
Applied Mathematics 205
Unit 4. Optimization

Lecturer: Petr Karnakov

November 2, 2022

1

Motivation
This unit will cover nonlinear equations and optimization

So far we have mostly focused on linear problems
linear least squares (linear combination of basis functions)
linear physical laws (idealized behavior, small deformations)
discretizations of linear PDEs (wave equation, heat equation)

However, important applications lead to nonlinear problems
nonlinear least squares (nonlinear dependency on parameters)
nonlinear physical models (realistic materials, large deformations)
discretizations of nonlinear PDEs (Navier-Stokes)

2

Motivation: Nonlinear Equations
Some familiar problems can be reduced to nonlinear equations

For example, computing the points and weights of Gauss quadrature

with unknown parameters and

Require that quadrature is exact on monomials of degree up to

 f(x)dx ≈∫
−1

1

 w f(x)
k=0

∑
n

k k

2n + 2 x , … ,x 0 n w , … ,w 0 n

2n + 1

3

Motivation: Nonlinear Equations
For , this leads to a system of nonlinear equationsn = 1

w + w 0 1

w x + w x 0 0 1 1

w x + w x 0 0
2

1 1
2

w x + w x 0 0
3

1 1
3

= 1dx = 2∫
−1

1

= xdx = 0∫
−1

1

= x dx = 2/3∫
−1

1
2

= x dx = 0∫
−1

1
3

4

Motivation: Nonlinear Equations
A general system of equations for unknowns

where

We will focus on the case ,
i.e. equal number of equations and unknowns

Cases can be formulated as nonlinear least squares

m n

F (x) = 0

F : R →n Rm

m = n

m = n

5

Motivation: Nonlinear Equations
One class of nonlinear equations is polynomial equations,
i.e. is a polynomial

The simplest case is a quadratic equation

A closed-form solution is given by

F (x)

ax +2 bx + c = 0

x =

2a
−b ± b − 4ac2

6

Motivation: Nonlinear Equations
There are also closed-form solutions for polynomial equations
of degree three and four, due to Ferrari and Cardano (~1540)

However, the Abel–Ruffini theorem states that equations
of degree five or higher have no general solution in radicals

Therefore, they have to be solved numerically with an iterative algorithm

7

Motivation: Nonlinear Equations
There are many iterative methods for nonlinear equations

One is the bisection method for a scalar equation

where

Assume and bisect the interval
depending on the sign of

f(x) = 0

f ∈ C[a, b]

f(a)f(b) < 0
f()2

a+b

8

Motivation: Nonlinear Equations

def f(x):
 return x * x - 4 * np.sin(x)

Initial interval, assume f(a)*f(b)<0.
a = 1
b = 3
tol = 1e-3

Bisection search.
while b - a > tol:
 print('a={:.5f} b={:.5f} f(a)={:.5f} f(b)={:.5f}
 .format(a, b, f(a), f(b)))
 c = 0.5 * (b + a)
 if f(a) * f(c) < 0:
 b = c
 else:
 a = c

[examples/unit4/bisection.py]

a=1.00000 b=3.00000 f(a)=-2.36588 f(b)=8.43552
a=1.00000 b=2.00000 f(a)=-2.36588 f(b)=0.36281
a=1.50000 b=2.00000 f(a)=-1.73998 f(b)=0.36281
a=1.75000 b=2.00000 f(a)=-0.87344 f(b)=0.36281
a=1.87500 b=2.00000 f(a)=-0.30072 f(b)=0.36281
a=1.87500 b=1.93750 f(a)=-0.30072 f(b)=0.01985
a=1.90625 b=1.93750 f(a)=-0.14326 f(b)=0.01985
a=1.92188 b=1.93750 f(a)=-0.06241 f(b)=0.01985
a=1.92969 b=1.93750 f(a)=-0.02145 f(b)=0.01985
a=1.93359 b=1.93750 f(a)=-0.00085 f(b)=0.01985
a=1.93359 b=1.93555 f(a)=-0.00085 f(b)=0.00949

9

https://github.com/pkarnakov/am205/tree/main/examples/unit4/bisection.py

Motivation: Nonlinear Equations
Bisection is a robust method in 1D,
but it needs an initial guess
and does not generalize to higher dimensions

We will consider alternative methods
fixed-point iteration
Newton’s method

f(a)f(b) < 0

10

Motivation: Optimization
A related topic is optimization

Has important applications in science and engineering

Examples
find the shape of a racing car that maximizes downforce
design a bridge to minimize its weight
find the path of an airplane that minimizes fuel consumption

Solving nonlinear equations can be viewed
as optimization of the residuals

11

Motivation: Optimization
Optimization can be constrained,
i.e. parameters have to satisfy equations or inequalities

Examples
find the shape of a racing car that maximizes downforce,
subject to a constant drag
design a bridge to minimize its weight,
subject to a constant critical load
find the path of an airplane that minimizes fuel consumption,
but avoids certain territories

12

Motivation: Optimization
All these problems can be formulated as constrained minimization

Given an objective function and a set ,
find such that

Here is the feasible set which describes the constraints,
usually defined by equations or inequalities

If , then the minimization is unconstrained

Maximization of is equivalent to minimization of

f : R →n R S ⊂ Rn

x ∈∗ S f(x) ≤∗ f(x) ∀x ∈ S

S

S = Rn

f −f

13

Motivation: Optimization
The standard way to write an optimization problem is

with
objective function
equality constraints
inequality constraints

 f(x) subject to g(x) =
x

min 0 and h(x) ≤ 0

f : R →n R
g : R →n Rm

h : R →n Rp

14

Motivation: Optimization
For example, consider a cylinder with radius and height

Minimize the surface area of a cylinder subject to a constraint on its volume

We will return to this example later

x 1 x 2

 f(x ,x) =
x

min 1 2 2πx (x +1 1 x)2

 subject to g(x ,x) =1 2 πx x −1
2

2 V = 0

15

Motivation: Optimization
If , and are all affine (i.e. , linear plus constant),
then the optimization problem is called a linear programming

Here the term “program” is a synonym for “plan”,
has nothing to do with computer software

The feasible set is a polyhedron and the minimum is found on its vertex

f g h f(x) = Ax + b

16

Motivation: Optimization
If the objective function or any of the constraints are nonlinear
then we have a nonlinear optimization problem or nonlinear programming

We will consider several different approaches to nonlinear optimization

Optimization routines typically use local information
about a function to iteratively approach its local minimum

17

Motivation: Optimization
In some cases an optimizer can find a global minimum

Extra conditions on the function (e.g. convexity) can help

18

Motivation: Optimization
But in general, global optimization is difficult

The optimizer can get “stuck” in local minimum

19

Motivation: Optimization
This can get even harder in higher dimensions

20

Motivation: Optimization
We will focus on methods for finding local minima

Global optimization is important, but not possible in general
without extra conditions on the objective function

Global optimization usually relies on heuristics
try several different initial guesses (multistart methods)
simulated annealing (add decaying noise)
genetic methods (use a hierarchy of samples)

