

α

α
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Secant Method
An alternative to Newton’s method is to approximate  
using the finite difference

Substituting this into the iteration leads to the secant method

The main advantages of the secant methods are
does not require computing 
requires only one extra evaluation of  per solution 
(Newton’s method also requires  each iteration)

f (x  )′
k

f (x  ) ≈′
k  

x  − x  k k−1

f(x  ) − f(x  )k k−1

x  =k+1 x  −k f(x  )  , k =k (
f(x  ) − f(x  )k k−1

x  − x  k k−1 ) 1, 2, 3, …

f (x)′

f(x)
f (x  )′

k
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Secant Method
As one may expect, the secant method converges faster than 
a fixed-point iteration, but slower than Newton’s method

In fact, it can be shown that for the secant method, we have

where  is a positive constant and 

See , 
Newton’s method versus secant method for 

  =
k→∞
lim

∣x  − α∣k
q

∣x  − α∣k+1
μ

μ q ≈ 1.6

[examples/unit4/secant_vs_newton.py]
f(x) = e −x x − 2
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https://github.com/pkarnakov/am205/tree/main/examples/unit4/secant_vs_newton.py


Systems of Nonlinear Equations
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Systems of Nonlinear Equations
We now consider fixed-point iterations and Newton’s method 
for systems of nonlinear equations

We suppose that , , 
and we seek  such that 

In component form, this is equivalent to

F : R →n Rn n > 1
α ∈ Rn F (α) = 0

   

F  (α)1

F  (α)2

F  (α)n

= 0

= 0

…

= 0

42



Fixed-Point Iteration
For a fixed-point iteration, we again rewrite  as  to obtain

The convergence proof is the same as in the scalar case, 
if we replace  with , 
i.e. if , then 

As before, if  is a contraction it will converge to a fixed point 

F (x) = 0 x = G(x)

x  =k+1 G(x  )k

∣ ⋅ ∣ ∥ ⋅ ∥
∥G(x) − G(y)∥ ≤ L∥x − y∥ ∥x  −k α∥ ≤ L ∥x  −k

0 α∥

G α
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Fixed-Point Iteration
Recall that we define the Jacobian matrix, , to be

If , then there is some neighborhood of  
for which the fixed-point iteration converges to 

The proof of this is a natural extension of the corresponding scalar result

J  ∈G Rn×n

(J  )  =G ij  , i, j =
∂x  j

∂G  i 1, … ,n

∥J  (α)∥  <G ∞ 1 α

α
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Fixed-Point Iteration: Example
Once again, we can employ a fixed point iteration to solve 

For example, consider

This can be rearranged to , 

F (x) = 0

x  + x  − 11
2

2
2

5x  + 21x  − 91
2

2
2

= 0

= 0

x  =1  1 − x  2
2 x  =2  (9 − 5x  )/211

2
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Fixed-Point Iteration: Example
Define

See , 
fixed-point iteration in two dimensions

G  (x  ,x  )1 1 2

G  (x  ,x  )2 1 2

=  1 − x  2
2

=  (9 − 5x  )/211
2

[examples/unit4/fixed_point_2d.py]
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https://github.com/pkarnakov/am205/tree/main/examples/unit4/fixed_point_2d.py


Newton’s Method
As in the one-dimensional case, Newton’s method is generally 
more useful than a standard fixed-point iteration

The natural generalization of Newton’s method is

Note that to put Newton’s method in the standard form 
for a linear system, we write

where 

x =k+1 x  −k J  (x  ) F (x  )F k
−1

k

J  (x )Δx  = −F (x  )F k k+1 k

Δx  =k+1 x  −k+1 x  k
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Newton’s Method
Once again, if  is sufficiently close to , 
then Newton’s method converges quadratically

This result again relies on Taylor’s theorem

We first consider how to generalize Taylor’s theorem to 

First, we consider the case for 

x  0 α

Rn

F : R →n R
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Multivariate Taylor Theorem
Let  and . One-dimensional Taylor theorem yieldsϕ(s) = F (x + sδ) δ ∈ Rn

ϕ(1) = ϕ(0) +   +
ℓ=1

∑
k

ℓ!
ϕ (0)(ℓ)

 ϕ (η), η ∈
(k + 1)!

1 (k+1) (0, 1)

  

ϕ(0)

ϕ(1)

ϕ (s)′

ϕ (s)′′

= F (x)

= F (x + δ)

=  δ  +  δ  + ⋯ +  δ  

∂x  1

∂F (x + sδ)
1 ∂x  2

∂F (x + sδ)
2 ∂x  n

∂F (x + sδ)
n

=  δ  + ⋯ +  δ  δ  + ⋯ +
∂x  1

2
∂ F (x + sδ)2

1
2

∂x  x  1 n

∂ F (x + sδ)2

1 n

+  δ  δ  + ⋯ +  δ  

∂x  ∂x  1 n

∂ F (x + sδ)2

1 n ∂x  n
2

∂ F (x + sδ)2

n
2
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Multivariate Taylor Theorem
We have

where

and

F (x + δ) = F (x) +   +
ℓ=1

∑
k

ℓ!
U  (x)ℓ

E  ,k

U  (x) =ℓ  δ  + ⋯ +  δ  F (x), ℓ =[(
∂x1

∂
1 ∂x  n

∂
n)

ℓ

] 1, 2, … , k,

E  =k  , η ∈
(k + 1)!

