Applied Mathematics 205 Unit 4. Optimization

Lecturer: Petr Karnakov

November 2, 2022

Motivation

- This unit will cover nonlinear equations and optimization
- So far we have mostly focused on linear problems
 - linear least squares (linear combination of basis functions)
 - linear physical laws (idealized behavior, small deformations)
 - discretizations of linear PDEs (wave equation, heat equation)
- However, important applications lead to nonlinear problems
 - nonlinear least squares (nonlinear dependency on parameters)
 - nonlinear physical models (realistic materials, large deformations)
 - discretizations of nonlinear PDEs (Navier-Stokes)

- Some familiar problems can be reduced to nonlinear equations
- For example, computing the points and weights of Gauss quadrature

$$\int_{-1}^1 f(x) \mathrm{d}x pprox \sum_{k=0}^n w_k f(x_k)$$

with 2n+2 unknown parameters x_0,\ldots,x_n and w_0,\ldots,w_n

• Require that quadrature is exact on monomials of degree up to 2n + 1

• For n = 1, this leads to a system of nonlinear equations

$$w_0+w_1=\int_{-1}^1 1\mathrm{d} x=2 \ w_0x_0+w_1x_1=\int_{-1}^1 x\mathrm{d} x=0 \ w_0x_0^2+w_1x_1^2=\int_{-1}^1 x^2\mathrm{d} x=2/3 \ w_0x_0^3+w_1x_1^3=\int_{-1}^1 x^3\mathrm{d} x=0$$

• A general system of m equations for n unknowns

F(x) = 0

where $F: \mathbb{R}^n \to \mathbb{R}^m$

- We will focus on the case m = n, i.e. equal number of equations and unknowns
- Cases $m \neq n$ can be formulated as nonlinear least squares

- One class of nonlinear equations is polynomial equations, i.e. F(x) is a polynomial
- The simplest case is a quadratic equation

$$ax^2 + bx + c = 0$$

• A closed-form solution is given by

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

- There are also closed-form solutions for polynomial equations of degree three and four, due to Ferrari and Cardano (~1540)
- However, the Abel–Ruffini theorem states that equations of degree five or higher have no general solution in radicals
- Therefore, they have to be solved numerically with an iterative algorithm

- There are many iterative methods for nonlinear equations
- One is the bisection method for a scalar equation

$$f(x) = 0$$

where $f \in C[a,b]$

• Assume f(a)f(b) < 0 and bisect the interval depending on the sign of $f(\frac{a+b}{2})$

[examples/unit4/bisection.py]

			f(a) = -2.36588	
			f(a) = -2.36588	
			f(a)=-1.73998 f(a)=-0.87344	
			f(a)=-0.30072	
			f(a) = -0.30072	
			f(a)=-0.14326	
			f(a)=-0.06241	
a=1.9	2969 b=1	.93750	f(a)=-0.02145	f(b)=0.01985
			f(a)=-0.00085	
a=1.9	3359 b=1	.93555	f(a)=-0.00085	f(b)=0.00949

- Bisection is a robust method in 1D, but it needs an initial guess f(a)f(b) < 0and does not generalize to higher dimensions
- We will consider alternative methods
 - fixed-point iteration
 - Newton's method

- A related topic is optimization
- Has important applications in science and engineering
- Examples
 - find the shape of a racing car that maximizes downforce
 - design a bridge to minimize its weight
 - find the path of an airplane that minimizes fuel consumption
- Solving nonlinear equations can be viewed as optimization of the residuals

• Optimization can be constrained,

i.e. parameters have to satisfy equations or inequalities

- Examples
 - find the shape of a racing car that maximizes downforce, subject to a constant drag
 - design a bridge to minimize its weight,
 subject to a constant critical load
 - find the path of an airplane that minimizes fuel consumption, but avoids certain territories

• All these problems can be formulated as constrained minimization

 $\begin{array}{l} \text{Given an objective function } f:\mathbb{R}^n\to\mathbb{R} \text{ and a set }S\subset\mathbb{R}^n,\\ \text{find }x^*\in S \text{ such that }f(x^*)\leq f(x) \ \forall x\in S\end{array}$

- Here S is the feasible set which describes the constraints, usually defined by equations or inequalities
- If $S = \mathbb{R}^n$, then the minimization is unconstrained
- Maximization of f is equivalent to minimization of -f

- The standard way to write an optimization problem is $\min_x f(x)$ subject to g(x)=0 and $h(x)\leq 0$

with

- objective function $f:\mathbb{R}^n
 ightarrow\mathbb{R}$
- equality constraints $g: \mathbb{R}^n \to \mathbb{R}^m$
- inequality constraints $h: \mathbb{R}^n \to \mathbb{R}^p$

- For example, consider a cylinder with radius x_1 and height x_2
- Minimize the surface area of a cylinder subject to a constraint on its volume

$$\min_x f(x_1,x_2) = 2\pi x_1(x_1+x_2)$$
 $ext{subject to } g(x_1,x_2) = \pi x_1^2 x_2 - V = 0$

• We will return to this example later

- If f, g and h are all affine (i.e. f(x) = Ax + b, linear plus constant), then the optimization problem is called a linear programming
- Here the term "program" is a synonym for "plan", has nothing to do with computer software
- The feasible set is a polyhedron and the minimum is found on its vertex

- If the objective function or any of the constraints are nonlinear then we have a nonlinear optimization problem or nonlinear programming
- We will consider several different approaches to nonlinear optimization
- Optimization routines typically use local information about a function to iteratively approach its local minimum

- In some cases an optimizer can find a global minimum
- Extra conditions on the function (e.g. convexity) can help

- But in general, global optimization is difficult
- The optimizer can get "stuck" in local minimum

• This can get even harder in higher dimensions

- We will focus on methods for finding local minima
- Global optimization is important, but not possible in general without extra conditions on the objective function
- Global optimization usually relies on heuristics
 - try several different initial guesses (multistart methods)
 - simulated annealing (add decaying noise)
 - genetic methods (use a hierarchy of samples)

Nonlinear Equations

• Consider iteration

$$x_{k+1}=g(x_k)$$

• For example, recall Heron's method for finding \sqrt{a} from HW0

$$x_{k+1} = rac{1}{2} \left(x_k + rac{a}{x_k}
ight)$$

• Denote $g_{ ext{heron}}(x) = rac{1}{2} \left(x + a/x
ight)$

- Suppose $\alpha \in \mathbb{R}$ is such that $g(\alpha) = \alpha$, then we call α a fixed point of g
- For example, we see that \sqrt{a} is a fixed point of g_{heron} since

$$g_{ ext{heron}}(\sqrt{a}) = rac{1}{2}\left(\sqrt{a} + a/\sqrt{a}
ight) = \sqrt{a}$$

- A fixed-point iteration terminates once a fixed point is reached, since if $g(x_k) = x_k$ then we get $x_{k+1} = x_k$
- $\bullet \ \, \text{Also, if } x_{k+1} = g(x_k) \text{ converges as } k \to \infty \text{, it must converge to a fixed point}$
- $\bullet \ \ \mathrm{Let} \ \alpha = \lim_{k \to \infty} x_k, \mathrm{then}$

$$lpha = \lim_{k o \infty} x_{k+1} = \lim_{k o \infty} g(x_k) = g\Big(\lim_{k o \infty} x_k\Big) = g(lpha)$$

- Therefore, for example, if Heron's method converges, it converges to \sqrt{a}
- There are sufficient conditions for convergence of a fixed-point iteration
- Recall that g satisfies a Lipschitz condition in an interval [a, b] if

$$|g(x)-g(y)|\leq L|x-y|,\quad orall x,y\in [a,b]$$

for some L > 0

• If L < 1, then g is called a contraction

- Theorem: Suppose that g is a contraction on $[\alpha \delta, \alpha + \delta]$ and α is a fixed point of g (i.e. $g(\alpha) = \alpha$), where $\alpha \in \mathbb{R}$ and $\delta > 0$ Then the fixed point iteration converges to α for any $x_0 \in [\alpha - \delta, \alpha + \delta]$
- **Proof:** Take L < 1 from the Lipschitz condition. Then

$$|x_k-lpha|=|g(x_{k-1})-g(lpha)|\leq L|x_{k-1}-lpha|,$$

which implies

$$|x_k-\alpha| \leq L^k |x_0-\alpha|$$

 $ext{and, since } L < 1, \left| x_k - lpha
ight| o 0 ext{ as } k o \infty$

• This also shows that each iteration reduces the error by factor L

- Recall that if $g \in C^1[a,b],$ we can obtain a Lipschitz constant from g'

