Applied Mathematics 205 Unit 4. Optimization

Lecturer: Petr Karnakov

November 2, 2022

Motivation

- This unit will cover nonlinear equations and optimization
- So far we have mostly focused on linear problems
- linear least squares (linear combination of basis functions)
- linear physical laws (idealized behavior, small deformations)
- discretizations of linear PDEs (wave equation, heat equation)
- However, important applications lead to nonlinear problems
- nonlinear least squares (nonlinear dependency on parameters)
- nonlinear physical models (realistic materials, large deformations)
- discretizations of nonlinear PDEs (Navier-Stokes)

Motivation: Nonlinear Equations

- Some familiar problems can be reduced to nonlinear equations
- For example, computing the points and weights of Gauss quadrature

$$
\int_{-1}^{1} f(x) \mathrm{d} x \approx \sum_{k=0}^{n} w_{k} f\left(x_{k}\right)
$$

with $2 n+2$ unknown parameters x_{0}, \ldots, x_{n} and w_{0}, \ldots, w_{n}

- Require that quadrature is exact on monomials of degree up to $2 n+1$

Motivation: Nonlinear Equations

- For $n=1$, this leads to a system of nonlinear equations

$$
\begin{aligned}
w_{0}+w_{1} & =\int_{-1}^{1} 1 \mathrm{~d} x=2 \\
w_{0} x_{0}+w_{1} x_{1} & =\int_{-1}^{1} x \mathrm{~d} x=0 \\
w_{0} x_{0}^{2}+w_{1} x_{1}^{2} & =\int_{-1}^{1} x^{2} \mathrm{~d} x=2 / 3 \\
w_{0} x_{0}^{3}+w_{1} x_{1}^{3} & =\int_{-1}^{1} x^{3} \mathrm{~d} x=0
\end{aligned}
$$

Motivation: Nonlinear Equations

- A general system of m equations for n unknowns

$$
F(x)=0
$$

where $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$

- We will focus on the case $m=n$, i.e. equal number of equations and unknowns
- Cases $m \neq n$ can be formulated as nonlinear least squares

Motivation: Nonlinear Equations

- One class of nonlinear equations is polynomial equations, i.e. $F(x)$ is a polynomial
- The simplest case is a quadratic equation

$$
a x^{2}+b x+c=0
$$

- A closed-form solution is given by

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Motivation: Nonlinear Equations

- There are also closed-form solutions for polynomial equations of degree three and four, due to Ferrari and Cardano (~1540)
- However, the Abel-Ruffini theorem states that equations of degree five or higher have no general solution in radicals
- Therefore, they have to be solved numerically with an iterative algorithm

Motivation: Nonlinear Equations

- There are many iterative methods for nonlinear equations
- One is the bisection method for a scalar equation

$$
f(x)=0
$$

where $f \in C[a, b]$

- Assume $f(a) f(b)<0$ and bisect the interval depending on the sign of $f\left(\frac{a+b}{2}\right)$

Motivation: Nonlinear Equations

```
def f(x):
    return x * x - 4 * np.sin(x)
# Initial interval, assume f(a)*f(b)<0.
a = 1
b=3
tol = 1e-3
# Bisection search
while b - a > tol:
        print('a={:.5f} b={:.5f} f(a)={:.5f} f(b)={:.5f
            . format(a, b,f(a), f(b)))
        c = 0.5 * (b + a)
    if f(a) * f(c) < 0:
            b = c
        else:
            a = c
```