U  (x + ηδ)k+1 (0, 1)
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Multivariate Taylor Theorem
Let  be an upper bound on the absolute values 
of all derivatives of order , then

where the last line follows from the fact that there are  terms in the
product (i.e. there are  derivatives of order )

A

k + 1

  

∣E  ∣k ≤   [(∥δ∥   + … + ∥δ∥   ) F](x + ηδ)  

(k + 1)!
1

∞ ∂x  1

∂
∞ ∂x  n

∂ k+1

=  ∥δ∥   [(  + … +  ) F](x + ηδ)  

(k + 1)!
1

∞
k+1

∂x  1

∂
∂x  n

∂ k+1

≤  A∥δ∥  

(k + 1)!
nk+1

∞
k+1

nk+1

nk+1 k + 1
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Multivariate Taylor Theorem
We only need an expansion up to first order terms 
for analysis of Newton’s method

From our expression above, 
we can write first order Taylor expansion as

F (x + δ) = F (x) + ∇F (x) δ + ET
1
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Multivariate Taylor Theorem
For , Taylor expansion follows by developing 
a Taylor expansion for each 

so that for  we have

where 

F : R →n Rn

F  i

F  (x +i δ) = F  (x) +i ∇F  (x) δ +i
T E  i,1

F : R →n Rn

F (x + δ) = F (x) + J  (x)δ + E  F F

∥E  ∥  =F ∞  ∣E  ∣ ≤
1≤i≤n
max i,1  n     ∥δ∥  2

1 2 (
1≤i,j,ℓ≤n

max ∂x  ∂x  j ℓ

∂ F  

2
i ) ∞

2
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Newton’s Method
Now return to Newton’s method

We have

so that

0 = F (α) = F (x  ) +k J  (x  ) α − x  +F k [ k ] E  F

x  −k α = [J  (x  )] F (x  ) +F k
−1

k [J  (x  )] E  F k
−1

F
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Newton’s Method
Also, the Newton iteration itself can be rewritten as

We obtain

which implies quadratic convergence

J  (x  ) x  − α =F k [ k+1 ] J  (x  ) x  − α −F k [ k ] F (x  )k

x  −k+1 α = [J  (x  )] E  ,F k
−1

F

∥x  −k+1 α∥  ≤∞ C∥x  −k α∥  ∞
2
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Newton’s Method: Example
Recall the conditions of the two-point Gauss quadrature rule

They constitute a nonlinear system of 4 equations for 4 unknowns

  

F  (x  ,x  ,w  ,w  )1 1 2 1 2

F  (x  ,x  ,w  ,w  )2 1 2 1 2

F  (x  ,x  ,w  ,w  )3 1 2 1 2

F  (x  ,x  ,w  ,w  )4 1 2 1 2

= w  + w  − 2 = 01 2

= w  x  + w  x  = 01 1 2 2

= w  x  + w  x  − 2/3 = 01 1
2

2 2
2

= w  x  + w  x  = 01 1
3

2 2
3
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Newton’s Method: Example
We can solve this using Newton’s method

To do this, we require the Jacobian of this system:

Alternatively, use scipy.optimize.fsolve() that implements Powell’s
hybrid method (combination of Newton and gradient descent) by calling

 or  from Fortran library 

See , 
two-point Gauss quadrature found from a nonlinear system

J  (x  ,x  ,w  ,w  ) =F 1 2 1 2       

0
w  1

2w  x  1 1

3w  x  1 1
2

0
w  2

2w  x  2 2

3w  x  2 2
2

1
x  1

x  1
2

x  1
3

1
x  2

x  2
2

x  2
3

HYBRD HYBRJ MINPACK

[examples/unit4/nonlin_gauss_quad.py]
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https://www.math.utah.edu/software/minpack/minpack/hybrd.html
https://www.math.utah.edu/software/minpack/minpack/hybrj.html
https://www.math.utah.edu/software/minpack.html
https://github.com/pkarnakov/am205/tree/main/examples/unit4/nonlin_gauss_quad.py


Newton’s Method: Example
Using either approach with an initial guess , 
we get the solution

[−1, 1, 1, 1]

x1

x2

w1

w2

= −0.577350269189626

= 0.577350269189626

= 1.000000000000000

= 1.000000000000000

≈ −1/ 3

≈ 1/ 3

≈ 1

≈ 1
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Optimization
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Existence of Global Minimum
To guarantee existence and uniqueness of a global minimum, 
we need to make assumptions about the objective function

For example, if  is continuous on a closed (i.e.  ) and bounded set 
 then it has global minimum in 

In one dimension, this says  achieves a minimum on the interval 

In general  does not achieve a minimum on , e.g. consider 

f ∂S ⊂ S

S ⊂ Rn S

f [a, b] ⊂ R
f (a, b) f(x) = x
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Coercive Functions
Another helpful concept for existence of global minimum is coercivity

A function  on an unbounded set  is coercive if

That is,  must take large positive values whenever  is large

f : S → R S ⊂ Rn

 f(x) =
∥x∥→∞

lim +∞

f(x) ∥x∥
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Coercive Functions
If  is continuous and coercive on a closed set , 
then  has a global minimum in 

Proof: From the definition of coercivity, for any ,  such that 
 for all  where 

Take a point , and set 

Let , so that  for all 

And we already know that  achieves a minimum (which is at most )
on the closed and bounded set 

Hence  achieves a minimum on  

f S

f S

M ∈ R ∃r > 0
f(x) ≥ M x ∈ S ∥x∥ ≥ r

x  ∈0 S M = f(x  )0

Y = S ∩ {∥x∥ ≥ r} f(x) ≥ f(x  )0 x ∈ Y

f f(x  )0

S ∩ {∥x∥ ≤ r}

f S □
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Coercive Functions: Examples
 

coercive on  
 

not coercive on  
 

as 

 
not coercive on  

 
as 

f = x +2 y2

R2
f = x −2 y2

R2

f(0, y) → −∞
∣y∣ → ∞

f = 1 − e−(x +y )2 2

R2

f(x, y) → 1
x +2 y →2 ∞
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Convex Functions
An important concept for uniqueness is convexity