 $L = \max_{ heta \in [a,b]} |g'(heta)|$

- We now use this result to show that if $|g'(\alpha)| < 1$, then there is a neighborhood of α on which g is a contraction
- This tells us that we can verify convergence of a fixed point iteration by checking the gradient of g

- By continuity of |g'|, for any $\epsilon > 0$, there is $\delta > 0$ such that for any $x \in (\alpha - \delta, \alpha + \delta)$ we have $\big| |g'(x)| - |g'(\alpha)| \big| \le \epsilon$
- Therefore

$$\max_{x\in (lpha-\delta,lpha+\delta)} |g'(x)| \leq |g'(lpha)| + \epsilon$$

- Suppose $|g'(\alpha)| < 1$ and set $\epsilon = \frac{1}{2}(1 |g'(\alpha)|)$, then there is an interval $(\alpha - \delta, \alpha + \delta)$, on which g is Lipschitz with $L = \frac{1}{2}(1 + |g'(\alpha)|)$
- Since L < 1, then g is a contraction in a neighborhood of α

• Furthermore, as $k \to \infty$,

$$rac{|x_{k+1}-lpha|}{|x_k-lpha|}=rac{|g(x_k)-g(lpha)|}{|x_k-lpha|}
ightarrow |g'(lpha)|,$$

• Therefore, asymptotically, after each iteration the error decreases by a factor of $|g'(\alpha)|$

• We say that an iteration converges linearly if, for some $\mu \in (0, 1)$,

$$\lim_{k o\infty}rac{|x_{k+1}-lpha|}{|x_k-lpha|}=\mu$$

• An iteration converges superlinearly if

$$\lim_{k o\infty}rac{|x_{k+1}-lpha|}{|x_k-lpha|}=0$$

- We can use these ideas to construct practical fixed-point iterations for solving f(x) = 0
- For example, suppose $f(x) = e^x x 2$

• From the plot, there is a root at $x \approx 1.15$

• Equation f(x) = 0 is equivalent to $x = \log(x + 2)$, so we seek a fixed point of the iteration

$$x_{k+1} = \log(x_k+2)$$

- Here $g(x) = \log(x+2)$, and g'(x) = 1/(x+2) < 1 for all x > -1, therefore fixed point iteration will converge for $x_0 > -1$
- We should get linear convergence with a factor about

$$g'(1.15) = 1/(1.15+2) pprox 0.32$$

• An alternative fixed-point iteration is to set

$$x_{k+1} = e^{x_k} - 2, \quad k = 0, 1, 2, \ldots$$

- Therefore $g(x) = e^x 2$, and $g'(x) = e^x$
- Hence $|g'(\alpha)| > 1$, so we can't guarantee convergence
- In fact, the iteration diverges

• See [examples/unit4/fixed_point.py], comparison of the two fixed-point iterations

Newton's Method

- Constructing fixed-point iterations is not straightforward
- Need to rewrite f(x) = 0 in a form x = g(x) with certain properties on g
- To obtain a more generally applicable iterative method, consider the following fixed-point iteration

 $x_{k+1} = x_k - \lambda(x_k) f(x_k)$

corresponding to $g(x) = x - \lambda(x) f(x),$ for some function λ

• A fixed point α of g yields a solution to $f(\alpha) = 0$ (except possibly when $\lambda(\alpha) = 0$), which is what we want

Newton's Method

- Recall that the asymptotic convergence rate is dictated by $|g'(\alpha)|$, so we want to have $|g'(\alpha)| = 0$ to get superlinear convergence
- Suppose (as stated above) that $f(\alpha) = 0$, then

$$g'(lpha) = 1 - \lambda'(lpha) f(lpha) - \lambda(lpha) f'(lpha) = 1 - \lambda(lpha) f'(lpha)$$

• To satisfy g'(lpha)=0, we choose $\lambda(x)=1/f'(x)$ to obtain

$$x_{k+1}=x_k-rac{f(x_k)}{f'(x_k)}$$

known as Newton's method

Newton's Method

- Based on fixed-point iteration theory, Newton's method is convergent since $|g'(\alpha)|=0<1$
- However, we need a different argument to understand the superlinear convergence rate properly
- To do this, we use a Taylor expansion for $f(\alpha)$ about x_k

$$0=f(lpha)=f(x_k)+(lpha-x_k)f'(x_k)+rac{(lpha-x_k)^2}{2}f''(heta_k)$$

for some $heta_k \in (lpha, x_k)$

Newton's Method

• Dividing through by $f'(x_k)$ gives

$$\left(x_k-rac{f(x_k)}{f'(x_k)}
ight)-lpha=rac{f''(heta_k)}{2f'(x_k)}(x_k-lpha)^2$$

or

$$x_{k+1}-lpha=rac{f''(heta_k)}{2f'(x_k)}(x_k-lpha)^2$$

• Therefore, asymptotically,

the error at iteration k + 1 is the square of the error at iteration k

- This is referred to as quadratic convergence, which is very rapid
- We need to be sufficiently close to α to get quadratic convergence (the result relied on Taylor expansion near α)

Secant Method

• An alternative to Newton's method is to approximate $f'(x_k)$ using the finite difference

$$f'(x_k)pprox rac{f(x_k)-f(x_{k-1})}{x_k-x_{k-1}}$$

• Substituting this into the iteration leads to the secant method

$$x_{k+1} = x_k - f(x_k) \left(rac{x_k - x_{k-1}}{f(x_k) - f(x_{k-1})}
ight), \quad k = 1, 2, 3, \ldots$$

- The main advantages of the secant methods are
 - does not require computing f'(x)
 - requires only one extra evaluation of f(x) per solution (Newton's method also requires $f'(x_k)$ each iteration)

Secant Method

- As one may expect, the secant method converges faster than a fixed-point iteration, but slower than Newton's method
- In fact, it can be shown that for the secant method, we have

$$\lim_{k o\infty}rac{|x_{k+1}-lpha|}{|x_k-lpha|^q}=\mu$$

where μ is a positive constant and $q \approx 1.6$

• See [examples/unit4/secant_vs_newton.py], Newton's method versus secant method for $f(x) = e^x - x - 2$

Systems of Nonlinear Equations

Systems of Nonlinear Equations

- We now consider fixed-point iterations and Newton's method for systems of nonlinear equations
- $egin{aligned} & ext{We suppose that } F: \mathbb{R}^n o \mathbb{R}^n, \, n>1, \ & ext{and we seek } lpha \in \mathbb{R}^n ext{ such that } F(lpha) = 0 \end{aligned}$
- In component form, this is equivalent to

$$egin{array}{l} F_1(lpha)=0 \ F_2(lpha)=0 \end{array}$$

$$F_n(lpha)=0$$

. . .