[examples/unit4/bisection.py]
$a=1.00000 \mathrm{~b}=3.00000 \mathrm{f}(\mathrm{a})=-2.36588 \mathrm{f}(\mathrm{b})=8.43552$ $a=1.00000 \quad b=2.00000 f(a)=-2.36588 \quad f(b)=0.36281$
$a=1.50000 \quad b=2.00000 \quad f(a)=-1.73998 \quad f(b)=0.36281$
$a=1.75000 \quad b=2.00000 \quad f(a)=-0.87344 \quad f(b)=0.36281$
$a=1.87500 \quad b=2.00000 \quad f(a)=-0.30072 \quad f(b)=0.36281$
$a=1.87500 \quad b=1.93750 \quad f(a)=-0.30072 \quad f(b)=0.01985$
$a=1.90625 \mathrm{~b}=1.93750 \mathrm{f}(\mathrm{a})=-0.14326 \mathrm{f}(\mathrm{b})=0.01985$
$a=1.92188 \mathrm{~b}=1.93750 \mathrm{f}(\mathrm{a})=-0.06241 \mathrm{f}(\mathrm{b})=0.01985$
$a=1.92969 b=1.93750 f(a)=-0.02145 \quad f(b)=0.01985$
$a=1.93359 b=1.93750 f(a)=-0.00085 \quad f(b)=0.01985$
$a=1.93359 b=1.93555 f(a)=-0.00085 \quad f(b)=0.00949$

Motivation: Nonlinear Equations

- Bisection is a robust method in 1 D , but it needs an initial guess $f(a) f(b)<0$ and does not generalize to higher dimensions
- We will consider alternative methods
- fixed-point iteration
- Newton's method

Motivation: Optimization

- A related topic is optimization
- Has important applications in science and engineering
- Examples
- find the shape of a racing car that maximizes downforce
- design a bridge to minimize its weight
- find the path of an airplane that minimizes fuel consumption
- Solving nonlinear equations can be viewed as optimization of the residuals

Motivation: Optimization

- Optimization can be constrained,
i.e. parameters have to satisfy equations or inequalities
- Examples
- find the shape of a racing car that maximizes downforce, subject to a constant drag
- design a bridge to minimize its weight, subject to a constant critical load
- find the path of an airplane that minimizes fuel consumption, but avoids certain territories

Motivation: Optimization

- All these problems can be formulated as constrained minimization

Given an objective function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and a set $S \subset \mathbb{R}^{n}$, find $x^{*} \in S$ such that $f\left(x^{*}\right) \leq f(x) \forall x \in S$

- Here S is the feasible set which describes the constraints, usually defined by equations or inequalities
- If $S=\mathbb{R}^{n}$, then the minimization is unconstrained
- Maximization of f is equivalent to minimization of $-f$

Motivation: Optimization

- The standard way to write an optimization problem is

$$
\min _{x} f(x) \text { subject to } g(x)=0 \text { and } h(x) \leq 0
$$

with

- objective function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$
- equality constraints $g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$
- inequality constraints $h: \mathbb{R}^{n} \rightarrow \mathbb{R}^{p}$

Motivation: Optimization

- For example, consider a cylinder with radius x_{1} and height x_{2}
- Minimize the surface area of a cylinder subject to a constraint on its volume

$$
\begin{gathered}
\min _{x} f\left(x_{1}, x_{2}\right)=2 \pi x_{1}\left(x_{1}+x_{2}\right) \\
\text { subject to } g\left(x_{1}, x_{2}\right)=\pi x_{1}^{2} x_{2}-V=0
\end{gathered}
$$

- We will return to this example later

Motivation: Optimization

- If f, g and h are all affine (i.e. $f(x)=A x+b$, linear plus constant), then the optimization problem is called a linear programming
- Here the term "program" is a synonym for "plan", has nothing to do with computer software
- The feasible set is a polyhedron and the minimum is found on its vertex

Motivation: Optimization

- If the objective function or any of the constraints are nonlinear then we have a nonlinear optimization problem or nonlinear programming
- We will consider several different approaches to nonlinear optimization
- Optimization routines typically use local information about a function to iteratively approach its local minimum

Motivation: Optimization

- In some cases an optimizer can find a global minimum
- Extra conditions on the function (e.g. convexity) can help

Motivation: Optimization

- But in general, global optimization is difficult
- The optimizer can get "stuck" in local minimum

Motivation: Optimization

- This can get even harder in higher dimensions

Motivation: Optimization

- We will focus on methods for finding local minima
- Global optimization is important, but not possible in general without extra conditions on the objective function
- Global optimization usually relies on heuristics
- try several different initial guesses (multistart methods)
- simulated annealing (add decaying noise)
- genetic methods (use a hierarchy of samples)