21

Nonlinear Equations

22

Fixed-Point Iteration
Consider iteration

For example, recall Heron’s method for finding from HW0

Denote

x =k+1 g(x)k

 a

x =k+1 x +

2
1

(k
x k

a
)

g (x) =heron x + a/x2
1 ()

23

Fixed-Point Iteration
Suppose is such that , then we call a fixed point of

For example, we see that is a fixed point of since

A fixed-point iteration terminates once a fixed point is reached,
since if then we get

Also, if converges as , it must converge to a fixed point

Let , then

α ∈ R g(α) = α α g

 a g heron

g () =heron a + a/ =
2
1

(a a) a

g(x) =k x k x =k+1 x k

x =k+1 g(x)k k → ∞

α = lim x k→∞ k

α = x =
k→∞
lim k+1 g(x) =

k→∞
lim k g(x) =

k→∞
lim k g(α)

24

Fixed-Point Iteration
Therefore, for example, if Heron’s method converges, it converges to

There are sufficient conditions for convergence of a fixed-point iteration

Recall that satisfies a Lipschitz condition in an interval if

for some

If , then is called a contraction

 a

g [a, b]

∣g(x) − g(y)∣ ≤ L∣x − y∣, ∀x, y ∈ [a, b]

L > 0

L < 1 g

25

Fixed-Point Iteration
Theorem: Suppose that is a contraction on
and is a fixed point of (i.e.), where and
Then the fixed point iteration converges to for any

Proof: Take from the Lipschitz condition. Then

which implies

and, since , as

This also shows that each iteration reduces the error by factor

g [α − δ,α + δ]
α g g(α) = α α ∈ R δ > 0

α x ∈0 [α − δ,α + δ]

L < 1

∣x −k α∣ = ∣g(x) −k−1 g(α)∣ ≤ L∣x −k−1 α∣,

∣x −k α∣ ≤ L ∣x −k
0 α∣

L < 1 ∣x −k α∣ → 0 k → ∞

L

26

Fixed-Point Iteration
Recall that if , we can obtain a Lipschitz constant from

We now use this result to show that if ,
then there is a neighborhood of on which is a contraction

This tells us that we can verify convergence of a fixed point iteration
by checking the gradient of

g ∈ C [a, b]1 g′

L = ∣g (θ)∣
θ∈[a,b]
max ′

∣g (α)∣ <′ 1
α g

g

27

Fixed-Point Iteration
By continuity of , for any , there is
such that for any we have

Therefore

Suppose and set ,
then there is an interval ,
on which is Lipschitz with

Since , then is a contraction in a neighborhood of

∣g ∣′ ϵ > 0 δ > 0
x ∈ (α − δ,α + δ) ∣g (x)∣ −′ ∣g (α)∣ ≤′ ϵ

 ∣g (x)∣ ≤
x∈(α−δ,α+δ)

max ′ ∣g (α)∣ +′ ϵ

∣g (α)∣ <′ 1 ϵ = (1 −2
1 ∣g (α)∣)′

(α − δ,α + δ)
g L = (1 +2

1 ∣g (α)∣)′

L < 1 g α

28

Fixed-Point Iteration
Furthermore, as ,

Therefore, asymptotically, after each iteration
the error decreases by a factor of

k → ∞

 =
∣x − α∣k

∣x − α∣k+1
 →

∣x − α∣k

∣g(x) − g(α)∣k ∣g (α)∣,′

∣g (α)∣′

29

Fixed-Point Iteration
We say that an iteration converges linearly if, for some ,

An iteration converges superlinearly if

μ ∈ (0, 1)

 =
k→∞
lim

∣x − α∣k

∣x − α∣k+1
μ

 =
k→∞
lim

∣x − α∣k

∣x − α∣k+1 0

30

Fixed-Point Iteration
We can use these ideas to construct practical
fixed-point iterations for solving

For example, suppose

From the plot, there is a root at

f(x) = 0

f(x) = e −x x − 2

x ≈ 1.15

31

Fixed-Point Iteration
Equation is equivalent to ,
so we seek a fixed point of the iteration

Here , and for all ,
therefore fixed point iteration will converge for

We should get linear convergence with a factor about

f(x) = 0 x = log(x + 2)

x =k+1 log(x +k 2)

g(x) = log(x + 2) g (x) =′ 1/(x + 2) < 1 x > −1
x >0 −1

g (1.15) =′ 1/(1.15 + 2) ≈ 0.32

32

Fixed-Point Iteration
An alternative fixed-point iteration is to set

Therefore , and

Hence , so we can’t guarantee convergence

In fact, the iteration diverges

x =k+1 e −x k 2, k = 0, 1, 2, …

g(x) = e −x 2 g (x) =′ ex

∣g (α)∣ >′ 1

33

Fixed-Point Iteration
See ,
comparison of the two fixed-point iterations

[examples/unit4/fixed_point.py]

34

https://github.com/pkarnakov/am205/tree/main/examples/unit4/fixed_point.py

Newton’s Method
Constructing fixed-point iterations is not straightforward

Need to rewrite in a form with certain properties on

To obtain a more generally applicable iterative method,
consider the following fixed-point iteration

corresponding to , for some function

A fixed point of yields a solution to
(except possibly when), which is what we want

f(x) = 0 x = g(x) g

x = x − λ(x)f(x)k+1 k k k

g(x) = x − λ(x)f(x) λ

α g f(α) = 0
λ(α) = 0

35

Newton’s Method
Recall that the asymptotic convergence rate is dictated by ,
so we want to have to get superlinear convergence

Suppose (as stated above) that , then

To satisfy , we choose to obtain

known as Newton’s method

∣g (α)∣′

∣g (α)∣ =′ 0

f(α) = 0

g (α) =′ 1 − λ (α)f(α) −′ λ(α)f (α) =′ 1 − λ(α)f (α)′

g (α) =′ 0 λ(x) = 1/f (x)′

x =k+1 x −k

f (x)′
k

f(x)k

36

Newton’s Method
Based on fixed-point iteration theory,
Newton’s method is convergent since

However, we need a different argument to understand
the superlinear convergence rate properly

To do this, we use a Taylor expansion for about

for some

∣g (α)∣ =′ 0 < 1

f(α) x k

0 = f(α) = f(x) +k (α − x)f (x) +k
′

k f (θ)
2

(α − x)k 2
′′

k

θ ∈k (α,x)k

37

Newton’s Method
Dividing through by gives

or

Therefore, asymptotically,
the error at iteration is the square of the error at iteration

This is referred to as quadratic convergence, which is very rapid

We need to be sufficiently close to to get quadratic convergence
(the result relied on Taylor expansion near)

f (x)′
k

x − −(k
f (x)′

k

f(x)k) α = (x −
2f (x)′

k

f (θ)′′
k

k α)2

x −k+1 α = (x −
2f (x)′

k

f (θ)′′
k

k α)2

k + 1 k

α

α

38

Secant Method
An alternative to Newton’s method is to approximate
using the finite difference