Fixed-Point Iteration

• For a fixed-point iteration, we again rewrite F(x) = 0 as x = G(x) to obtain

$$x_{k+1} = G(x_k)$$

- The convergence proof is the same as in the scalar case, if we replace $|\cdot|$ with $\|\cdot\|$, i.e. if $\|G(x) - G(y)\| \le L\|x - y\|$, then $\|x_k - \alpha\| \le L^k\|x_0 - \alpha\|$
- As before, if G is a contraction it will converge to a fixed point α

Fixed-Point Iteration

- Recall that we define the Jacobian matrix, $J_G \in \mathbb{R}^{n imes n},$ to be

$$(J_G)_{ij} = rac{\partial G_i}{\partial x_j}, \quad i,j=1,\ldots,n$$

- If $\|J_G(\alpha)\|_{\infty} < 1$, then there is some neighborhood of α for which the fixed-point iteration converges to α
- The proof of this is a natural extension of the corresponding scalar result

Fixed-Point Iteration: Example

- Once again, we can employ a fixed point iteration to solve F(x) = 0
- For example, consider

$$egin{aligned} x_1^2+x_2^2-1&=0\ 5x_1^2+21x_2^2-9&=0 \end{aligned}$$

• This can be rearranged to $x_1=\sqrt{1-x_2^2}, x_2=\sqrt{(9-5x_1^2)/21}$

Fixed-Point Iteration: Example

• Define

$$egin{aligned} G_1(x_1,x_2) &= \sqrt{1-x_2^2} \ G_2(x_1,x_2) &= \sqrt{(9-5x_1^2)/21} \end{aligned}$$

• See [examples/unit4/fixed_point_2d.py], fixed-point iteration in two dimensions

Newton's Method

- As in the one-dimensional case, Newton's method is generally more useful than a standard fixed-point iteration
- The natural generalization of Newton's method is

$$x_{k+1} = x_k - J_F(x_k)^{-1}F(x_k)$$

• Note that to put Newton's method in the standard form for a linear system, we write

$$J_F(x_k)\Delta x_{k+1}=-F(x_k)$$

where $\Delta x_{k+1} = x_{k+1} - x_k$

Newton's Method

- Once again, if x_0 is sufficiently close to α , then Newton's method converges quadratically
- This result again relies on Taylor's theorem
- We first consider how to generalize Taylor's theorem to \mathbb{R}^n
- First, we consider the case for $F:\mathbb{R}^n\to\mathbb{R}$

• Let $\phi(s) = F(x + s\delta)$ and $\delta \in \mathbb{R}^n$. One-dimensional Taylor theorem yields

$$egin{aligned} \phi(1) &= \phi(0) + \sum_{\ell=1}^k rac{\phi^{(\ell)}(0)}{\ell!} + rac{1}{(k+1)!} \phi^{(k+1)}(\eta), & \eta \in (0,1) \end{aligned}$$
 $\phi(0) &= F(x)$
 $\phi(1) &= F(x+\delta)$
 $\phi'(s) &= rac{\partial F(x+s\delta)}{\partial x_1} \delta_1 + rac{\partial F(x+s\delta)}{\partial x_2} \delta_2 + \dots + rac{\partial F(x+s\delta)}{\partial x_n} \delta_n$
 $\phi''(s) &= rac{\partial^2 F(x+s\delta)}{\partial x_1^2} \delta_1^2 + \dots + rac{\partial^2 F(x+s\delta)}{\partial x_1 x_n} \delta_1 \delta_n + \dots + + rac{\partial^2 F(x+s\delta)}{\partial x_1 \partial x_n} \delta_1 \delta_n + \dots + rac{\partial^2 F(x+s\delta)}{\partial x_n^2} \delta_n^2 \end{aligned}$

• We have

$$F(x+\delta)=F(x)+\sum_{\ell=1}^krac{U_\ell(x)}{\ell!}+E_k,$$

where

$$U_\ell(x) = \left[\left(rac{\partial}{\partial x_1} \delta_1 + \dots + rac{\partial}{\partial x_n} \delta_n
ight)^\ell F
ight](x), \quad \ell = 1, 2, \dots, k,$$

and

$$E_k=rac{U_{k+1}(x+\eta\delta)}{(k+1)!},\quad\eta\in(0,1)$$

• Let A be an upper bound on the absolute values of all derivatives of order k + 1, then

$$egin{aligned} E_k &| \leq rac{1}{(k+1)!} \Big| \Big[\Big(\|\delta\|_\infty rac{\partial}{\partial x_1} + \ldots + \|\delta\|_\infty rac{\partial}{\partial x_n} \Big)^{k+1} F \Big] (x+\eta\delta) \Big| \ &= rac{1}{(k+1)!} \|\delta\|_\infty^{k+1} \Big| \Big[\Big(rac{\partial}{\partial x_1} + \ldots + rac{\partial}{\partial x_n} \Big)^{k+1} F \Big] (x+\eta\delta) \Big| \ &\leq rac{n^{k+1}}{(k+1)!} A \|\delta\|_\infty^{k+1} \end{aligned}$$

where the last line follows from the fact that there are n^{k+1} terms in the product (i.e. there are n^{k+1} derivatives of order k+1)

- We only need an expansion up to first order terms for analysis of Newton's method
- From our expression above, we can write first order Taylor expansion as

 $F(x+\delta)=F(x)+
abla F(x)^T\delta+E_1$

• For $F : \mathbb{R}^n \to \mathbb{R}^n$, Taylor expansion follows by developing a Taylor expansion for each F_i

$$F_i(x+\delta)=F_i(x)+
abla F_i(x)^T\delta+E_{i,1}$$

so that for $F: \mathbb{R}^n \to \mathbb{R}^n$ we have

 $egin{aligned} F(x+\delta) &= F(x) + J_F(x)\delta + E_F \ \end{aligned}$ where $\|E_F\|_\infty &= \max_{1\leq i\leq n} |E_{i,1}| \leq rac{1}{2}n^2 \left(\max_{1\leq i,j,\ell\leq n} \left| rac{\partial^2 F_i}{\partial x_j \partial x_\ell}
ight|
ight) \|\delta\|_\infty^2 \end{aligned}$

Newton's Method

- Now return to Newton's method
- We have

$$0=F(lpha)=F(x_k)+J_F(x_k)\left[lpha-x_k
ight]+E_F$$
 so that

$$x_k - lpha = [J_F(x_k)]^{-1}F(x_k) + [J_F(x_k)]^{-1}E_F$$

Newton's Method

- Also, the Newton iteration itself can be rewritten as $J_F(x_k)\left[x_{k+1}-lpha
 ight]=J_F(x_k)\left[x_k-lpha
 ight]-F(x_k)$
- We obtain

$$x_{k+1} - lpha = [J_F(x_k)]^{-1} E_F$$
 ,

which implies quadratic convergence

 $\|x_{k+1}-lpha\|_\infty \leq C \|x_k-lpha\|_\infty^2$

Newton's Method: Example

• Recall the conditions of the two-point Gauss quadrature rule

$$egin{aligned} F_1(x_1,x_2,w_1,w_2) &= w_1+w_2-2 = 0 \ F_2(x_1,x_2,w_1,w_2) &= w_1x_1+w_2x_2 = 0 \ F_3(x_1,x_2,w_1,w_2) &= w_1x_1^2+w_2x_2^2-2/3 = 0 \ F_4(x_1,x_2,w_1,w_2) &= w_1x_1^3+w_2x_2^3 = 0 \end{aligned}$$

• They constitute a nonlinear system of 4 equations for 4 unknowns

Newton's Method: Example

- We can solve this using Newton's method
- To do this, we require the Jacobian of this system:

$$J_F(x_1,x_2,w_1,w_2) = egin{bmatrix} 0 & 0 & 1 & 1 \ w_1 & w_2 & x_1 & x_2 \ 2w_1x_1 & 2w_2x_2 & x_1^2 & x_2^2 \ 3w_1x_1^2 & 3w_2x_2^2 & x_1^3 & x_2^3 \end{bmatrix}$$

- Alternatively, use scipy.optimize.fsolve() that implements Powell's hybrid method (combination of Newton and gradient descent) by calling HYBRD or HYBRJ from Fortran library MINPACK
- See [examples/unit4/nonlin_gauss_quad.py], two-point Gauss quadrature found from a nonlinear system

Newton's Method: Example

• Using either approach with an initial guess [-1, 1, 1, 1], we get the solution

Optimization

Existence of Global Minimum

- To guarantee existence and uniqueness of a global minimum, we need to make assumptions about the objective function
- For example, if f is continuous on a closed (i.e. $\partial S \subset S$) and bounded set $S \subset \mathbb{R}^n$ then it has global minimum in S
- In one dimension, this says f achieves a minimum on the interval $[a,b] \subset \mathbb{R}$
- In general f does not achieve a minimum on (a, b), e.g. consider f(x) = x