Nonlinear Equations

Fixed-Point Iteration

- Consider iteration

$$
x_{k+1}=g\left(x_{k}\right)
$$

- For example, recall Heron's method for finding \sqrt{a} from HW0

$$
x_{k+1}=\frac{1}{2}\left(x_{k}+\frac{a}{x_{k}}\right)
$$

- Denote $g_{\text {heron }}(x)=\frac{1}{2}(x+a / x)$

Fixed-Point Iteration

- Suppose $\alpha \in \mathbb{R}$ is such that $g(\alpha)=\alpha$, then we call α a fixed point of g
- For example, we see that \sqrt{a} is a fixed point of $g_{\text {heron }}$ since

$$
g_{\mathrm{heron}}(\sqrt{a})=\frac{1}{2}(\sqrt{a}+a / \sqrt{a})=\sqrt{a}
$$

- A fixed-point iteration terminates once a fixed point is reached, since if $g\left(x_{k}\right)=x_{k}$ then we get $x_{k+1}=x_{k}$
- Also, if $x_{k+1}=g\left(x_{k}\right)$ converges as $k \rightarrow \infty$, it must converge to a fixed point
- Let $\alpha=\lim _{k \rightarrow \infty} x_{k}$, then

$$
\alpha=\lim _{k \rightarrow \infty} x_{k+1}=\lim _{k \rightarrow \infty} g\left(x_{k}\right)=g\left(\lim _{k \rightarrow \infty} x_{k}\right)=g(\alpha)
$$

Fixed-Point Iteration

- Therefore, for example, if Heron's method converges, it converges to \sqrt{a}
- There are sufficient conditions for convergence of a fixed-point iteration
- Recall that g satisfies a Lipschitz condition in an interval $[a, b]$ if

$$
|g(x)-g(y)| \leq L|x-y|, \quad \forall x, y \in[a, b]
$$

for some $L>0$

- If $L<1$, then g is called a contraction

Fixed-Point Iteration

- Theorem: Suppose that g is a contraction on $[\alpha-\delta, \alpha+\delta]$ and α is a fixed point of g (i.e. $g(\alpha)=\alpha$), where $\alpha \in \mathbb{R}$ and $\delta>0$ Then the fixed point iteration converges to α for any $x_{0} \in[\alpha-\delta, \alpha+\delta]$
- Proof: Take $L<1$ from the Lipschitz condition. Then

$$
\left|x_{k}-\alpha\right|=\left|g\left(x_{k-1}\right)-g(\alpha)\right| \leq L\left|x_{k-1}-\alpha\right|,
$$

which implies

$$
\left|x_{k}-\alpha\right| \leq L^{k}\left|x_{0}-\alpha\right|
$$

and, since $L<1,\left|x_{k}-\alpha\right| \rightarrow 0$ as $k \rightarrow \infty$

- This also shows that each iteration reduces the error by factor L

Fixed-Point Iteration

- Recall that if $g \in C^{1}[a, b]$, we can obtain a Lipschitz constant from g^{\prime}

$$
L=\max _{\theta \in[a, b]}\left|g^{\prime}(\theta)\right|
$$

- We now use this result to show that if $\left|g^{\prime}(\alpha)\right|<1$, then there is a neighborhood of α on which g is a contraction
- This tells us that we can verify convergence of a fixed point iteration by checking the gradient of g

Fixed-Point Iteration

- By continuity of $\left|g^{\prime}\right|$, for any $\epsilon>0$, there is $\delta>0$ such that for any $x \in(\alpha-\delta, \alpha+\delta)$ we have $\left|\left|g^{\prime}(x)\right|-\left|g^{\prime}(\alpha)\right|\right| \leq \epsilon$
- Therefore

$$
\max _{x \in(\alpha-\delta, \alpha+\delta)}\left|g^{\prime}(x)\right| \leq\left|g^{\prime}(\alpha)\right|+\epsilon
$$

- Suppose $\left|g^{\prime}(\alpha)\right|<1$ and set $\epsilon=\frac{1}{2}\left(1-\left|g^{\prime}(\alpha)\right|\right)$, then there is an interval $(\alpha-\delta, \alpha+\delta)$, on which g is Lipschitz with $L=\frac{1}{2}\left(1+\left|g^{\prime}(\alpha)\right|\right)$
- Since $L<1$, then g is a contraction in a neighborhood of α