Substituting this into the iteration leads to the secant method

The main advantages of the secant methods are
does not require computing
requires only one extra evaluation of per solution
(Newton’s method also requires each iteration)

f (x)′
k

f (x) ≈′
k

x − x k k−1

f(x) − f(x)k k−1

x =k+1 x −k f(x) , k =k (
f(x) − f(x)k k−1

x − x k k−1) 1, 2, 3, …

f (x)′

f(x)
f (x)′

k

39

Secant Method
As one may expect, the secant method converges faster than
a fixed-point iteration, but slower than Newton’s method

In fact, it can be shown that for the secant method, we have

where is a positive constant and

See ,
Newton’s method versus secant method for

 =
k→∞
lim

∣x − α∣k
q

∣x − α∣k+1
μ

μ q ≈ 1.6

[examples/unit4/secant_vs_newton.py]
f(x) = e −x x − 2

40

https://github.com/pkarnakov/am205/tree/main/examples/unit4/secant_vs_newton.py

Systems of Nonlinear Equations

41

Systems of Nonlinear Equations
We now consider fixed-point iterations and Newton’s method
for systems of nonlinear equations

We suppose that , ,
and we seek such that

In component form, this is equivalent to

F : R →n Rn n > 1
α ∈ Rn F (α) = 0

F (α)1

F (α)2

F (α)n

= 0

= 0

…

= 0

42

Fixed-Point Iteration
For a fixed-point iteration, we again rewrite as to obtain

The convergence proof is the same as in the scalar case,
if we replace with ,
i.e. if , then

As before, if is a contraction it will converge to a fixed point

F (x) = 0 x = G(x)

x =k+1 G(x)k

∣ ⋅ ∣ ∥ ⋅ ∥
∥G(x) − G(y)∥ ≤ L∥x − y∥ ∥x −k α∥ ≤ L ∥x −k

0 α∥

G α

43

Fixed-Point Iteration
Recall that we define the Jacobian matrix, , to be

If , then there is some neighborhood of
for which the fixed-point iteration converges to

The proof of this is a natural extension of the corresponding scalar result

J ∈G Rn×n

(J) =G ij , i, j =
∂x j

∂G i 1, … ,n

∥J (α)∥ <G ∞ 1 α

α

44

Fixed-Point Iteration: Example
Once again, we can employ a fixed point iteration to solve

For example, consider

This can be rearranged to ,

F (x) = 0

x + x − 11
2

2
2

5x + 21x − 91
2

2
2

= 0

= 0

x =1 1 − x 2
2 x =2 (9 − 5x)/211

2

45

Fixed-Point Iteration: Example
Define

See ,
fixed-point iteration in two dimensions

G (x ,x)1 1 2

G (x ,x)2 1 2

= 1 − x 2
2

= (9 − 5x)/211
2

[examples/unit4/fixed_point_2d.py]

46

https://github.com/pkarnakov/am205/tree/main/examples/unit4/fixed_point_2d.py

Newton’s Method
As in the one-dimensional case, Newton’s method is generally
more useful than a standard fixed-point iteration

The natural generalization of Newton’s method is

Note that to put Newton’s method in the standard form
for a linear system, we write

where

x =k+1 x −k J (x) F (x)F k
−1

k

J (x)Δx = −F (x)F k k+1 k

Δx =k+1 x −k+1 x k

47

Newton’s Method
Once again, if is sufficiently close to ,
then Newton’s method converges quadratically

This result again relies on Taylor’s theorem

We first consider how to generalize Taylor’s theorem to

First, we consider the case for

x 0 α

Rn

F : R →n R

48

Multivariate Taylor Theorem
Let and . One-dimensional Taylor theorem yieldsϕ(s) = F (x + sδ) δ ∈ Rn

ϕ(1) = ϕ(0) + +
ℓ=1

∑
k

ℓ!
ϕ (0)(ℓ)

 ϕ (η), η ∈
(k + 1)!

1 (k+1) (0, 1)

ϕ(0)

ϕ(1)

ϕ (s)′

ϕ (s)′′

= F (x)

= F (x + δ)

= δ + δ + ⋯ + δ

∂x 1

∂F (x + sδ)
1 ∂x 2

∂F (x + sδ)
2 ∂x n

∂F (x + sδ)
n

= δ + ⋯ + δ δ + ⋯ +
∂x 1

2
∂ F (x + sδ)2

1
2

∂x x 1 n

∂ F (x + sδ)2

1 n

+ δ δ + ⋯ + δ

∂x ∂x 1 n

∂ F (x + sδ)2

1 n ∂x n
2

∂ F (x + sδ)2

n
2

49

Multivariate Taylor Theorem
We have

where

and

F (x + δ) = F (x) + +
ℓ=1

∑
k

ℓ!
U (x)ℓ

E ,k

U (x) =ℓ δ + ⋯ + δ F (x), ℓ =[(
∂x1

∂
1 ∂x n

∂
n)

ℓ

] 1, 2, … , k,

E =k , η ∈
(k + 1)!

U (x + ηδ)k+1 (0, 1)

50

Multivariate Taylor Theorem
Let be an upper bound on the absolute values
of all derivatives of order , then

where the last line follows from the fact that there are terms in the
product (i.e. there are derivatives of order)

A

k + 1

∣E ∣k ≤ [(∥δ∥ + … + ∥δ∥) F](x + ηδ)

(k + 1)!
1

∞ ∂x 1

∂
∞ ∂x n

∂ k+1

= ∥δ∥ [(+ … +) F](x + ηδ)

(k + 1)!
1

∞
k+1

∂x 1

∂
∂x n

∂ k+1

≤ A∥δ∥

(k + 1)!
nk+1

∞
k+1

nk+1

nk+1 k + 1

51

Multivariate Taylor Theorem
We only need an expansion up to first order terms
for analysis of Newton’s method

From our expression above,
we can write first order Taylor expansion as

F (x + δ) = F (x) + ∇F (x) δ + ET
1

52

Multivariate Taylor Theorem
For , Taylor expansion follows by developing
a Taylor expansion for each

so that for we have

where

F : R →n Rn

F i

F (x +i δ) = F (x) +i ∇F (x) δ +i
T E i,1

F : R →n Rn

F (x + δ) = F (x) + J (x)δ + E F F

∥E ∥ =F ∞ ∣E ∣ ≤
1≤i≤n
max i,1 n ∥δ∥ 2

1 2 (
1≤i,j,ℓ≤n

max ∂x ∂x j ℓ

∂ F

2
i) ∞

2

53

Newton’s Method
Now return to Newton’s method

We have

so that

0 = F (α) = F (x) +k J (x) α − x +F k [k] E F

x −k α = [J (x)] F (x) +F k
−1

k [J (x)] E F k
−1

F

54

Newton’s Method
Also, the Newton iteration itself can be rewritten as

We obtain

which implies quadratic convergence

J (x) x − α =F k [k+1] J (x) x − α −F k [k] F (x)k

x −k+1 α = [J (x)] E ,F k
−1

F

∥x −k+1 α∥ ≤∞ C∥x −k α∥ ∞
2

55

Newton’s Method: Example
Recall the conditions of the two-point Gauss quadrature rule