Coercive Functions

- Another helpful concept for existence of global minimum is coercivity
- A function $f:S
 ightarrow\mathbb{R}$ on an unbounded set $S\subset\mathbb{R}^n$ is coercive if

$$\lim_{\|x\| o \infty} f(x) = +\infty$$

• That is, f(x) must take large positive values whenever ||x|| is large

Coercive Functions

- If f is continuous and coercive on a closed set S, then f has a global minimum in S
- Proof: From the definition of coercivity, for any $M \in \mathbb{R}, \, \exists r > 0$ such that $f(x) \geq M$ for all $x \in S$ where $\|x\| \geq r$
- $\bullet \ \ {\rm Take \ a \ point \ } x_0 \in S, {\rm and \ set \ } M = f(x_0)$
- $\bullet \ \ \mathrm{Let} \ Y = S \cap \{ \|x\| \geq r \}, \mathrm{so \ that} \ f(x) \geq f(x_0) \ \mathrm{for \ all} \ x \in Y$
- And we already know that f achieves a minimum (which is at most $f(x_0)$) on the closed and bounded set $S \cap \{\|x\| \leq r\}$
- Hence f achieves a minimum on S

Coercive Functions: Examples

1.0

0.5 ^f

- An important concept for uniqueness is convexity
- A set $S \subset \mathbb{R}^n$ is convex if it contains the line segment between any two of its points
- That is, S is convex if for any $x,y\in S,$ we have

$$\{ heta x+(1- heta)y: heta\in[0,1]\}\subset S$$

- Similarly, we define convexity of a function $f:S\subset \mathbb{R}^n
 ightarrow \mathbb{R}$
- f is convex if its graph along any line segment in S is on or below the chord connecting the function values
- For example, f is convex if for any $x,y\in S$ and any $heta\in(0,1),$ we have

$$f(heta x+(1- heta)y)\leq heta f(x)+(1- heta)f(y)$$

• Also, if

$$f(heta x+(1- heta)y)< heta f(x)+(1- heta)f(y)$$

then f is strictly convex

Convex Functions: Examples

$$f=x^2-y^2 \ {
m not \ convex \ on } \mathbb{R}^2$$

 $f = \max(1, \ x^2 + (y+1)^2) \ {
m convex \ but} \ {
m not \ strictly \ convex \ on \ } {\mathbb R}^2$

- If f is a convex function on a convex set S, then any local minimum of f must be a global minimum
- $\operatorname{Proof}\left(1/2\right)$: Suppose x is a local minimum, i.e. there is $\epsilon > 0$ so that $f(x) \leq f(y)$ for $y \in B(x,\epsilon)$, where $B(x,\epsilon) = \{y \in S : \|y - x\| \leq \epsilon\}$
- Suppose that x is not a global minimum, i.e. that there exists $w \in S$ such that f(w) < f(x)
- We will show that this gives a contradiction by drawing a line segment between x and w

Proof(2/2):

- For $heta \in [0,1]$ we have $f(heta w + (1- heta)x) \leq heta f(w) + (1- heta)f(x)$
- Let $\sigma \in (0,1]$ be sufficiently small so that

$$z=\sigma w+(1-\sigma)\,x\in B(x,\epsilon)$$

• Then

$$f(z)\leq \sigma f(w)+(1-\sigma)\,f(x)<\sigma f(x)+(1-\sigma)\,f(x)=f(x),$$

e.g. f(z) < f(x), which contradicts that f(x) is a local minimum

ullet Hence we cannot have $w \in S$ such that f(w) < f(x) $\hfill \square$

- Note that convexity does not guarantee uniqueness of global minimum
- However, if f is a strictly convex function on a convex set S, then a local minimum of f is the unique global minimum
- Optimization of convex functions over convex sets is called convex optimization, which is an important field in optimization

Optimality Conditions

- We have discussed existence and uniqueness of minima, but haven't considered how to find a minimum
- The familiar optimization idea from calculus in one dimension is: set derivative to zero, check the sign of the second derivative
- This can be generalized to \mathbb{R}^n

Optimality Conditions

• If $f:\mathbb{R}^n o\mathbb{R}$ is differentiable, then the gradient vector $abla f:\mathbb{R}^n o\mathbb{R}^n$ is

$$abla f(x) = \left[egin{array}{c} rac{\partial f(x)}{\partial x_1} \ rac{\partial f(x)}{\partial x_2} \ dots \ rac{\partial f(x)}{\partial x_n} \ rac{\partial f(x)}{\partial x_n} \end{array}
ight]$$

- The importance of the gradient is that ∇f points "uphill", i.e. towards points with larger values than f(x)
- And similarly $-\nabla f$ points "downhill"

Optimality Conditions

- This follows from Taylor's theorem for $f:\mathbb{R}^n\to\mathbb{R}$
- Recall that

$$f(x+\delta)-f(x)=
abla f(x)^T\delta+ ext{h.o.t.}$$

• Let $\delta = -\epsilon \nabla f(x)$ for $\epsilon > 0$ and suppose that $\nabla f(x) \neq 0$, then:

$$f(x-\epsilon
abla f(x))-f(x)pprox -\epsilon
abla f(x)^T
abla f(x) < 0$$

• Also, we see from Cauchy–Schwarz that

$$\left|
abla f(x)^T rac{\delta}{\|\delta\|_2}
ight| \leq \left|
abla f(x)^T rac{
abla f(x)}{\|
abla f(x)\|_2}
ight|$$

so $-\nabla f(x)$ is the steepest descent direction

- Similarly, we see that a necessary condition for a local minimum at $x^* \in S$ is that $abla f(x^*) = 0$
- In this case there is no "downhill direction" at x^\ast
- The condition $\nabla f(x^*) = 0$ is called a first-order necessary condition for optimality, since it only involves first derivatives

- $x^* \in S$ that satisfies the first-order optimality condition is called a critical point of f
- A critical point can be a local minimum, local maximum, or saddle point
- A saddle point is where some directions are "downhill" and others are "uphill", e.g. (x,y)=(0,0) for $f(x,y)=x^2-y^2$

- As in the one-dimensional case, we can look at second derivatives to classify critical points
- If $f: \mathbb{R}^n \to \mathbb{R}$ is twice differentiable, then the Hessian is the matrix-valued function $H_f: \mathbb{R}^n \to \mathbb{R}^{n imes n}$

$$H_f(x) = \left[egin{array}{cccc} rac{\partial^2 f(x)}{\partial x_1^2} & rac{\partial^2 f(x)}{\partial x_1 x_2} & \cdots & rac{\partial^2 f(x)}{\partial x_1 x_n} \ rac{\partial^2 f(x)}{\partial x_2 x_1} & rac{\partial^2 f(x)}{\partial x_2^2} & \cdots & rac{\partial^2 f(x)}{\partial x_2 x_n} \ dots & d$$

- The Hessian is the Jacobian matrix of the gradient $\nabla f:\mathbb{R}^n\to\mathbb{R}^n$
- If the second partial derivatives of f are continuous, then $\partial^2 f / \partial x_i \partial x_j = \partial^2 f / \partial x_j \partial x_i$, and H_f is symmetric

- Suppose we have found a critical point $x^*,$ so that $abla f(x^*)=0$
- From Taylor's theorem, for $\delta \in \mathbb{R}^n,$ we have

$$egin{aligned} f(x^*+\delta) &= f(x^*) +
abla f(x^*)^T \delta + rac{1}{2} \delta^T H_f(x^*+\eta\delta) \delta \ &= f(x^*) + rac{1}{2} \delta^T H_f(x^*+\eta\delta) \delta \end{aligned}$$

for some $\eta \in (0,1)$

- Recall positive definiteness: A is positive definite if $x^T A x > 0$
- Suppose $H_f(x^*)$ is positive definite
- Then (by continuity) $H_f(x^* + \eta \delta)$ is also positive definite for $\|\delta\|$ sufficiently small, so that: $\delta^T H_f(x^* + \eta \delta)\delta > 0$
- Hence, we have $f(x^*+\delta)>f(x^*)$ for $\|\delta\|$ sufficiently small, e.g. $f(x^*)$ is a local minimum
- Positive definiteness of H_f at a critical point x^* is a second-order sufficient condition for a local minimum

- A matrix can also be negative definite: $x^T A x < 0$ for all $x \neq 0$
- Or indefinite: There exists x, y such that $x^T A x < 0 < y^T A y$
- Then we can classify critical points as follows:
 - $H_f(x^*)$ positive definite $\implies x^*$ is a local minimum
 - $H_f(x^*)$ negative definite $\implies x^*$ is a local maximum
 - $H_f(x^*)$ indefinite $\implies x^*$ is a saddle point

- Also, positive definiteness of the Hessian is closely related to convexity of f
- If $H_f(x)$ is positive definite, then f is convex on some convex neighborhood of x
- If $H_f(x)$ is positive definite for all $x \in S,$ where S is a convex set, then f is convex on S
- Question: How do we test for positive definiteness?