A set  is convex if it contains the line segment between any two of its
points

That is,  is convex if for any , we have

S ⊂ Rn

S x, y ∈ S

{θx + (1 − θ)y : θ ∈ [0, 1]} ⊂ S
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Convex Functions
Similarly, we define convexity of a function 

 is convex if its graph along any line segment in  is on or below the chord
connecting the function values

For example,  is convex if for any  and any , we have

Also, if

then  is strictly convex

f : S ⊂ R →n R
f S

f x, y ∈ S θ ∈ (0, 1)

f(θx + (1 − θ)y) ≤ θf(x) + (1 − θ)f(y)

f(θx + (1 − θ)y) < θf(x) + (1 − θ)f(y)

f
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Convex Functions: Examples
 

convex on  
 

not convex on  
 

convex but 
not strictly convex on  

f = x +2 y2

R2
f = x −2 y2

R2
f = max(1, x +2 (y + 1) )2

R2
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Convex Functions
If  is a convex function on a convex set , 
then any local minimum of  must be a global minimum

Proof (1/2): Suppose  is a local minimum, 
i.e. there is  so that  for , 
where 

Suppose that  is not a global minimum, 
i.e. that there exists  such that 
We will show that this gives a contradiction 
by drawing a line segment between  and 

f S

f

x

ϵ > 0 f(x) ≤ f(y) y ∈ B(x, ϵ)
B(x, ϵ) = {y ∈ S : ∥y − x∥ ≤ ϵ}

x

w ∈ S f(w) < f(x)

x w

67



Convex Functions
Proof (2/2):

For  we have 

Let  be sufficiently small so that

Then

e.g.  , which contradicts that  is a local minimum

Hence we cannot have  such that  

θ ∈ [0, 1] f(θw + (1 − θ)x) ≤ θf(w) + (1 − θ)f(x)

σ ∈ (0, 1]

z = σw + 1 − σ x ∈( ) B(x, ϵ)

f(z) ≤ σf(w) + 1 − σ f(x) <( ) σf(x) + 1 − σ f(x) =( ) f(x),

f(z) < f(x) f(x)

w ∈ S f(w) < f(x) □
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Convex Functions
Note that convexity does not guarantee uniqueness of global minimum

However, if  is a strictly convex function on a convex set , 
then a local minimum of  is the unique global minimum

Optimization of convex functions over convex sets is called 
convex optimization, which is an important field in optimization

f S

f
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Optimality Conditions
We have discussed existence and uniqueness of minima, 
but haven’t considered how to find a minimum

The familiar optimization idea from calculus in one dimension is: 
set derivative to zero, check the sign of the second derivative

This can be generalized to Rn
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Optimality Conditions
If  is differentiable, 
then the gradient vector  is

The importance of the gradient is that  points “uphill”, 
i.e. towards points with larger values than 

And similarly  points “downhill”

f : R →n R
∇f : R →n Rn

∇f(x) =    

 ∂x  1

∂f(x)

 ∂x  2

∂f(x)

⋮
 ∂x  n

∂f(x)

∇f

f(x)

−∇f
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Optimality Conditions
This follows from Taylor’s theorem for 

Recall that

Let  for  and suppose that , then:

Also, we see from Cauchy–Schwarz that 

so  is the steepest descent direction

f : R →n R

f(x + δ) − f(x) = ∇f(x) δ +T h.o.t.

δ = −ϵ∇f(x) ϵ > 0 ∇f(x) = 0

f(x − ϵ∇f(x)) − f(x) ≈ −ϵ∇f(x) ∇f(x) <T 0

 ∇f(x)   ≤T

∥δ∥  2

δ
 ∇f(x)   

T

∥∇f(x)∥  2

∇f(x)

−∇f(x)
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Optimality Conditions
Similarly, we see that a necessary condition
for a local minimum at  is that 

In this case there is no “downhill direction” at 

The condition  is called 
a first-order necessary condition for optimality, 
since it only involves first derivatives

x ∈∗ S ∇f(x ) =∗ 0

x∗

∇f(x ) =∗ 0
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Optimality Conditions
 that satisfies the first-order optimality condition 

is called a critical point of 

A critical point can be 
a local minimum, local maximum, or saddle point

A saddle point is where some directions are “downhill” 
and others are “uphill”, e.g.   for 

x ∈∗ S

f

(x, y) = (0, 0) f(x, y) = x −2 y2
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Optimality Conditions
As in the one-dimensional case, we can look 
at second derivatives to classify critical points

If  is twice differentiable, then 
the Hessian is the matrix-valued function 

The Hessian is the Jacobian matrix of the gradient 
If the second partial derivatives of  are continuous, 
then , and  is symmetric

f : R →n R
H  :f R →n Rn×n

H  (x) =f       

 

∂x  1
2

∂ f(x)2

 ∂x  x  2 1

∂ f(x)2

⋮
 ∂x  x  n 1

∂ f(x)2

 ∂x  x  1 2

∂ f(x)2

 

∂x  2
2

∂ f(x)2

⋮
 ∂x  x  n 2

∂ f(x)2

⋯

⋯

⋱
⋯

 ∂x  x  1 n

∂ f(x)2

 ∂x  x  2 n

∂ f(x)2

⋮
 ∂x  n

2
∂ f(x)2

∇f : R →n Rn

f

∂ f/∂x  ∂x  =2
i j ∂ f/∂x  ∂x  

2
j i H  f
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Optimality Conditions
Suppose we have found a critical point , so that 