They constitute a nonlinear system of 4 equations for 4 unknowns

F (x ,x ,w ,w)1 1 2 1 2

F (x ,x ,w ,w)2 1 2 1 2

F (x ,x ,w ,w)3 1 2 1 2

F (x ,x ,w ,w)4 1 2 1 2

= w + w − 2 = 01 2

= w x + w x = 01 1 2 2

= w x + w x − 2/3 = 01 1
2

2 2
2

= w x + w x = 01 1
3

2 2
3

56

Newton’s Method: Example
We can solve this using Newton’s method

To do this, we require the Jacobian of this system:

Alternatively, use scipy.optimize.fsolve() that implements Powell’s
hybrid method (combination of Newton and gradient descent) by calling

 or from Fortran library

See ,
two-point Gauss quadrature found from a nonlinear system

J (x ,x ,w ,w) =F 1 2 1 2

0
w 1

2w x 1 1

3w x 1 1
2

0
w 2

2w x 2 2

3w x 2 2
2

1
x 1

x 1
2

x 1
3

1
x 2

x 2
2

x 2
3

HYBRD HYBRJ MINPACK

[examples/unit4/nonlin_gauss_quad.py]

57

https://www.math.utah.edu/software/minpack/minpack/hybrd.html
https://www.math.utah.edu/software/minpack/minpack/hybrj.html
https://www.math.utah.edu/software/minpack.html
https://github.com/pkarnakov/am205/tree/main/examples/unit4/nonlin_gauss_quad.py

Newton’s Method: Example
Using either approach with an initial guess ,
we get the solution

[−1, 1, 1, 1]

x1

x2

w1

w2

= −0.577350269189626

= 0.577350269189626

= 1.000000000000000

= 1.000000000000000

≈ −1/ 3

≈ 1/ 3

≈ 1

≈ 1

58

Optimization

59

Existence of Global Minimum
To guarantee existence and uniqueness of a global minimum,
we need to make assumptions about the objective function

For example, if is continuous on a closed (i.e.) and bounded set
 then it has global minimum in

In one dimension, this says achieves a minimum on the interval

In general does not achieve a minimum on , e.g. consider

f ∂S ⊂ S

S ⊂ Rn S

f [a, b] ⊂ R
f (a, b) f(x) = x

60

Coercive Functions
Another helpful concept for existence of global minimum is coercivity

A function on an unbounded set is coercive if

That is, must take large positive values whenever is large

f : S → R S ⊂ Rn

 f(x) =
∥x∥→∞

lim +∞

f(x) ∥x∥

61

Coercive Functions
If is continuous and coercive on a closed set ,
then has a global minimum in

Proof: From the definition of coercivity, for any , such that
 for all where

Take a point , and set

Let , so that for all

And we already know that achieves a minimum (which is at most)
on the closed and bounded set

Hence achieves a minimum on

f S

f S

M ∈ R ∃r > 0
f(x) ≥ M x ∈ S ∥x∥ ≥ r

x ∈0 S M = f(x)0

Y = S ∩ {∥x∥ ≥ r} f(x) ≥ f(x)0 x ∈ Y

f f(x)0

S ∩ {∥x∥ ≤ r}

f S □

62

Coercive Functions: Examples

coercive on

not coercive on

as

not coercive on

as

f = x +2 y2

R2
f = x −2 y2

R2

f(0, y) → −∞
∣y∣ → ∞

f = 1 − e−(x +y)2 2

R2

f(x, y) → 1
x +2 y →2 ∞

63

Convex Functions
An important concept for uniqueness is convexity

A set is convex if it contains the line segment between any two of its
points

That is, is convex if for any , we have

S ⊂ Rn

S x, y ∈ S

{θx + (1 − θ)y : θ ∈ [0, 1]} ⊂ S

64

Convex Functions
Similarly, we define convexity of a function

 is convex if its graph along any line segment in is on or below the chord
connecting the function values

For example, is convex if for any and any , we have

Also, if

then is strictly convex

f : S ⊂ R →n R
f S

f x, y ∈ S θ ∈ (0, 1)

f(θx + (1 − θ)y) ≤ θf(x) + (1 − θ)f(y)

f(θx + (1 − θ)y) < θf(x) + (1 − θ)f(y)

f

65

Convex Functions: Examples

convex on

not convex on

convex but
not strictly convex on

f = x +2 y2

R2
f = x −2 y2

R2
f = max(1, x +2 (y + 1))2

R2

66

Convex Functions
If is a convex function on a convex set ,
then any local minimum of must be a global minimum

Proof (1/2): Suppose is a local minimum,
i.e. there is so that for ,
where

Suppose that is not a global minimum,
i.e. that there exists such that
We will show that this gives a contradiction
by drawing a line segment between and

f S

f

x

ϵ > 0 f(x) ≤ f(y) y ∈ B(x, ϵ)
B(x, ϵ) = {y ∈ S : ∥y − x∥ ≤ ϵ}

x

w ∈ S f(w) < f(x)

x w

67

Convex Functions
Proof (2/2):

For we have

Let be sufficiently small so that

Then

e.g. , which contradicts that is a local minimum

Hence we cannot have such that

θ ∈ [0, 1] f(θw + (1 − θ)x) ≤ θf(w) + (1 − θ)f(x)

σ ∈ (0, 1]

z = σw + 1 − σ x ∈() B(x, ϵ)

f(z) ≤ σf(w) + 1 − σ f(x) <() σf(x) + 1 − σ f(x) =() f(x),

f(z) < f(x) f(x)

w ∈ S f(w) < f(x) □

68

Convex Functions
Note that convexity does not guarantee uniqueness of global minimum

However, if is a strictly convex function on a convex set ,
then a local minimum of is the unique global minimum

Optimization of convex functions over convex sets is called
convex optimization, which is an important field in optimization

f S

f

69

Optimality Conditions
We have discussed existence and uniqueness of minima,
but haven’t considered how to find a minimum

The familiar optimization idea from calculus in one dimension is:
set derivative to zero, check the sign of the second derivative

This can be generalized to Rn

70

Optimality Conditions
If is differentiable,
then the gradient vector is

The importance of the gradient is that points “uphill”,
i.e. towards points with larger values than

And similarly points “downhill”

f : R →n R
∇f : R →n Rn

∇f(x) =

 ∂x 1

∂f(x)

 ∂x 2

∂f(x)

⋮
 ∂x n

∂f(x)

∇f

f(x)

−∇f

71

Optimality Conditions
This follows from Taylor’s theorem for

Recall that

Let for and suppose that , then:

Also, we see from Cauchy–Schwarz that

so is the steepest descent direction

f : R →n R

f(x + δ) − f(x) = ∇f(x) δ +T h.o.t.