- Answer: For a symmetric matrix *A*
 - A is positive definite if and only if all eigenvalues of A are positive,
 - A is negative definite if and only if all eigenvalues of A are negative
- Also, a matrix with positive and negative eigenvalues is indefinite
- Hence we can compute all the eigenvalues of A and check their signs

Optimality Conditions: Example

- From Heath's book (Example 6.5)
- Consider

$$f(x)=2x_1^3+3x_1^2+12x_1x_2+3x_2^2-6x_2+6$$

• Then

$$abla f(x) = \left[egin{array}{c} 6x_1^2 + 6x_1 + 12x_2 \ 12x_1 + 6x_2 - 6 \end{array}
ight]$$

• We set $\nabla f(x) = 0$ to find critical points $[1, -1]^T$ and $[2, -3]^T$

Optimality Conditions: Example

• The Hessian is

$$H_f(x)=\left[egin{array}{ccc} 12x_1+6&12\ 12&6 \end{array}
ight]$$

• and hence

$$egin{aligned} H_f(1,-1) &= \left[egin{array}{ccc} 18 & 12\ 12 & 6 \end{array}
ight], ext{ which has eigenvalues } 25.4,-1.4\ H_f(2,-3) &= \left[egin{array}{ccc} 30 & 12\ 12 & 6 \end{array}
ight], ext{ which has eigenvalues } 35.0,1.0 \end{aligned}$$

• Hence $[2, -3]^T$ is a local minimum whereas $[1, -1]^T$ is a saddle point

Optimization Methods

Steepest Descent

- One gradient-based method for unconstrained optimization is steepest descent
- Key idea: The negative gradient $-\nabla f(x)$ points in the "steepest downhill" direction for f at x
- An iterative method for minimizing f is obtained by following $-\nabla f(x_k)$ at each step
- Question: How far should we go in the direction of $-\nabla f(x_k)$?

Steepest Descent

- We can try to find the best step size via an easier subproblem
- For a direction $s \in \mathbb{R}^n,$ let $\phi : \mathbb{R} \to \mathbb{R}$ be given by

$$\phi(\eta) = f(x + \eta s)$$

- Then minimizing f along s corresponds to minimizing the one-dimensional function ϕ
- This process of minimizing f along a line is called a line search

Steepest Descent

• Putting these pieces together leads to the steepest descent method:

 $egin{aligned} 1: & ext{choose initial guess } x_0\ 2: & ext{for } k=0,1,2,\dots ext{do}\ 3: & s_k=abla f(x_k)\ 4: & ext{choose } \eta_k ext{ to minimize } f(x_k+\eta_k s_k)\ 5: & x_{k+1}=x_k+\eta_k s_k\ 6: & ext{end for} \end{aligned}$

- However, steepest descent often converges very slowly
- Steepest descent is part of HW4
- A simpler option to use a constant $\eta_k = \eta$

Newton's Method

- We can get faster convergence by using more information about \boldsymbol{f}
- Note that $\nabla f(x) = 0$ is a system of nonlinear equations, so we can solve it with quadratic convergence via Newton's method
- The Jacobian matrix of $\nabla f(x)$ is $H_f(x)$ and therefore Newton's method for unconstrained optimization is:

$$egin{aligned} &1:\ ext{choose initial guess } x_0\ &2:\ ext{ for } k=0,1,2,\dots ext{ do}\ &3:\ ext{ solve } H_f(x_k)s_k=-
abla for \ &1:\ x_{k+1}=x_k+s_k\ &5:\ ext{ end for} \end{aligned}$$

Newton's Method

- We can also interpret Newton's method as seeking a stationary point based on a sequence of local quadratic approximations
- Recall that for small δ

$$f(x+\delta)pprox f(x)+
abla f(x)^T\delta+rac{1}{2}\delta^T H_f(x)\delta=q(\delta)\,,$$

where $q(\delta)$ is quadratic in δ (for a fixed x)

• We find stationary point of q in the usual way:

$$abla q(\delta) =
abla f(x) + H_f(x)\delta = 0$$

• This leads to $H_f(x)\delta = -\nabla f(x),$ as in the previous slide

Newton's Method: Example

• Rosenbrock function

$$f(x,y) = 100(y-x^2)^2 + (1-x)^2$$

with minimum 0 at (x, y) = (1, 1)

• See [examples/unit4/rosenbrock.py],

Rosenbrock function minimized with Newton's method

Newton's Method: Robustness

- Newton's method generally converges much faster than steepest descent
- However, Newton's method can be unreliable far away from a solution
- To improve robustness during early iterations it is common to perform a line search in the Newton step direction
- Also line search can ensure we don't approach a local maximum (instead of minimum) as can happen with raw Newton method
- The line search modifies the Newton step size, therefore often referred to as a damped Newton method

Newton's Method: Robustness

- Another way to improve robustness is with trust region methods
- At each iteration k, a "trust radius" R_k is computed
- This determines a region surrounding x_k on which we "trust" our quadratic approx.
- We require $\|x_{k+1} x_k\| \le R_k,$ which is a constrained optimization problem (with quadratic objective function) at each step

Newton's Method: Robustness

- Size of R_{k+1} is based on comparing actual change, $f(x_{k+1}) - f(x_k)$, to change predicted by the quadratic model
- If quadratic model is accurate, we expand the trust radius, otherwise we contract it
- When close to a minimum, R_k should be large enough to allow full Newton steps \implies eventual quadratic convergence

Quasi-Newton Methods

- Possible drawbacks of Newton's method
 - unreliable: only converges when sufficiently close to a minimum
 - expensive: the Hessian H_f is dense in general, making the method expensive if n is large
 - **complicated**: can be impractical to compute the Hessian exactly
- Methods that do not require the Hessian but achieve superlinear convergence are quasi-Newton methods

Quasi-Newton Methods

• General form of quasi-Newton methods:

 $x_{k+1} = x_k - lpha_k B_k^{-1}
abla f(x_k)$

where α_k is a line search parameter and

 B_k is some approximation to the Hessian

- Quasi-Newton methods generally lose quadratic convergence of Newton's method, but often achieve superlinear convergence
- We now consider some specific quasi-Newton methods

BFGS

• The Broyden–Fletcher–Goldfarb–Shanno (BFGS) method is one of the most popular quasi-Newton methods

1: choose initial guess
$$x_0$$

2: choose B_0 , initial guess for Hessian, e.g. $B_0 = I$
3: for $k = 0, 1, 2, \dots$ do
4: solve $B_k s_k = -\nabla f(x_k)$
5: $x_{k+1} = x_k + s_k$
6: $y_k = \nabla f(x_{k+1}) - \nabla f(x_k)$
7: $B_{k+1} = B_k + \Delta B_k$
8: end for

where
$$\Delta B_k = rac{y_k y_k^T}{y_k^T s_k} - rac{B_k s_k s_k^T B_k}{s_k^T B_k s_k}$$

BFGS

- Basic idea is that B_k accumulates second derivative information on successive iterations and eventually approximates H_f well
- BFGS is implemented in scipy.optimize.fmin_bfgs()
- See [examples/unit4/rosenbrock.py], Rosenbrock function minimized with BFGS