From Taylor’s theorem, for , we have

for some 

x∗ ∇f(x ) =∗ 0

δ ∈ Rn

f(x + δ)∗ = f(x ) + ∇f(x ) δ +  δ H  (x + ηδ)δ∗ ∗ T

2
1 T

f
∗

= f(x ) +  δ H  (x + ηδ)δ∗

2
1 T

f
∗

η ∈ (0, 1)
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Optimality Conditions
Recall positive definiteness:  is positive definite if 

Suppose  is positive definite

Then (by continuity)  is also positive definite 
for  sufficiently small, so that: 

Hence, we have  for  sufficiently small, 
e.g.   is a local minimum

Positive definiteness of  at a critical point  
is a second-order sufficient condition for a local minimum

A x Ax >T 0

H  (x )f
∗

H  (x +f
∗ ηδ)

∥δ∥ δ H  (x +T
f

∗ ηδ)δ > 0

f(x +∗ δ) > f(x )∗ ∥δ∥
f(x )∗

H  f x∗
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Optimality Conditions
A matrix can also be negative definite:  for all 

Or indefinite: There exists  such that 

Then we can classify critical points as follows:
 positive definite    is a local minimum
 negative definite   is a local maximum
 indefinite   is a saddle point

x Ax <T 0 x = 0

x, y x Ax <T 0 < y AyT

H  (x )f
∗ ⟹ x∗

H  (x )f
∗ ⟹ x∗

H  (x )f
∗ ⟹ x∗
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Optimality Conditions
Also, positive definiteness of the Hessian
is closely related to convexity of 

If  is positive definite, then  is convex 
on some convex neighborhood of 

If  is positive definite for all , 
where  is a convex set, then  is convex on 

Question: How do we test for positive definiteness?

f

H (x)f f

x

H (x)f x ∈ S

S f S
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Optimality Conditions
Answer: For a symmetric matrix 

 is positive definite if and only if all eigenvalues of  are positive, 
 is negative definite if and only if all eigenvalues of  are negative

Also, a matrix with positive and negative eigenvalues is indefinite

Hence we can compute all the eigenvalues of  and check their signs

A

A A

A A

A
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Optimality Conditions: Example
From Heath’s book (Example 6.5)

Consider

Then

We set  to find critical points  and 

f(x) = 2x  +1
3 3x  +1

2 12x  x  +1 2 3x  −2
2 6x  +2 6

∇f(x) =  [
6x  + 6x  + 12x  1

2
1 2

12x  + 6x  − 61 2
]

∇f(x) = 0 [1, −1]T [2, −3]T
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Optimality Conditions: Example
The Hessian is

and hence

Hence  is a local minimum whereas  is a saddle point

H  (x) =f   [
12x  + 61

12
12
6 ]

  

H  (1, −1)f

H  (2, −3)f

=   ,  which has eigenvalues 25.4, −1.4[
18
12

12
6 ]

=   ,  which has eigenvalues 35.0, 1.0[
30
12

12
6 ]

[2, −3]T [1, −1]T
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Optimization Methods
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Steepest Descent
One gradient-based method for 
unconstrained optimization is steepest descent

Key idea: The negative gradient  
points in the “steepest downhill” direction for  at 

An iterative method for minimizing  is obtained 
by following  at each step

Question: How far should we go in the direction of ?

−∇f(x)
f x

f

−∇f(x  )k
−∇f(x  )k
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Steepest Descent
We can try to find the best step size via an easier subproblem

For a direction , let  be given by

Then minimizing  along  corresponds 
to minimizing the one-dimensional function 

This process of minimizing  along a line is called a line search

s ∈ Rn ϕ : R → R

ϕ(η) = f(x + ηs)

f s

ϕ

f
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Steepest Descent
Putting these pieces together leads to the steepest descent method:

1: choose initial guess  
2: for  do 
3:  
4: choose  to minimize  
5:  
6: end for

However, steepest descent often converges very slowly

Steepest descent is part of HW4

A simpler option to use a constant 

x  0

k = 0, 1, 2, …
s  =k −∇f(x  )k

η  k f(x  +k η  s  )k k

x  =k+1 x  +k η  s  k k

η  =k η
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Newton’s Method
We can get faster convergence by using more information about 

Note that  is a system of nonlinear equations, 
so we can solve it with quadratic convergence via Newton’s method

The Jacobian matrix of  is  and 
therefore Newton’s method for unconstrained optimization is:

1: choose initial guess  
2: for  do 
3: solve  
4:  
5: end for

f

∇f(x) = 0

∇f(x) H  (x)f

x  0

k = 0, 1, 2, …
H  (x  )s  =f k k −∇f(x  )k

x  =k+1 x  +k s  k
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Newton’s Method
We can also interpret Newton’s method as seeking a stationary point 
based on a sequence of local quadratic approximations

Recall that for small 

where  is quadratic in  (for a fixed )

We find stationary point of  in the usual way:

This leads to , as in the previous slide

δ

f(x + δ) ≈ f(x) + ∇f(x) δ +  δ H  (x)δ = q(δ)T

2
1 T

f

q(δ) δ x

q

∇q(δ) = ∇f(x) + H  (x)δ =f 0

H  (x)δ =f −∇f(x)
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Newton’s Method: Example
Rosenbrock function

with minimum 0 at 

See , 
Rosenbrock function minimized with Newton’s method

f(x, y) = 100(y − x ) +2 2 (1 − x)2

(x, y) = (1, 1)

[examples/unit4/rosenbrock.py]
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Newton’s Method: Robustness
Newton’s method generally converges much faster than steepest descent

However, Newton’s method can be unreliable far away from a solution

To improve robustness during early iterations 
it is common to perform a line search in the Newton step direction

Also line search can ensure we don’t approach a local maximum 
(instead of minimum) as can happen with raw Newton method

The line search modifies the Newton step size, 
therefore often referred to as a damped Newton method
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Newton’s Method: Robustness
Another way to improve robustness is with trust region methods

At each iteration , a “trust radius”  is computed

This determines a region surrounding 
on which we “trust” our quadratic approx.