δ = −ϵ∇f(x) ϵ > 0 ∇f(x) = 0

f(x − ϵ∇f(x)) − f(x) ≈ −ϵ∇f(x) ∇f(x) <T 0

 ∇f(x) ≤T

∥δ∥ 2

δ
 ∇f(x)

T

∥∇f(x)∥ 2

∇f(x)

−∇f(x)

72

Optimality Conditions
Similarly, we see that a necessary condition
for a local minimum at is that

In this case there is no “downhill direction” at

The condition is called
a first-order necessary condition for optimality,
since it only involves first derivatives

x ∈∗ S ∇f(x) =∗ 0

x∗

∇f(x) =∗ 0

73

Optimality Conditions
 that satisfies the first-order optimality condition

is called a critical point of

A critical point can be
a local minimum, local maximum, or saddle point

A saddle point is where some directions are “downhill”
and others are “uphill”, e.g. for

x ∈∗ S

f

(x, y) = (0, 0) f(x, y) = x −2 y2

74

Optimality Conditions
As in the one-dimensional case, we can look
at second derivatives to classify critical points

If is twice differentiable, then
the Hessian is the matrix-valued function

The Hessian is the Jacobian matrix of the gradient
If the second partial derivatives of are continuous,
then , and is symmetric

f : R →n R
H :f R →n Rn×n

H (x) =f

∂x 1
2

∂ f(x)2

 ∂x x 2 1

∂ f(x)2

⋮
 ∂x x n 1

∂ f(x)2

 ∂x x 1 2

∂ f(x)2

∂x 2
2

∂ f(x)2

⋮
 ∂x x n 2

∂ f(x)2

⋯

⋯

⋱
⋯

 ∂x x 1 n

∂ f(x)2

 ∂x x 2 n

∂ f(x)2

⋮
 ∂x n

2
∂ f(x)2

∇f : R →n Rn

f

∂ f/∂x ∂x =2
i j ∂ f/∂x ∂x

2
j i H f

75

Optimality Conditions
Suppose we have found a critical point , so that

From Taylor’s theorem, for , we have

for some

x∗ ∇f(x) =∗ 0

δ ∈ Rn

f(x + δ)∗ = f(x) + ∇f(x) δ + δ H (x + ηδ)δ∗ ∗ T

2
1 T

f
∗

= f(x) + δ H (x + ηδ)δ∗

2
1 T

f
∗

η ∈ (0, 1)

76

Optimality Conditions
Recall positive definiteness: is positive definite if

Suppose is positive definite

Then (by continuity) is also positive definite
for sufficiently small, so that:

Hence, we have for sufficiently small,
e.g. is a local minimum

Positive definiteness of at a critical point
is a second-order sufficient condition for a local minimum

A x Ax >T 0

H (x)f
∗

H (x +f
∗ ηδ)

∥δ∥ δ H (x +T
f

∗ ηδ)δ > 0

f(x +∗ δ) > f(x)∗ ∥δ∥
f(x)∗

H f x∗

77

Optimality Conditions
A matrix can also be negative definite: for all

Or indefinite: There exists such that

Then we can classify critical points as follows:
 positive definite is a local minimum
 negative definite is a local maximum
 indefinite is a saddle point

x Ax <T 0 x = 0

x, y x Ax <T 0 < y AyT

H (x)f
∗ ⟹ x∗

H (x)f
∗ ⟹ x∗

H (x)f
∗ ⟹ x∗

78

Optimality Conditions
Also, positive definiteness of the Hessian
is closely related to convexity of

If is positive definite, then is convex
on some convex neighborhood of

If is positive definite for all ,
where is a convex set, then is convex on

Question: How do we test for positive definiteness?

f

H (x)f f

x

H (x)f x ∈ S

S f S

79

Optimality Conditions
Answer: For a symmetric matrix

 is positive definite if and only if all eigenvalues of are positive,
 is negative definite if and only if all eigenvalues of are negative

Also, a matrix with positive and negative eigenvalues is indefinite

Hence we can compute all the eigenvalues of and check their signs

A

A A

A A

A

80

Optimality Conditions: Example
From Heath’s book (Example 6.5)

Consider

Then

We set to find critical points and

f(x) = 2x +1
3 3x +1

2 12x x +1 2 3x −2
2 6x +2 6

∇f(x) = [
6x + 6x + 12x 1

2
1 2

12x + 6x − 61 2
]

∇f(x) = 0 [1, −1]T [2, −3]T

81

Optimality Conditions: Example
The Hessian is

and hence

Hence is a local minimum whereas is a saddle point

H (x) =f [
12x + 61

12
12
6]

H (1, −1)f

H (2, −3)f

= , which has eigenvalues 25.4, −1.4[
18
12

12
6]

= , which has eigenvalues 35.0, 1.0[
30
12

12
6]

[2, −3]T [1, −1]T

82

Optimization Methods

83

Steepest Descent
One gradient-based method for
unconstrained optimization is steepest descent

Key idea: The negative gradient
points in the “steepest downhill” direction for at

An iterative method for minimizing is obtained
by following at each step

Question: How far should we go in the direction of ?

−∇f(x)
f x

f

−∇f(x)k
−∇f(x)k

84

Steepest Descent
We can try to find the best step size via an easier subproblem

For a direction , let be given by

Then minimizing along corresponds
to minimizing the one-dimensional function

This process of minimizing along a line is called a line search

s ∈ Rn ϕ : R → R

ϕ(η) = f(x + ηs)

f s

ϕ

f

85

Steepest Descent
Putting these pieces together leads to the steepest descent method:

1: choose initial guess
2: for do
3:
4: choose to minimize
5:
6: end for

However, steepest descent often converges very slowly

Steepest descent is part of HW4

A simpler option to use a constant

x 0

k = 0, 1, 2, …
s =k −∇f(x)k

η k f(x +k η s)k k

x =k+1 x +k η s k k

η =k η

86

Newton’s Method
We can get faster convergence by using more information about

Note that is a system of nonlinear equations,
so we can solve it with quadratic convergence via Newton’s method

The Jacobian matrix of is and
therefore Newton’s method for unconstrained optimization is:

1: choose initial guess
2: for do
3: solve
4:
5: end for

f

∇f(x) = 0

∇f(x) H (x)f

x 0

k = 0, 1, 2, …
H (x)s =f k k −∇f(x)k

x =k+1 x +k s k

87

Newton’s Method
We can also interpret Newton’s method as seeking a stationary point
based on a sequence of local quadratic approximations

Recall that for small

where is quadratic in (for a fixed)

We find stationary point of in the usual way:

This leads to , as in the previous slide

δ

f(x + δ) ≈ f(x) + ∇f(x) δ + δ H (x)δ = q(δ)T

2
1 T

f

q(δ) δ x

q

∇q(δ) = ∇f(x) + H (x)δ =f 0

H (x)δ =f −∇f(x)

88

Newton’s Method: Example
Rosenbrock function

with minimum 0 at

See ,
Rosenbrock function minimized with Newton’s method

f(x, y) = 100(y − x) +2 2 (1 − x)2

(x, y) = (1, 1)

[examples/unit4/rosenbrock.py]

89

https://github.com/pkarnakov/am205/tree/main/examples/unit4/rosenbrock.py

Newton’s Method: Robustness
Newton’s method generally converges much faster than steepest descent

However, Newton’s method can be unreliable far away from a solution

To improve robustness during early iterations
it is common to perform a line search in the Newton step direction

Also line search can ensure we don’t approach a local maximum
(instead of minimum) as can happen with raw Newton method

The line search modifies the Newton step size,
therefore often referred to as a damped Newton method

90

Newton’s Method: Robustness
Another way to improve robustness is with trust region methods

At each iteration , a “trust radius” is computed

This determines a region surrounding
on which we “trust” our quadratic approx.