- Replace Newton's update $H_f(x_k)s_k = abla f(x_k)$ with $B_k s_k = abla f(x_k)$

where $s_k = x_{k+1} - x_k$

- Define $B_{k+1} \in \mathbb{R}^{n imes n}$ to satisfy the requirements
 - B_{k+1} is obtained by a "small" change from B_k
 - B_{k+1} is symmetric and positive definite
 - $B_{k+1}pprox H_f(x_{k+1})$

- In particular, we want $B_{k+1}s_k pprox H_f(x_{k+1})s_k$
- The product $H_f(x_{k+1})s_k$ is the directional derivative of ∇f along s_k and can be approximated by the difference $y_k = \nabla f(x_{k+1}) - \nabla f(x_k)$

$$H_f(x_{k+1})s_k = \lim_{h
ightarrow 0} rac{
abla f(x_{k+1}) -
abla f(x_{k+1} - hs_k)}{h} pprox h h^{pprox} \sum_{h=1}^{\infty}
abla f(x_{k+1}) -
abla f(x_k) = y_k$$

• Impose the requirement $B_{k+1}s_k = y_k$ exactly

• Look for B_{k+1} in the form of a rank-two update

 $B_{k+1} = B_k - \beta v v^T + \alpha u u^T$

with unknown $lpha, eta \in \mathbb{R}$ and $u, v \in \mathbb{R}^n$

• impose
$$(B_k - \beta v v^T) s_k = 0$$

$$0 = (B_k - eta v v^T)s_k = B_k s_k - eta v v^T s_k = B_k s_k - (eta v^T s_k) v$$

which is achieved by $v = B_k s_k$ and $\beta = \frac{1}{s_i^T B_k s_k}$

• impose
$$lpha u u^T s_k = y_k$$

$$y_k = lpha u u^T s_k = (lpha u^T s_k) u$$

which is achieved by $u = y_k$ and $lpha = rac{1}{y_k^T s_k}$

• This implies $B_{k+1}s_k = y_k$ and recovers the BFGS algorithm above

• Note that if B_k is symmetric and positive definite,

then $B_k - \beta v v^T = B_k - rac{B_k s_k^T s_k^T B_k}{s_k^T B_k s_k}$ is positive semi-definite

- Under the assumption $y_k^T s_k > 0$, known as the curvature condition, the matrix $\alpha u u^T = \frac{y_k y_k^T}{y_k^T s_k}$ is positive definite
- Therefore, $B_{k+1} = B_k \beta v v^T + \alpha u u^T$ is positive definite

BFGS: Inverse Hessian

• Actual implementation of BFGS: store and update the inverse approximate Hessian H_k to avoid solving a linear system

1: choose initial guess
$$x_0$$

2: choose H_0 , initial guess for inverse Hessian, e.g. $H_0 = I$
3: for $k = 0, 1, 2, ...$ do
4: $s_k = -H_k \nabla f(x_k)$
5: $x_{k+1} = x_k + s_k$
6: $y_k = \nabla f(x_{k+1}) - \nabla f(x_k)$
7: $H_{k+1} = (I - \rho_k s_k y_k^T) H_k (I - \rho_k y_k s_k^T) + \rho_k s_k s_k^T$
8: end for

where $ho_k = rac{1}{y_k^T s_k}$

BFGS: Inverse Hessian

• The update rule for H_{k+1} follows from the update rule for B_{k+1} and the Sherman–Morrison–Woodbury formula

$$(A + UV^{T})^{-1} = A^{-1} - A^{-1}U(I + V^{T}A^{-1}U)^{-1}V^{T}A^{-1}$$

where $A \in \mathbb{R}^{n imes n}$ and $U, V \in \mathbb{U}^{n imes p}$

- Provides a low-rank update of the inverse from a low-rank update of the matrix
- In our case

$$egin{aligned} B_{k+1} &= B_k + UV^T = B_k + rac{1}{y_k^T s_k} y_k y_k^T - rac{1}{s_k^T B_k s_k} B_k s_k s_k^T B_k \ U &= \Big[rac{1}{y_k^T s_k} y_k - rac{1}{s_k^T B_k s_k} B_s s_k\Big], \quad V = egin{bmatrix} y_k & B_k s_k \end{bmatrix} \in \mathbb{R}^{n imes 2} \end{aligned}$$

BFGS: Modifications

- Typically, the search direction s_k is adjusted by a more robust inexact line search, e.g. Wolfe conditions
- Limited-memory BFGS (L-BFGS) avoids storing the full H_k and instead represents H_k implicitly using a limited history of gradient evaluations. Suited for large-scale problems
- Extra reading: Nocedal & Wright. *Numerical Optimization*, 1999 (chapters 6 and 7)

- So far we have ignored constraints
- Now we consider equality constrained optimization

 $\min_{x\in \mathbb{R}^n} f(x) \quad ext{subject to} \quad g(x) = 0,$

where $f: \mathbb{R}^n
ightarrow \mathbb{R}$ and $g: \mathbb{R}^n
ightarrow \mathbb{R}^m$, with $m \leq n$

- There are n unknowns and m constraints
- This problem is solved with Lagrange multipliers

- We illustrate the concept of Lagrange multipliers for $f,g:\mathbb{R}^2\to\mathbb{R}$
- Let f(x,y) = x + y and $g(x,y) = 2x^2 + y^2 5$

• abla g is normal to S: at any $x \in S$ we must move in direction $(
abla g(x))_{ot}$ (tangent direction) to remain in S

- Also, change in f due to infinitesimal step in direction $(
abla g(x))_{ot}$ is

$$f(x\pm\epsilon(
abla g(x))_{ot})=f(x)\pm\epsilon
abla f(x)^T(
abla g(x))_{ot}+ ext{h.o.t.}$$

- A critical point $x^* \in S$ satisfies $abla f(x^*)^T (
abla g(x^*))_\perp = 0,$ or

 $abla f(x^*) = \lambda^*
abla g(x^*), \quad ext{for some } \lambda^* \in \mathbb{R}$

- This shows that for a stationary point with m = 1 constraints, ∇f cannot have any component in the "tangent direction" to S
- Now, consider the case with m>1 equality constraints
- Then $g: \mathbb{R}^n o \mathbb{R}^m$ and we have the gradients $abla g_i, i=1,\ldots,m$
- Then the feasible set is $S=\{x\in \mathbb{R}^n: g_i(x)=0, i=1,\ldots,m\}$
- Any "tangent direction" at $x\in S$ must be orthogonal to all gradient vectors $\{
 abla g_i(x), i=1,\ldots,m\}$ to remain in S

- Let $\mathcal{T}(x) = \{v \in \mathbb{R}^n :
 abla g_i(x)^T v = 0, i = 1, 2, \dots, m\}$ denote the orthogonal complement of $\{
 abla g_i(x), i = 1, \dots, m\}$
- Then, for $\delta \in \mathcal{T}(x)$ and $\epsilon > 0$, $\epsilon \delta$ is a step in a "tangent direction" of S at x
- Since we have

$$f(x^*+\epsilon\delta)=f(x^*)+\epsilon
abla f(x^*)^T\delta+ ext{h.o.t.}$$

it follows that for a stationary point we need

 $abla f(x^*)^T \delta = 0 ext{ for all } \delta \in \mathcal{T}(x^*)$

- We require that at a stationary point $x^* \in S$ we have $abla f(x^*) \in ext{span}\{
 abla g_i(x^*), i=1,\ldots,m\}$
- This can be written as a linear system

 $abla f(x^*) = (J_g(x^*))^T \lambda^*$

for some $\lambda^* \in \mathbb{R}^m,$ where $(J_g(x^*))^T \in \mathbb{R}^{n imes m}$

• This follows because the columns of $(J_g(x^*))^T$ are the vectors $\{
abla g_i(x^*), i=1,\ldots,m \}$

• We can write equality constrained optimization problems more concisely by introducing the Lagrangian function, $\mathcal{L} : \mathbb{R}^{n+m} \to \mathbb{R}$,

$$egin{aligned} \mathcal{L}(x,\lambda) &= f(x) + \lambda^T g(x) \ &= f(x) + \lambda_1 g_1(x) + \dots + \lambda_m g_m(x) \end{aligned}$$