We require , 
which is a constrained optimization problem 
(with quadratic objective function) at each step

k R  k

x  k

∥x  −k+1 x  ∥ ≤k R  k
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Newton’s Method: Robustness
Size of  is based on comparing actual change, 

, to change predicted by the quadratic model

If quadratic model is accurate, we expand the trust radius, 
otherwise we contract it

When close to a minimum,  should be large enough 
to allow full Newton steps  eventual quadratic convergence

R  k+1

f(x  ) −k+1 f(x  )k

R  k

⟹
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Quasi-Newton Methods
Possible drawbacks of Newton’s method

unreliable: only converges when sufficiently close to a minimum
expensive: the Hessian  is dense in general, 
making the method expensive if  is large
complicated: can be impractical to compute the Hessian exactly

Methods that do not require the Hessian but achieve 
superlinear convergence are quasi-Newton methods

H  f

n
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Quasi-Newton Methods
General form of quasi-Newton methods:

where  is a line search parameter and 
 is some approximation to the Hessian

Quasi-Newton methods generally lose quadratic convergence 
of Newton’s method, but often achieve superlinear convergence

We now consider some specific quasi-Newton methods

x  = x  − α  B  ∇f(x  )k+1 k k k
−1

k

α  k

Bk
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BFGS
The Broyden–Fletcher–Goldfarb–Shanno (BFGS) method 
is one of the most popular quasi-Newton methods

1: choose initial guess  
2: choose , initial guess for Hessian, e.g.   
3: for  do 
4: solve  
5:  
6:  
7:  
8: end for

where 

x  0

B  0 B  =0 I
k = 0, 1, 2, …

B s  =k k −∇f(x  )k
x  =k+1 x  +k s  k

y  =k ∇f(x  ) −k+1 ∇f(x  )k
B  =k+1 B  +k ΔB  k

ΔB  =k  −
y  s  

k
T

k

y  y  k k
T

 

s  B  s  

k
T

k k

B  s  s  B  k k k
T

k
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BFGS
Basic idea is that  accumulates second derivative information 
on successive iterations and eventually approximates  well

BFGS is implemented in scipy.optimize.fmin_bfgs()

See , 
Rosenbrock function minimized with BFGS

B  k

H  f

[examples/unit4/rosenbrock.py]
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BFGS: Derivation
Replace Newton’s update  with

where 

Define  to satisfy the requirements
 is obtained by a “small” change from 
 is symmetric and positive definite

H  (x  )s  =f k k −∇f(x  )k

B  s  =k k −∇f(x  )k

s  =k x  −k+1 x  k

B  ∈k+1 Rn×n

B  k+1 B  k

B  k+1

B  ≈k+1 H  (x  )f k+1
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BFGS: Derivation
In particular, we want 

The product  is the directional derivative of  along  
and can be approximated by the difference 

Impose the requirement  exactly

B  s  ≈k+1 k H  (x  )s  f k+1 k

H  (x  )s  f k+1 k ∇f s  k

y  =k ∇f(x  ) −k+1 ∇f(x  )k

H  (x  )s  =f k+1 k    

h→0
lim

h

∇f(x  ) − ∇f(x  − hs  )k+1 k+1 k

h=1
≈ ∇f(x ) −k+1 ∇f(x  ) =k y  k

B  s  =k+1 k y  k

98



BFGS: Derivation
Look for  in the form of a rank-two update

with unknown  and 
impose 

which is achieved by  and 

impose 

which is achieved by  and 

This implies  and recovers the BFGS algorithm 

B  k+1

B  =k+1 B  − βvv +k
T αuuT

α,β ∈ R u, v ∈ Rn

(B  −k βvv )s  =T
k 0

0 = (B  −k βvv )s  =T
k B  s  −k k βvv s  =T

k B  s  −k k (βv s  )vT
k

v = B  s  k k β =  

s  B  s  

k
T

k k

1

αuu s  =T
k y  k

y  =k αuu s  =T
k (αu s  )uT

k

u = y  k α =  

y  s  

k
T

k

1

B  s  =k+1 k y  k above
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BFGS: Derivation
Note that if  is symmetric and positive definite, 

then  is positive semi-definite

Under the assumption , known as the curvature condition, 

the matrix  is positive definite

Therefore,  is positive definite

B  k

B  −k βvv =T B  −k  

s  B  s  

k
T

k k

B  s  s  B  k k
T

k
T

k

y  s  >k
T

k 0

αuu =T
 

y  s  

k
T

k

y  y  k k
T

B  =k+1 B  −k βvv +T αuuT

100



BFGS: Inverse Hessian
Actual implementation of BFGS: store and update
the inverse approximate Hessian  to avoid solving a linear system

1: choose initial guess  
2: choose , initial guess for inverse Hessian, e.g.   
3: for  do 
4:  
5:  
6:  
7:  
8: end for

where 

H  k

x  0

H  0 H  =0 I
k = 0, 1, 2, …
s  =k −H  ∇f(x  )k k

x  =k+1 x  +k s  k

y  =k ∇f(x  ) −k+1 ∇f(x  )k
H  =k+1 (I − ρ  s  y  )H  (I −k k k

T
k ρ  y  s  ) +k k k

T ρ  s  s  k k k
T

ρ  =k  

y  s  

k
T

k

1
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BFGS: Inverse Hessian
The update rule for  follows from the update rule for  
and the Sherman–Morrison–Woodbury formula

where  and 

Provides a low-rank update of the inverse 
from a low-rank update of the matrix

In our case

H  k+1 B  k+1

(A + UV ) =T −1 A −−1 A U(I +−1 V A U) V AT −1 −1 T −1

A ∈ Rn×n U ,V ∈ Un×p

B  =k+1 B  +k UV =T B  +k  y  y  −
y  s  

k
T

k

1
k k

T
 B  s  s  B  

s  B  s  

k
T

k k

1
k k k

T
k

U = [  y  −
y  s  

k
T

k

1
k  B  s  ], V =

s  B  s  

k
T

k k

1
s k [y  B  s  ] ∈k k k Rn×2
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BFGS: Modifications
Typically, the search direction  is adjusted 
by a more robust inexact line search, e.g. Wolfe conditions