We require ,
which is a constrained optimization problem
(with quadratic objective function) at each step

k R k

x k

∥x −k+1 x ∥ ≤k R k

91

Newton’s Method: Robustness
Size of is based on comparing actual change,

, to change predicted by the quadratic model

If quadratic model is accurate, we expand the trust radius,
otherwise we contract it

When close to a minimum, should be large enough
to allow full Newton steps eventual quadratic convergence

R k+1

f(x) −k+1 f(x)k

R k

⟹

92

Quasi-Newton Methods
Possible drawbacks of Newton’s method

unreliable: only converges when sufficiently close to a minimum
expensive: the Hessian is dense in general,
making the method expensive if is large
complicated: can be impractical to compute the Hessian exactly

Methods that do not require the Hessian but achieve
superlinear convergence are quasi-Newton methods

H f

n

93

Quasi-Newton Methods
General form of quasi-Newton methods:

where is a line search parameter and
 is some approximation to the Hessian

Quasi-Newton methods generally lose quadratic convergence
of Newton’s method, but often achieve superlinear convergence

We now consider some specific quasi-Newton methods

x = x − α B ∇f(x)k+1 k k k
−1

k

α k

Bk

94

BFGS
The Broyden–Fletcher–Goldfarb–Shanno (BFGS) method
is one of the most popular quasi-Newton methods

1: choose initial guess
2: choose , initial guess for Hessian, e.g.
3: for do
4: solve
5:
6:
7:
8: end for

where

x 0

B 0 B =0 I
k = 0, 1, 2, …

B s =k k −∇f(x)k
x =k+1 x +k s k

y =k ∇f(x) −k+1 ∇f(x)k
B =k+1 B +k ΔB k

ΔB =k −
y s

k
T

k

y y k k
T

s B s

k
T

k k

B s s B k k k
T

k

95

BFGS
Basic idea is that accumulates second derivative information
on successive iterations and eventually approximates well

BFGS is implemented in scipy.optimize.fmin_bfgs()

See ,
Rosenbrock function minimized with BFGS

B k

H f

[examples/unit4/rosenbrock.py]

96

https://github.com/pkarnakov/am205/tree/main/examples/unit4/rosenbrock.py

BFGS: Derivation
Replace Newton’s update with

where

Define to satisfy the requirements
 is obtained by a “small” change from
 is symmetric and positive definite

H (x)s =f k k −∇f(x)k

B s =k k −∇f(x)k

s =k x −k+1 x k

B ∈k+1 Rn×n

B k+1 B k

B k+1

B ≈k+1 H (x)f k+1

97

BFGS: Derivation
In particular, we want

The product is the directional derivative of along
and can be approximated by the difference

Impose the requirement exactly

B s ≈k+1 k H (x)s f k+1 k

H (x)s f k+1 k ∇f s k

y =k ∇f(x) −k+1 ∇f(x)k

H (x)s =f k+1 k

h→0
lim

h

∇f(x) − ∇f(x − hs)k+1 k+1 k

h=1
≈ ∇f(x) −k+1 ∇f(x) =k y k

B s =k+1 k y k

98

BFGS: Derivation
Look for in the form of a rank-two update

with unknown and
impose

which is achieved by and

impose

which is achieved by and

This implies and recovers the BFGS algorithm

B k+1

B =k+1 B − βvv +k
T αuuT

α,β ∈ R u, v ∈ Rn

(B −k βvv)s =T
k 0

0 = (B −k βvv)s =T
k B s −k k βvv s =T

k B s −k k (βv s)vT
k

v = B s k k β =

s B s

k
T

k k

1

αuu s =T
k y k

y =k αuu s =T
k (αu s)uT

k

u = y k α =

y s

k
T

k

1

B s =k+1 k y k above
99

BFGS: Derivation
Note that if is symmetric and positive definite,

then is positive semi-definite

Under the assumption , known as the curvature condition,

the matrix is positive definite

Therefore, is positive definite

B k

B −k βvv =T B −k

s B s

k
T

k k

B s s B k k
T

k
T

k

y s >k
T

k 0

αuu =T

y s

k
T

k

y y k k
T

B =k+1 B −k βvv +T αuuT

100

BFGS: Inverse Hessian
Actual implementation of BFGS: store and update
the inverse approximate Hessian to avoid solving a linear system

1: choose initial guess
2: choose , initial guess for inverse Hessian, e.g.
3: for do
4:
5:
6:
7:
8: end for

where

H k

x 0

H 0 H =0 I
k = 0, 1, 2, …
s =k −H ∇f(x)k k

x =k+1 x +k s k

y =k ∇f(x) −k+1 ∇f(x)k
H =k+1 (I − ρ s y)H (I −k k k

T
k ρ y s) +k k k

T ρ s s k k k
T

ρ =k

y s

k
T

k

1

101

BFGS: Inverse Hessian
The update rule for follows from the update rule for
and the Sherman–Morrison–Woodbury formula

where and

Provides a low-rank update of the inverse
from a low-rank update of the matrix

In our case

H k+1 B k+1

(A + UV) =T −1 A −−1 A U(I +−1 V A U) V AT −1 −1 T −1

A ∈ Rn×n U ,V ∈ Un×p

B =k+1 B +k UV =T B +k y y −
y s

k
T

k

1
k k

T
 B s s B

s B s

k
T

k k

1
k k k

T
k

U = [y −
y s

k
T

k

1
k B s], V =

s B s

k
T

k k

1
s k [y B s] ∈k k k Rn×2

102

BFGS: Modifications
Typically, the search direction is adjusted
by a more robust inexact line search, e.g. Wolfe conditions

Limited-memory BFGS (L-BFGS) avoids storing the full
and instead represents implicitly using a limited history
of gradient evaluations. Suited for large-scale problems

Extra reading:
(chapters 6 and 7)

s k

H k

H k

Nocedal & Wright. Numerical Optimization, 1999

103

https://doi.org/10.1007/978-0-387-40065-5

Constrained Optimization

104

Constrained Optimization
So far we have ignored constraints

Now we consider equality constrained optimization

where and , with

There are unknowns and constraints

This problem is solved with Lagrange mutlipliers

 f(x) subject to g(x) =
x∈Rn
min 0,

f : R →n R g : R →n Rm m ≤ n

n m

105

Constrained Optimization
We illustrate the concept of Lagrange multipliers for

Let and

 is normal to : at any we must move in direction
 (tangent direction) to remain in

f , g : R →2 R
f(x, y) = x + y g(x, y) = 2x +2 y −2 5

∇g S x ∈ S

(∇g(x)) ⊥ S

106

Constrained Optimization
Also, change in due to infinitesimal step in direction is

A critical point satisfies , or

f (∇g(x)) ⊥

f(x ± ϵ(∇g(x))) =⊥ f(x) ± ϵ∇f(x) (∇g(x)) +T
⊥ h.o.t.

x ∈∗ S ∇f(x) (∇g(x)) =∗ T ∗
⊥ 0

∇f(x) = λ ∇g(x), for some λ ∈∗ ∗ ∗ ∗ R

107

Constrained Optimization
This shows that for a stationary point with constraints,

 cannot have any component in the “tangent direction” to

Now, consider the case with equality constraints

Then and we have the gradients ,

Then the feasible set is

Any “tangent direction” at must be orthogonal to all
gradient vectors to remain in

m = 1
∇f S

m > 1

g : R →n Rm ∇g i i = 1, … ,m

S = {x ∈ R :n g (x) =i 0, i = 1, … ,m}

x ∈ S

{∇g (x), i =i 1, … ,m} S

108

Constrained Optimization
Let
denote the orthogonal complement of

Then, for and , is a step in a “tangent direction” of at

Since we have

it follows that for a stationary point we need

T (x) = {v ∈ R :n ∇g (x) v =i
T 0, i = 1, 2, … ,m}

{∇g (x), i =i 1, … ,m}

δ ∈ T (x) ϵ > 0 ϵδ S x

f(x +∗ ϵδ) = f(x) +∗ ϵ∇f(x) δ +∗ T h.o.t.