• Then

$$egin{array}{ll} rac{\partial \mathcal{L}(x,\lambda)}{\partial x_i}&=rac{\partial f(x)}{\partial x_i}+\lambda_1rac{\partial g_1(x)}{\partial x_i}+\dots+\lambda_nrac{\partial g_n(x)}{\partial x_i}, & i=1,\dots,n\ \ rac{\partial \mathcal{L}(x,\lambda)}{\partial \lambda_i}&=g_i(x), & i=1,\dots,m \end{array}$$

• In matrix form

$$abla \mathcal{L}(x,\lambda) = \left[egin{array}{c}
abla_x \mathcal{L}(x,\lambda) \
abla_\lambda \mathcal{L}(x,\lambda) \end{array}
ight] = \left[egin{array}{c}
abla f(x) + J_g(x)^T \lambda \ g(x) \end{array}
ight],$$

• Therefore, the first order necessary optimality condition for the constrained problem can be written as a nonlinear system

$$abla \mathcal{L}(x,\lambda) = \left[egin{array}{c}
abla f(x) + J_g(x)^T\lambda \ g(x) \end{array}
ight] = 0$$

- Consider a cylinder with radius x_1 and height x_2
- Minimize the surface area of a cylinder subject to a constraint on its volume

$$egin{aligned} \min_x f(x_1,x_2) &= 2\pi x_1(x_1+x_2) \ ext{subject to } g(x_1,x_2) &= \pi x_1^2 x_2 - V = 0 \end{aligned}$$

• Another example is the underdetermined linear least squares problem from Unit 1

 $\min_{b \in \mathbb{R}^n} f(b) \quad ext{subject to} \quad g(b) = 0,$ where $f(b) = b^T b, \, g(b) = Ab - y ext{ and } A \in \mathbb{R}^{m imes n}$ with m < n

• Introducing Lagrange multipliers gives

 $\mathcal{L}(b,\lambda) = b^T b + \lambda^T (Ab - y)$

where $b \in \mathbb{R}^n$ and $\lambda \in \mathbb{R}^m$

• And the necessary optimality condition $abla \mathcal{L}(b,\lambda)=0$ is

$$\left[egin{array}{c}
abla f(b) + J_g(b)^T \lambda \ g(b) \end{array}
ight] = \left[egin{array}{c} 2b + A^T \lambda \ Ab - y \end{array}
ight] = 0 \in \mathbb{R}^{n+m}$$

• We obtain the $(n+m) \times (n+m)$ square linear system

$$\left[egin{array}{cc} 2\mathrm{I} & A^T \ A & 0 \end{array}
ight] \left[egin{array}{cc} b \ \lambda \end{array}
ight] = \left[egin{array}{cc} 0 \ y \end{array}
ight]$$

which we can solve for $\left[egin{array}{cc} b \ \lambda \end{array}
ight] \in \mathbb{R}^{n+m}$

- We have $b = -\frac{1}{2}A^T\lambda$ from the first "block row"
- Subsituting into Ab = y (the second "block row") yields $\lambda = -2(AA^T)^{-1}y$
- And hence

$$b=-rac{1}{2}A^T\lambda=A^T(AA^T)^{-1}y$$

which was the solution we introduced (but didn't derive) in Unit 1

• Consider equality constrained minimization

 $\min_{x\in\mathbb{R}^n}f(x) \quad ext{subject to} \quad g(x)=0$ where $f:\mathbb{R}^n o\mathbb{R}$ and $g:\mathbb{R}^n o\mathbb{R}^m$

• With the Lagrangian $\mathcal{L}(x,\lambda) = f(x) + \lambda^T g(x),$ the necessary condition for optimality is

$$abla \mathcal{L}(x,\lambda) = \left[egin{array}{c}
abla f(x) + J_g^T(x)\lambda \ g(x) \end{array}
ight] = 0$$

• Once again, this is a nonlinear system of equations that can be solved using Newton's method

• To derive the Jacobian of this system, we write

$$abla \mathcal{L}(x,\lambda) = \left[egin{array}{c}
abla f(x) + \sum_{k=1}^m \lambda_k
abla g(x) \\ g(x) \end{array}
ight] \in \mathbb{R}^{n+m}$$

- Then we differentiate w.r.t to $x \in \mathbb{R}^n$ and $\lambda \in \mathbb{R}^m$
- For $i = 1, \ldots, n$, we have

$$(
abla \mathcal{L}(x,\lambda))_i = rac{\partial f(x)}{\partial x_i} + \sum_{k=1}^m \lambda_k rac{\partial g_k(x)}{\partial x_i}$$

• Differentiating w.r.t x_j , for i, j = 1, ..., n, gives

$$rac{\partial}{\partial x_j} (
abla \mathcal{L}(x,\lambda))_i = rac{\partial^2 f(x)}{\partial x_i \partial x_j} + \sum_{k=1}^m \lambda_k rac{\partial^2 g_k(x)}{\partial x_i \partial x_j}$$

• The top-left n imes n block of the Jacobian of $abla \mathcal{L}(x,\lambda)$ is

$$B(x,\lambda)=H_f(x)+\sum_{k=1}^m\lambda_k H_{g_k}(x)\in \mathbb{R}^{n imes n}$$

- Differentiating $(\nabla \mathcal{L}(x,\lambda))_i$ w.r.t λ_j , for $i = 1, \ldots, n, j = 1, \ldots, m$, gives $\frac{\partial}{\partial \lambda_i} (\nabla \mathcal{L}(x,\lambda))_i = \frac{\partial g_j(x)}{\partial x_i}$
- The top-right n imes m block of the Jacobian of $abla \mathcal{L}(x,\lambda)$ is

 $J_g(x)^T \in \mathbb{R}^{n imes m}$

• For $i = n + 1, \dots, n + m$, we have

$$(
abla \mathcal{L}(x,\lambda))_i = g_i(x)$$

• Differentiating $(
abla \mathcal{L}(x,\lambda))_i$ w.r.t $x_j,$ for $i=n+1,\ldots,n+m,$ $j=1,\ldots,n,$ gives

$$rac{\partial}{\partial x_j} (
abla \mathcal{L}(x,\lambda))_i = rac{\partial g_i(x)}{\partial x_j}$$

• The bottom-left m imes n block of the Jacobian of $abla \mathcal{L}(x,\lambda)$ is

 $J_g(x) \in \mathbb{R}^{m imes n}$

• The final m imes m bottom right block is zero $(g_i(x)$ does not depend on $\lambda_j)$

- We have derived the following Jacobian matrix for $abla \mathcal{L}(x,\lambda)$

$$\left[egin{array}{ccc} B(x,\lambda) & J_g^T(x) \ J_g(x) & 0 \end{array}
ight] \in \mathbb{R}^{(m+n) imes (m+n)}$$

- Note the 2×2 block structure of this matrix
- Matrices with this structure are called KKT matrices after Karush, Kuhn, and Tucker

• Therefore, Newton's method for $abla \mathcal{L}(x,\lambda) = 0$ is

$$egin{bmatrix} B(x_k,\lambda_k) & J_g^T(x_k)\ J_g(x_k) & 0 \end{bmatrix} egin{bmatrix} s_k\ \delta_k \end{bmatrix} = - egin{bmatrix}
abla f(x_k) + J_g^T(x_k)\lambda_k\ g(x_k) \end{bmatrix} ext{for } k = 0,1,2,\dots \end{cases}$$

• Here $(s_k,\delta_k)\in \mathbb{R}^{n+m}$ is the k-th Newton step

• Now, consider the constrained minimization problem, where (x_k, λ_k) is our Newton iterate at step k:

$$egin{aligned} &\min_s \left\{ rac{1}{2} s^T B(x_k,\lambda_k) s + s^T (
abla f(x_k) + J_g^T(x_k)\lambda_k)
ight\} \ & ext{ subject to } \quad J_g(x_k) s + g(x_k) = 0 \end{aligned}$$