Limited-memory BFGS (L-BFGS) avoids storing the full  
and instead represents  implicitly using a limited history 
of gradient evaluations. Suited for large-scale problems

Extra reading:  
(chapters 6 and 7)

s  k

H  k

H  k

Nocedal & Wright. Numerical Optimization, 1999
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Constrained Optimization
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Constrained Optimization
So far we have ignored constraints

Now we consider equality constrained optimization

where  and , with 

There are  unknowns and  constraints

This problem is solved with Lagrange mutlipliers

 f(x)  subject to  g(x) =
x∈Rn
min 0,

f : R →n R g : R →n Rm m ≤ n

n m
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Constrained Optimization
We illustrate the concept of Lagrange multipliers for 

Let  and 

 is normal to : at any  we must move in direction 
 (tangent direction) to remain in 

f , g : R →2 R
f(x, y) = x + y g(x, y) = 2x +2 y −2 5

∇g S x ∈ S

(∇g(x))  ⊥ S

106



Constrained Optimization
Also, change in  due to infinitesimal step in direction  is

A critical point  satisfies , or

f (∇g(x))  ⊥

f(x ± ϵ(∇g(x))  ) =⊥ f(x) ± ϵ∇f(x) (∇g(x))  +T
⊥ h.o.t.

x ∈∗ S ∇f(x ) (∇g(x ))  =∗ T ∗
⊥ 0

∇f(x ) = λ ∇g(x ), for some λ ∈∗ ∗ ∗ ∗ R
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Constrained Optimization
This shows that for a stationary point with  constraints, 

 cannot have any component in the “tangent direction” to 

Now, consider the case with  equality constraints

Then  and we have the gradients , 

Then the feasible set is 

Any “tangent direction” at  must be orthogonal to all 
gradient vectors  to remain in 

m = 1
∇f S

m > 1

g : R →n Rm ∇g  i i = 1, … ,m

S = {x ∈ R :n g  (x) =i 0, i = 1, … ,m}

x ∈ S

{∇g  (x), i =i 1, … ,m} S
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Constrained Optimization
Let  
denote the orthogonal complement of 

Then, for  and ,  is a step in a “tangent direction” of  at 

Since we have

it follows that for a stationary point we need 

T (x) = {v ∈ R :n ∇g  (x) v =i
T 0, i = 1, 2, … ,m}

{∇g  (x), i =i 1, … ,m}

δ ∈ T (x) ϵ > 0 ϵδ S x

f(x +∗ ϵδ) = f(x ) +∗ ϵ∇f(x ) δ +∗ T h.o.t.

∇f(x ) δ = 0 for all δ ∈∗ T T (x )∗
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Constrained Optimization
We require that at a stationary point  we have

This can be written as a linear system

for some , where 

This follows because the columns of  
are the vectors 

x ∈∗ S

∇f(x ) ∈∗ span{∇g  (x ), i =i
∗ 1, … ,m}

∇f(x ) = (J  (x )) λ∗
g

∗ T ∗

λ ∈∗ Rm (J  (x )) ∈g
∗ T Rn×m

(J  (x ))g
∗ T

{∇g  (x ), i =i
∗ 1, … ,m}
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Constrained Optimization
We can write equality constrained optimization problems more concisely 
by introducing the Lagrangian function, ,

Then

L : R →n+m R

  

L(x,λ) = f(x) + λ g(x)T

= f(x) + λ  g  (x) + ⋯ + λ  g  (x)1 1 m m

   

 ∂x  i

∂L(x,λ)

 ∂λ  i

∂L(x,λ)

=  + λ   + ⋯ + λ   ,∂x  i

∂f(x)
1 ∂x  i

∂g  (x)1
n ∂x  i

∂g  (x)n

= g  (x),i

i = 1, … ,n

i = 1, … ,m
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Constrained Optimization
In matrix form

Therefore, the first order necessary optimality condition 
for the constrained problem can be written as a nonlinear system

∇L(x,λ) =  =[
∇  L(x,λ)x

∇  L(x,λ)λ
]  ,[

∇f(x) + J  (x) λg
T

g(x) ]

∇L(x,λ) =  = 0[
∇f(x) + J  (x) λg

T

g(x)
]
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Constrained Optimization: Examples
Consider a cylinder with radius  and height 

Minimize the surface area of a cylinder subject to a constraint on its volume

x  1 x  2

 f(x  ,x ) =
x

min 1 2 2πx  (x  +1 1 x  )2

 subject to g(x  ,x  ) =1 2 πx  x  −1
2

2 V = 0
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Constrained Optimization: Examples
Another example is the underdetermined linear 
least squares problem from Unit 1

where ,  and  with 

 f(b)  subject to  g(b) =
b∈Rn
min 0,

f(b) = b bT g(b) = Ab − y A ∈ Rm×n m < n
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Constrained Optimization: Examples
Introducing Lagrange multipliers gives

where  and 

And the necessary optimality condition  is

L(b,λ) = b b + λ (Ab − y)T T

b ∈ Rn λ ∈ Rm

∇L(b,λ) = 0

 =[
∇f(b) + J  (b) λg

T

g(b) ]  =[
2b + A λT

Ab − y
] 0 ∈ Rn+m
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Constrained Optimization: Examples
We obtain the  square linear system

which we can solve for 

(n + m) × (n + m)