Fixed-Point Iteration

- Furthermore, as $k \rightarrow \infty$,

$$
\frac{\left|x_{k+1}-\alpha\right|}{\left|x_{k}-\alpha\right|}=\frac{\left|g\left(x_{k}\right)-g(\alpha)\right|}{\left|x_{k}-\alpha\right|} \rightarrow\left|g^{\prime}(\alpha)\right|
$$

- Therefore, asymptotically, after each iteration the error decreases by a factor of $\left|g^{\prime}(\alpha)\right|$

Fixed-Point Iteration

- We say that an iteration converges linearly if, for some $\mu \in(0,1)$,

$$
\lim _{k \rightarrow \infty} \frac{\left|x_{k+1}-\alpha\right|}{\left|x_{k}-\alpha\right|}=\mu
$$

- An iteration converges superlinearly if

$$
\lim _{k \rightarrow \infty} \frac{\left|x_{k+1}-\alpha\right|}{\left|x_{k}-\alpha\right|}=0
$$

Fixed-Point Iteration

- We can use these ideas to construct practical fixed-point iterations for solving $f(x)=0$
- For example, suppose $f(x)=e^{x}-x-2$

- From the plot, there is a root at $x \approx 1.15$

Fixed-Point Iteration

- Equation $f(x)=0$ is equivalent to $x=\log (x+2)$, so we seek a fixed point of the iteration

$$
x_{k+1}=\log \left(x_{k}+2\right)
$$

- Here $g(x)=\log (x+2)$, and $g^{\prime}(x)=1 /(x+2)<1$ for all $x>-1$, therefore fixed point iteration will converge for $x_{0}>-1$
- We should get linear convergence with a factor about

$$
g^{\prime}(1.15)=1 /(1.15+2) \approx 0.32
$$

Fixed-Point Iteration

- An alternative fixed-point iteration is to set

$$
x_{k+1}=e^{x_{k}}-2, \quad k=0,1,2, \ldots
$$

- Therefore $g(x)=e^{x}-2$, and $g^{\prime}(x)=e^{x}$
- Hence $\left|g^{\prime}(\alpha)\right|>1$, so we can't guarantee convergence
- In fact, the iteration diverges

Fixed-Point Iteration

- See [examples/unit4/fixed_point.py], comparison of the two fixed-point iterations

Newton's Method

- Constructing fixed-point iterations is not straightforward
- Need to rewrite $f(x)=0$ in a form $x=g(x)$ with certain properties on g
- To obtain a more generally applicable iterative method, consider the following fixed-point iteration

$$
x_{k+1}=x_{k}-\lambda\left(x_{k}\right) f\left(x_{k}\right)
$$

corresponding to $g(x)=x-\lambda(x) f(x)$, for some function λ

- A fixed point α of g yields a solution to $f(\alpha)=0$ (except possibly when $\lambda(\alpha)=0$), which is what we want

Newton's Method

- Recall that the asymptotic convergence rate is dictated by $\left|g^{\prime}(\alpha)\right|$, so we want to have $\left|g^{\prime}(\alpha)\right|=0$ to get superlinear convergence
- Suppose (as stated above) that $f(\alpha)=0$, then

$$
g^{\prime}(\alpha)=1-\lambda^{\prime}(\alpha) f(\alpha)-\lambda(\alpha) f^{\prime}(\alpha)=1-\lambda(\alpha) f^{\prime}(\alpha)
$$