∇f(x) δ = 0 for all δ ∈∗ T T (x)∗

109

Constrained Optimization
We require that at a stationary point we have

This can be written as a linear system

for some , where

This follows because the columns of
are the vectors

x ∈∗ S

∇f(x) ∈∗ span{∇g (x), i =i
∗ 1, … ,m}

∇f(x) = (J (x)) λ∗
g

∗ T ∗

λ ∈∗ Rm (J (x)) ∈g
∗ T Rn×m

(J (x))g
∗ T

{∇g (x), i =i
∗ 1, … ,m}

110

Constrained Optimization
We can write equality constrained optimization problems more concisely
by introducing the Lagrangian function, ,

Then

L : R →n+m R

L(x,λ) = f(x) + λ g(x)T

= f(x) + λ g (x) + ⋯ + λ g (x)1 1 m m

 ∂x i

∂L(x,λ)

 ∂λ i

∂L(x,λ)

= + λ + ⋯ + λ ,∂x i

∂f(x)
1 ∂x i

∂g (x)1
n ∂x i

∂g (x)n

= g (x),i

i = 1, … ,n

i = 1, … ,m

111

Constrained Optimization
In matrix form

Therefore, the first order necessary optimality condition
for the constrained problem can be written as a nonlinear system

∇L(x,λ) = =[
∇ L(x,λ)x

∇ L(x,λ)λ
] ,[

∇f(x) + J (x) λg
T

g(x)]

∇L(x,λ) = = 0[
∇f(x) + J (x) λg

T

g(x)
]

112

Constrained Optimization: Examples
Consider a cylinder with radius and height

Minimize the surface area of a cylinder subject to a constraint on its volume

x 1 x 2

 f(x ,x) =
x

min 1 2 2πx (x +1 1 x)2

 subject to g(x ,x) =1 2 πx x −1
2

2 V = 0

113

Constrained Optimization: Examples
Another example is the underdetermined linear
least squares problem from Unit 1

where , and with

 f(b) subject to g(b) =
b∈Rn
min 0,

f(b) = b bT g(b) = Ab − y A ∈ Rm×n m < n

114

Constrained Optimization: Examples
Introducing Lagrange multipliers gives

where and

And the necessary optimality condition is

L(b,λ) = b b + λ (Ab − y)T T

b ∈ Rn λ ∈ Rm

∇L(b,λ) = 0

 =[
∇f(b) + J (b) λg

T

g(b)] =[
2b + A λT

Ab − y
] 0 ∈ Rn+m

115

Constrained Optimization: Examples
We obtain the square linear system

which we can solve for

(n + m) × (n + m)

 =[
2I
A

AT

0] [
b

λ
] [

0
y

]

 ∈[
b

λ
] Rn+m

116

Constrained Optimization: Examples
We have from the first “block row”

Subsituting into (the second “block row”) yields

And hence

which was the solution we introduced (but didn’t derive) in Unit 1

b = − A λ2
1 T

Ab = y λ = −2(AA) yT −1

b = − A λ = A (AA) y
2
1 T T T −1

117

Sequential Quadratic Programming

118

Sequential Quadratic Programming
Consider equality constrained minimization

where and

With the Lagrangian ,
the necessary condition for optimality is

Once again, this is a nonlinear system of equations
that can be solved using Newton’s method

 f(x) subject to g(x) = 0
x∈Rn
min

f : R →n R g : R →n Rm

L(x,λ) = f(x) + λ g(x)T

∇L(x,λ) = = 0[
∇f(x) + J (x)λg

T

g(x)]

119

Sequential Quadratic Programming
To derive the Jacobian of this system, we write

Then we differentiate w.r.t to and

For , we have

Differentiating w.r.t , for , gives

∇L(x,λ) = ∈[
∇f(x) + λ ∇g (x)∑k=1

m
k k

g(x)] Rn+m

x ∈ Rn λ ∈ Rm

i = 1, … ,n

(∇L(x,λ)) =i +
∂x i

∂f(x)
 λ

k=1

∑
m

k ∂x i

∂g (x)k

x j i, j = 1, … ,n

 (∇L(x,λ)) =
∂x j

∂
i +

∂x ∂x i j

∂ f(x)2
 λ

k=1

∑
m

k ∂x ∂x i j

∂ g (x)2
k

120

Sequential Quadratic Programming
The top-left block of the Jacobian of is

Differentiating w.r.t , for , , gives

The top-right block of the Jacobian of is

n × n ∇L(x,λ)

B(x,λ) = H (x) + λ H (x) ∈ Rf

k=1

∑
m

k g k

n×n

(∇L(x,λ)) i λ j i = 1, … ,n j = 1, … ,m

 (∇L(x,λ)) =
∂λ j

∂
i

∂x i

∂g (x)j

n × m ∇L(x,λ)

J (x) ∈ Rg
T n×m

121

Sequential Quadratic Programming
For , we have

Differentiating w.r.t , for , ,
gives

The bottom-left block of the Jacobian of is

The final bottom right block is zero (does not depend on)

i = n + 1, … ,n + m

(∇L(x,λ)) =i g (x)i

(∇L(x,λ)) i x j i = n + 1, … ,n + m j = 1, … ,n

 (∇L(x,λ)) =
∂x j

∂
i

∂x j

∂g (x)i

m × n ∇L(x,λ)

J (x) ∈ Rg
m×n

m × m g (x)i λ j

122

Sequential Quadratic Programming
We have derived the following Jacobian matrix for

Note the block structure of this matrix

Matrices with this structure are called KKT matrices
after Karush, Kuhn, and Tucker

∇L(x,λ)

 ∈ R[
B(x,λ)
J (x)g

J (x)g
T

0
] (m+n)×(m+n)

2 × 2

123

Sequential Quadratic Programming
Therefore, Newton’s method for is

for

Here is the -th Newton step

∇L(x,λ) = 0

 = − [
B(x ,λ)k k

J (x)g k

J (x)g
T

k

0
] [

s k

δ k
] [

∇f(x) + J (x)λ k g
T

k k

g(x)k
]

k = 0, 1, 2, …

(s , δ) ∈k k Rn+m k

124

Sequential Quadratic Programming
Now, consider the constrained minimization problem,
where is our Newton iterate at step :