- The objective function is quadratic in s (here x_k , λ_k are constants)
- This minimization problem has Lagrangian

$$egin{aligned} \mathcal{L}_k(s,\delta) &= rac{1}{2} s^T B(x_k,\lambda_k) s + s^T (
abla f(x_k) + J_g^T(x_k)\lambda_k) \ &+ \delta^T (J_g(x_k) s + g(x_k)) \end{aligned}$$

- Then solving $\nabla \mathcal{L}_k(s, \delta) = 0$ (i.e. first-order necessary conditions) gives a linear system, which is the same as the k-th Newton step
- Therefore, at each step of Newton's method, we exactly solve a minimization problem with a quadratic objective and linear constraints
- Optimization of this type is called **quadratic programming**
- Therefore, Newton's method applied to $\mathcal{L}(x, \lambda) = 0$ is called sequential quadratic programming (SQP)

- SQP is an important method, and there are many issues to be considered to obtain an efficient and reliable implementation:
 - efficient solution of the linear systems at each Newton iteration matrix block structure can be exploited
 - quasi-Newton approximations to the Hessian
 - trust region, line search to improve robustness
 - treatment of constraints (equality and inequality) during the iterative process
 - selection of a good initial guess for λ

Penalty Methods

- Another approach to constrained optimization is penalty methods
- This converts a constrained problem into an unconstrained problem
- Key idea: Introduce a new objective function which is a weighted sum of objective function and constraints

Penalty Methods

• Given the minimization problem

 $\min_x f(x)$ subject to g(x) = 0

define the corresponding penalized unconstrained problem

$$\min_x \phi_
ho(x) = f(x) + rac{1}{2}
ho g(x)^T g(x)$$

with a parameter $ho \in \mathbb{R}$

- Let x^* be the solution of the constrained problem
- Let x_{ρ}^* be the solution of the penalized unconstrained problem
- Under appropriate conditions, it can be shown that

$$\lim_{
ho
ightarrow\infty}x^*_
ho=x^*$$

Penalty Methods

- In practice, we can solve the unconstrained problem for a large value of ρ to get a good approximation of x^*
- Another strategy is to solve for a sequence of penalty parameters ho_k , where $x^*_{
 ho_k}$ serves as an initial guess for $x^*_{
 ho_{k+1}}$
- Note that the major drawback of penalty methods is that a large factor ρ will increase the condition number of the Hessian $H_{\phi_{\rho}}$
- However, penalty methods can be convenient due to their simplicity

• Consider a general optimization problem

 $\min_{p\in \mathbb{R}^n} \mathcal{G}(p)$

with the objective function $\mathcal{G}:\mathbb{R}^n
ightarrow\mathbb{R}$

- Gradient-based methods require gradients of the objective
- They could be approximated with finite differences

• However, each partial derivative requires an extra evaluation of ${\cal G}$

$$rac{\partial \mathcal{G}(p)}{\partial p_i} pprox rac{\mathcal{G}(p+he_i)-\mathcal{G}(p)}{h},$$

so we need n+1 evaluations of $\mathcal G$ to approximate $abla \mathcal G(p)$

- For example, if $\mathcal{G}(p)$ requires solving a PDE and parameters p represent an unknown field on a grid, this procedure becomes too expensive
- The accuracy of finite differences is also limited

- There are two main alternative approaches for computing gradients of solutions of ODEs or PDEs
 - direct method
 - adjoint method
- The direct method is simpler, but the adjoint method is more efficient in cases with many parameters

One-Dimensional Case

• Consider the boundary value problem for an ODE

$$-u''(x;p)+r(x;p)u(x;p)=f(x), \qquad u(a)=u(b)=0$$

referred to as the primal equation

- Here the functions $r:\mathbb{R}\times\mathbb{R}^n
 ightarrow\mathbb{R}$ and $f:\mathbb{R}
 ightarrow\mathbb{R}$ are given
- The objective function $\mathcal{G}:\mathbb{R}^n o \mathbb{R}$ is assumed to be a linear functional

$$\mathcal{G}(p) = \int_a^b \sigma(x) u(x;p) \mathrm{d}x$$

for some given function $\sigma:\mathbb{R}
ightarrow\mathbb{R}$

Direct Method

• Note that the gradient of the objective is

$$rac{\partial \mathcal{G}(p)}{\partial p_i} = \int_a^b \sigma(x) rac{\partial u}{\partial p_i} \mathrm{d}x$$

so we can compute it from derivatives of the solution $\frac{\partial u}{\partial p_i}$

• Differentiate the original ODE with respect to p_i

$$-rac{\partial u}{\partial p_i}''(x;p)+r(x;p)rac{\partial u}{\partial p_i}(x;p)=-rac{\partial r}{\partial p_i}u(x;p)$$
 for $i=1,2,\ldots,n$

Direct Method

- Once we compute each $\frac{\partial u}{\partial p_i}$ we can then evaluate $\nabla \mathcal{G}(p)$ by evaluating a sequence of n integrals
- This is not much better than using finite differences: we still need to solve *n* separate problems
- However, those can be cheaper since only the right-hand side changes. For example, we can reuse a common LU factorization

Adjoint Method

- A more efficient approach when n is large is the adjoint method
- The adjoint problem is defined as

$$-z''(x;p)+r(x;p)z(x;p)=\sigma(x), \qquad z(a)=z(b)=0$$

• Since $\sigma(x)$ enters the right-hand side, the adjoint problem depends on the objective

Adjoint Method

• Given a solution z(x; p) of the adjoint problem, the gradient is

$$egin{aligned} rac{\partial \mathcal{G}(p)}{\partial p_i} &= \int_a^b \sigma(x) rac{\partial u}{\partial p_i} \mathrm{d}x \ &= \int_a^b \left[-z''(x;p) + r(x;p) z(x;p)
ight] rac{\partial u}{\partial p_i} \mathrm{d}x \ &= \int_a^b z(x;p) \left[-rac{\partial u}{\partial p_i}''(x;p) + r(x;p) rac{\partial u}{\partial p_i}(x;p)
ight] \mathrm{d}x \end{aligned}$$

• The last line follows from integrating by parts twice (boundary terms vanish because $\frac{\partial u}{\partial p_i}$ and z are zero at a and b)

Adjoint Method

• Recall the derivative of the primal problem with respect to p_i

$$-rac{\partial u}{\partial p_i}^{\prime\prime}(x;p)+r(x;p)rac{\partial u}{\partial p_i}(x;p)=-rac{\partial r}{\partial p_i}u(x;p)$$

• Combining both, we get

$$rac{\partial \mathcal{G}(p)}{\partial p_i} = -\int_a^b rac{\partial r}{\partial p_i} z(x;p) u(x;p) \mathrm{d}x$$

- Therefore, we only need to solve the primal and adjoint problems once and then can obtain each component of $\nabla \mathcal{G}(p)$ from the integral
- This idea extends to PDEs

• As we mentioned earlier, the optimization problem

 $\min_{x\in \mathbb{R}^n} f(x) ext{ subject to } g(x) = 0 ext{ and } h(x) \leq 0,$

with f, g, h affine, is called a linear programming problem

- The feasible region is a convex polyhedron
- Since the objective function has a constant non-zero gradient, its global minimum must occur at a vertex of the feasible region

• Example of a convex feasible region in \mathbb{R}^2

- The standard approach to linear programming is conceptually simple: try a sequence of the vertices to find the minimum
- This is called the simplex method
- In the worst case, the computational cost of the simplex method grows exponentially with the size of the problem
- But this worst-case behavior is rare. In practice, the cost grows linearly
- We will not discuss the implementation of the simplex method

- scipy.optimize.linprog uses the HiGHS library that implements the dual revised simplex method
- $\bullet See [examples/unit4/linprog.py], solving the problem$

$$\min_x f(x) = -5x_1 - 4x_2 - 6x_3$$

subject to

$$egin{array}{rcl} x_1-x_2+x_3&\leq&20\ 3x_1+2x_2+4x_3&\leq&42\ 3x_1+2x_2&\leq&30 \end{array}$$

 $\text{ and } 0 \leq x_1, 0 \leq x_2, 0 \leq x_3$