   =[
2I
A

AT

0 ] [
b

λ
]  [

0
y

]

 ∈[
b

λ
] Rn+m
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Constrained Optimization: Examples
We have  from the first “block row”

Subsituting into  (the second “block row”) yields 

And hence

which was the solution we introduced (but didn’t derive) in Unit 1

b = −  A λ2
1 T

Ab = y λ = −2(AA ) yT −1

b = −  A λ = A (AA ) y
2
1 T T T −1
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Sequential Quadratic Programming
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Sequential Quadratic Programming
Consider equality constrained minimization

where  and 

With the Lagrangian , 
the necessary condition for optimality is

Once again, this is a nonlinear system of equations
that can be solved using Newton’s method

 f(x) subject to g(x) = 0
x∈Rn
min

f : R →n R g : R →n Rm

L(x,λ) = f(x) + λ g(x)T

∇L(x,λ) =  = 0[
∇f(x) + J  (x)λg

T

g(x) ]
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Sequential Quadratic Programming
To derive the Jacobian of this system, we write

Then we differentiate w.r.t to  and 

For , we have

Differentiating w.r.t , for , gives

∇L(x,λ) =  ∈[
∇f(x) +  λ  ∇g  (x)∑k=1

m
k k

g(x) ] Rn+m

x ∈ Rn λ ∈ Rm

i = 1, … ,n

(∇L(x,λ))  =i  +
∂x  i

∂f(x)
 λ   

k=1

∑
m

k ∂x  i

∂g  (x)k

x  j i, j = 1, … ,n

 (∇L(x,λ))  =
∂x  j

∂
i  +

∂x  ∂x  i j

∂ f(x)2
 λ   

k=1

∑
m

k ∂x  ∂x  i j

∂ g  (x)2
k
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Sequential Quadratic Programming
The top-left  block of the Jacobian of  is

Differentiating  w.r.t , for , , gives

The top-right  block of the Jacobian of  is

n × n ∇L(x,λ)

B(x,λ) = H  (x) +  λ  H  (x) ∈ Rf

k=1

∑
m

k g  k

n×n

(∇L(x,λ))  i λ  j i = 1, … ,n j = 1, … ,m

 (∇L(x,λ))  =
∂λ  j

∂
i  

∂x  i

∂g  (x)j

n × m ∇L(x,λ)

J  (x) ∈ Rg
T n×m
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Sequential Quadratic Programming
For , we have

Differentiating  w.r.t , for , ,
gives

The bottom-left  block of the Jacobian of  is

The final  bottom right block is zero (  does not depend on )

i = n + 1, … ,n + m

(∇L(x,λ))  =i g  (x)i

(∇L(x,λ))  i x  j i = n + 1, … ,n + m j = 1, … ,n

 (∇L(x,λ))  =
∂x  j

∂
i  

∂x  j

∂g  (x)i

m × n ∇L(x,λ)

J  (x) ∈ Rg
m×n

m × m g  (x)i λ  j
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Sequential Quadratic Programming
We have derived the following Jacobian matrix for 

Note the  block structure of this matrix

Matrices with this structure are called KKT matrices 
after Karush, Kuhn, and Tucker

∇L(x,λ)

  ∈ R[
B(x,λ)
J  (x)g

J  (x)g
T

0
] (m+n)×(m+n)

2 × 2
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Sequential Quadratic Programming
Therefore, Newton’s method for  is

for 

Here  is the -th Newton step

∇L(x,λ) = 0

   = −  [
B(x  ,λ  )k k

J  (x  )g k

J  (x  )g
T

k

0
] [

s  k

δ  k
] [

∇f(x  ) + J  (x  )λ  k g
T

k k

g(x  )k
]

k = 0, 1, 2, …

(s  , δ  ) ∈k k Rn+m k
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Sequential Quadratic Programming
Now, consider the constrained minimization problem, 
where  is our Newton iterate at step :

The objective function is quadratic in  (here ,  are constants)

This minimization problem has Lagrangian

(x  ,λ  )k k k

  s B(x  ,λ  )s + s (∇f(x  ) + J  (x  )λ  )
s

min {
2
1 T

k k
T

k g
T

k k }

subject to J  (x  )s +g k g(x  ) =k 0

s x  k λ  k

  

L  (s, δ)k =  s B(x  ,λ  )s + s (∇f(x  ) + J  (x  )λ  )
2
1 T

k k
T

k g
T

k k

+ δ (J  (x  )s + g(x  ))T
g k k
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Sequential Quadratic Programming
Then solving  (i.e. first-order necessary conditions) 
gives a linear system, which is the same as the -th Newton step

Therefore, at each step of Newton’s method, we exactly solve 
a minimization problem with a quadratic objective and linear constraints

Optimization of this type is called quadratic programming

Therefore, Newton’s method applied to  
is called sequential quadratic programming (SQP)

∇L (s, δ) =k 0
k

L(x,λ) = 0
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Sequential Quadratic Programming
SQP is an important method, and there are many issues to be considered 
to obtain an efficient and reliable implementation:

efficient solution of the linear systems at each Newton iteration —
matrix block structure can be exploited
quasi-Newton approximations to the Hessian
trust region, line search to improve robustness
treatment of constraints (equality and inequality) during the
iterative process
selection of a good initial guess for λ