The objective function is quadratic in (here , are constants)

This minimization problem has Lagrangian

(x ,λ)k k k

 s B(x ,λ)s + s (∇f(x) + J (x)λ)
s

min {
2
1 T

k k
T

k g
T

k k }

subject to J (x)s +g k g(x) =k 0

s x k λ k

L (s, δ)k = s B(x ,λ)s + s (∇f(x) + J (x)λ)
2
1 T

k k
T

k g
T

k k

+ δ (J (x)s + g(x))T
g k k

125

Sequential Quadratic Programming
Then solving (i.e. first-order necessary conditions)
gives a linear system, which is the same as the -th Newton step

Therefore, at each step of Newton’s method, we exactly solve
a minimization problem with a quadratic objective and linear constraints

Optimization of this type is called quadratic programming

Therefore, Newton’s method applied to
is called sequential quadratic programming (SQP)

∇L (s, δ) =k 0
k

L(x,λ) = 0

126

Sequential Quadratic Programming
SQP is an important method, and there are many issues to be considered
to obtain an efficient and reliable implementation:

efficient solution of the linear systems at each Newton iteration —
matrix block structure can be exploited
quasi-Newton approximations to the Hessian
trust region, line search to improve robustness
treatment of constraints (equality and inequality) during the
iterative process
selection of a good initial guess for λ

127

Penalty Methods
Another approach to constrained optimization is penalty methods

This converts a constrained problem into an unconstrained problem

Key idea: Introduce a new objective function
which is a weighted sum of objective function and constraints

128

Penalty Methods
Given the minimization problem

define the corresponding penalized unconstrained problem

with a parameter

Let be the solution of the constrained problem

Let be the solution of the penalized unconstrained problem

Under appropriate conditions, it can be shown that

 f(x) subject to g(x) =
x

min 0

 ϕ (x) =
x

min ρ f(x) + ρg(x) g(x)
2
1 T

ρ ∈ R
x∗

x ρ
∗

 x = x
ρ→∞
lim ρ

∗ ∗

129

Penalty Methods
In practice, we can solve the unconstrained problem for a large value of to
get a good approximation of

Another strategy is to solve for a sequence of penalty parameters ,
where serves as an initial guess for

Note that the major drawback of penalty methods is that
a large factor will increase the condition number of the Hessian

However, penalty methods can be convenient due to their simplicity

ρ

x∗

ρ k

x ρ k

∗ x ρ k+1
∗

ρ H ϕ ρ

130

PDE-Constrained Optimization

131

PDE-Constrained Optimization
Consider a general optimization problem

with the objective function

Gradient-based methods require gradients of the objective

They could be approximated with finite differences

 G(p)
p∈Rn
min

G : R →n R

132

PDE-Constrained Optimization
However, each partial derivative requires an extra evaluation of

so we need evaluations of to approximate

For example, if requires solving a PDE and
parameters represent an unknown field on a grid,
this procedure becomes too expensive

The accuracy of finite differences is also limited

G

 ≈
∂p i

∂G(p)
 ,

h

G(p + he) − G(p)i

n + 1 G ∇G(p)

G(p)
p

133

PDE-Constrained Optimization
There are two main alternative approaches
for computing gradients of solutions of ODEs or PDEs

direct method
adjoint method

The direct method is simpler, but the adjoint method
is more efficient in cases with many parameters

134

One-Dimensional Case
Consider the boundary value problem for an ODE

referred to as the primal equation

Here the functions and are given

The objective function is assumed to be a linear functional

for some given function

−u (x; p) +′′ r(x; p)u(x; p) = f(x), u(a) = u(b) = 0

r : R× R →n R f : R → R
G : R →n R

G(p) = σ(x)u(x; p)dx∫
a

b

σ : R → R

135

Direct Method
Note that the gradient of the objective is

so we can compute it from derivatives of the solution

Differentiate the original ODE with respect to

for

 =
∂p i

∂G(p)
 σ(x) dx∫

a

b

∂p i

∂u

 ∂p i

∂u

p i

− (x; p) +
∂p i

∂u ′′

r(x; p) (x; p) =
∂p i

∂u
− u(x; p)

∂p i

∂r

i = 1, 2, … ,n

136

Direct Method
Once we compute each we can then evaluate
by evaluating a sequence of integrals

This is not much better than using finite differences:
we still need to solve separate problems

However, those can be cheaper since only the right-hand side changes.
For example, we can reuse a common LU factorization

 ∂p i

∂u ∇G(p)
n

n

137

Adjoint Method
A more efficient approach when is large is the adjoint method

The adjoint problem is defined as

Since enters the right-hand side,
the adjoint problem depends on the objective

n

−z (x; p) +′′ r(x; p)z(x; p) = σ(x), z(a) = z(b) = 0

σ(x)

138

Adjoint Method
Given a solution of the adjoint problem, the gradient is

The last line follows from integrating by parts twice
(boundary terms vanish because and are zero at and)

z(x; p)

∂p i

∂G(p)
= σ(x) dx∫

a

b

∂p i

∂u

= −z (x; p) + r(x; p)z(x; p) dx∫
a

b

[′′]
∂p i

∂u

= z(x; p) − (x; p) + r(x; p) (x; p) dx∫
a

b

[
∂p i

∂u ′′

∂p i

∂u
]

 ∂p i

∂u z a b

139

Adjoint Method
Recall the derivative of the primal problem with respect to

Combining both, we get

Therefore, we only need to solve the primal and adjoint problems once
and then can obtain each component of from the integral

This idea extends to PDEs

p i

− (x; p) +
∂p i

∂u ′′

r(x; p) (x; p) =
∂p i

∂u
− u(x; p)

∂p i

∂r

 =
∂p i

∂G(p)
− z(x; p)u(x; p)dx∫

a

b

∂p i

∂r

∇G(p)

140

Linear Programming

141

Linear Programming
As we mentioned earlier, the optimization problem

with affine, is called a linear programming problem

The feasible region is a convex polyhedron

Since the objective function has a constant non-zero gradient,
its global minimum must occur at a vertex of the feasible region

 f(x) subject to g(x) =
x∈Rn
min 0 and h(x) ≤ 0,

f , g,h

142

Linear Programming
Example of a convex feasible region in R2

143

Linear Programming
The standard approach to linear programming is conceptually simple:
try a sequence of the vertices to find the minimum

This is called the simplex method

In the worst case, the computational cost of the simplex method
grows exponentially with the size of the problem

But this worst-case behavior is rare. In practice, the cost grows linearly

We will not discuss the implementation of the simplex method

144

Linear Programming
scipy.optimize.linprog uses the HiGHS library that
implements the

See , solving the problem

subject to

and

dual revised simplex method

[examples/unit4/linprog.py]

 f(x) =
x

min −5x −1 4x −2 6x 3

x − x + x1 2 3

3x + 2x + 4x1 2 3

3x + 2x1 2

≤

≤

≤

20

42

30

0 ≤ x , 0 ≤1 x , 0 ≤2 x 3

145

https://doi.org/10.1007/s12532-017-0130-5
https://github.com/pkarnakov/am205/tree/main/examples/unit4/linprog.py