127



Penalty Methods
Another approach to constrained optimization is penalty methods

This converts a constrained problem into an unconstrained problem

Key idea: Introduce a new objective function 
which is a weighted sum of objective function and constraints
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Penalty Methods
Given the minimization problem

define the corresponding penalized unconstrained problem

with a parameter 

Let  be the solution of the constrained problem

Let  be the solution of the penalized unconstrained problem

Under appropriate conditions, it can be shown that

 f(x) subject to g(x) =
x

min 0

 ϕ  (x) =
x

min ρ f(x) +  ρg(x) g(x)
2
1 T

ρ ∈ R
x∗

x  ρ
∗

 x  = x
ρ→∞
lim ρ

∗ ∗
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Penalty Methods
In practice, we can solve the unconstrained problem for a large value of  to
get a good approximation of 

Another strategy is to solve for a sequence of penalty parameters , 
where  serves as an initial guess for 

Note that the major drawback of penalty methods is that 
a large factor  will increase the condition number of the Hessian 

However, penalty methods can be convenient due to their simplicity

ρ

x∗

ρ  k

x  ρ  k

∗ x  ρ  k+1
∗

ρ H  ϕ  ρ
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PDE-Constrained Optimization
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PDE-Constrained Optimization
Consider a general optimization problem

with the objective function 

Gradient-based methods require gradients of the objective

They could be approximated with finite differences

 G(p)
p∈Rn
min

G : R →n R
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PDE-Constrained Optimization
However, each partial derivative requires an extra evaluation of 

so we need  evaluations of  to approximate 

For example, if  requires solving a PDE and 
parameters  represent an unknown field on a grid, 
this procedure becomes too expensive

The accuracy of finite differences is also limited

G

 ≈
∂p  i

∂G(p)
 ,

h

G(p + he  ) − G(p)i

n + 1 G ∇G(p)

G(p)
p

133



PDE-Constrained Optimization
There are two main alternative approaches 
for computing gradients of solutions of ODEs or PDEs

direct method
adjoint method

The direct method is simpler, but the adjoint method 
is more efficient in cases with many parameters
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One-Dimensional Case
Consider the boundary value problem for an ODE

referred to as the primal equation

Here the functions  and  are given

The objective function  is assumed to be a linear functional

for some given function 

−u (x; p) +′′ r(x; p)u(x; p) = f(x), u(a) = u(b) = 0

r : R× R →n R f : R → R
G : R →n R

G(p) = σ(x)u(x; p)dx∫
a

b

σ : R → R
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Direct Method
Note that the gradient of the objective is

so we can compute it from derivatives of the solution 

Differentiate the original ODE with respect to 

for 

 =
∂p  i

∂G(p)
 σ(x)  dx∫

a

b

∂p  i

∂u

 ∂p  i

∂u

p  i

−  (x; p) +
∂p  i

∂u ′′

r(x; p)  (x; p) =
∂p  i

∂u
−  u(x; p)

∂p  i

∂r

i = 1, 2, … ,n
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Direct Method
Once we compute each  we can then evaluate  
by evaluating a sequence of  integrals

This is not much better than using finite differences: 
we still need to solve  separate problems

However, those can be cheaper since only the right-hand side changes. 
For example, we can reuse a common LU factorization

 ∂p  i

∂u ∇G(p)
n

n
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Adjoint Method
A more efficient approach when  is large is the adjoint method

The adjoint problem is defined as

Since  enters the right-hand side, 
the adjoint problem depends on the objective

n

−z (x; p) +′′ r(x; p)z(x; p) = σ(x), z(a) = z(b) = 0

σ(x)
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Adjoint Method
Given a solution  of the adjoint problem, the gradient is

The last line follows from integrating by parts twice 
(boundary terms vanish because  and  are zero at  and )

z(x; p)

  

 

∂p  i

∂G(p)
=  σ(x)  dx∫

a

b

∂p  i

∂u

=  −z (x; p) + r(x; p)z(x; p)  dx∫
a

b

[ ′′ ]
∂p  i

∂u

=  z(x; p) −  (x; p) + r(x; p)  (x; p) dx∫
a

b

[
∂p  i

∂u ′′

∂p  i

∂u
]

 ∂p  i

∂u z a b
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Adjoint Method
Recall the derivative of the primal problem with respect to 

Combining both, we get

Therefore, we only need to solve the primal and adjoint problems once 
and then can obtain each component of  from the integral

This idea extends to PDEs

p  i

−  (x; p) +
∂p  i

∂u ′′

r(x; p)  (x; p) =
∂p  i

∂u
−  u(x; p)

∂p  i

∂r

 =
∂p  i

∂G(p)
−  z(x; p)u(x; p)dx∫

a

b

∂p  i

∂r

∇G(p)
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Linear Programming
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Linear Programming
As we mentioned earlier, the optimization problem

with  affine, is called a linear programming problem

The feasible region is a convex polyhedron

Since the objective function has a constant non-zero gradient, 
its global minimum must occur at a vertex of the feasible region

 f(x) subject to g(x) =
x∈Rn
min 0 and h(x) ≤ 0,

f , g,h
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Linear Programming
Example of a convex feasible region in R2

143



Linear Programming
The standard approach to linear programming is conceptually simple: 
try a sequence of the vertices to find the minimum

This is called the simplex method

In the worst case, the computational cost of the simplex method 
grows exponentially with the size of the problem

But this worst-case behavior is rare. In practice, the cost grows linearly

We will not discuss the implementation of the simplex method
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Linear Programming
scipy.optimize.linprog uses the HiGHS library that 
implements the 

See , solving the problem

subject to

and 

dual revised simplex method

[examples/unit4/linprog.py]

 f(x) =
x

min −5x  −1 4x  −2 6x  3

x  − x  + x1 2 3

3x  + 2x  + 4x1 2 3

3x  + 2x1 2

≤

≤

≤

20

42

30

0 ≤ x  , 0 ≤1 x  , 0 ≤2 x  3
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