- To satisfy $g^{\prime}(\alpha)=0$, we choose $\lambda(x)=1 / f^{\prime}(x)$ to obtain

$$
x_{k+1}=x_{k}-\frac{f\left(x_{k}\right)}{f^{\prime}\left(x_{k}\right)}
$$

known as Newton's method

Newton's Method

- Based on fixed-point iteration theory, Newton's method is convergent since $\left|g^{\prime}(\alpha)\right|=0<1$
- However, we need a different argument to understand the superlinear convergence rate properly
- To do this, we use a Taylor expansion for $f(\alpha)$ about x_{k}

$$
0=f(\alpha)=f\left(x_{k}\right)+\left(\alpha-x_{k}\right) f^{\prime}\left(x_{k}\right)+\frac{\left(\alpha-x_{k}\right)^{2}}{2} f^{\prime \prime}\left(\theta_{k}\right)
$$

for some $\theta_{k} \in\left(\alpha, x_{k}\right)$

Newton's Method

- Dividing through by $f^{\prime}\left(x_{k}\right)$ gives

$$
\left(x_{k}-\frac{f\left(x_{k}\right)}{f^{\prime}\left(x_{k}\right)}\right)-\alpha=\frac{f^{\prime \prime}\left(\theta_{k}\right)}{2 f^{\prime}\left(x_{k}\right)}\left(x_{k}-\alpha\right)^{2}
$$

or

$$
x_{k+1}-\alpha=\frac{f^{\prime \prime}\left(\theta_{k}\right)}{2 f^{\prime}\left(x_{k}\right)}\left(x_{k}-\alpha\right)^{2}
$$

- Therefore, asymptotically, the error at iteration $k+1$ is the square of the error at iteration k
- This is referred to as quadratic convergence, which is very rapid
- We need to be sufficiently close to α to get quadratic convergence (the result relied on Taylor expansion near α)

Secant Method

- An alternative to Newton's method is to approximate $f^{\prime}\left(x_{k}\right)$ using the finite difference

$$
f^{\prime}\left(x_{k}\right) \approx \frac{f\left(x_{k}\right)-f\left(x_{k-1}\right)}{x_{k}-x_{k-1}}
$$

- Substituting this into the iteration leads to the secant method

$$
x_{k+1}=x_{k}-f\left(x_{k}\right)\left(\frac{x_{k}-x_{k-1}}{f\left(x_{k}\right)-f\left(x_{k-1}\right)}\right), \quad k=1,2,3, \ldots
$$

- The main advantages of the secant methods are
- does not require computing $f^{\prime}(x)$
- requires only one extra evaluation of $f(x)$ per solution (Newton's method also requires $f^{\prime}\left(x_{k}\right)$ each iteration)

Secant Method

- As one may expect, the secant method converges faster than a fixed-point iteration, but slower than Newton's method
- In fact, it can be shown that for the secant method, we have

$$
\lim _{k \rightarrow \infty} \frac{\left|x_{k+1}-\alpha\right|}{\left|x_{k}-\alpha\right|^{q}}=\mu
$$

where μ is a positive constant and $q \approx 1.6$

- See [examples/unit4/secant_vs_newton.py], Newton's method versus secant method for $f(x)=e^{x}-x-2$

Systems of Nonlinear Equations

Systems of Nonlinear Equations

- We now consider fixed-point iterations and Newton's method for systems of nonlinear equations
- We suppose that $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}, n>1$, and we seek $\alpha \in \mathbb{R}^{n}$ such that $F(\alpha)=0$
- In component form, this is equivalent to

$$
\begin{gathered}
F_{1}(\alpha)=0 \\
F_{2}(\alpha)=0 \\
\ldots \\
F_{n}(\alpha)=0
\end{gathered}
$$

Fixed-Point Iteration

- For a fixed-point iteration, we again rewrite $F(x)=0$ as $x=G(x)$ to obtain

$$
x_{k+1}=G\left(x_{k}\right)
$$

- The convergence proof is the same as in the scalar case, if we replace $|\cdot|$ with $\|\cdot\|$, i.e. if $\|G(x)-G(y)\| \leq L\|x-y\|$, then $\left\|x_{k}-\alpha\right\| \leq L^{k}\left\|x_{0}-\alpha\right\|$
- As before, if G is a contraction it will converge to a fixed point α

Fixed-Point Iteration

- Recall that we define the Jacobian matrix, $J_{G} \in \mathbb{R}^{n \times n}$, to be

$$
\left(J_{G}\right)_{i j}=\frac{\partial G_{i}}{\partial x_{j}}, \quad i, j=1, \ldots, n
$$

- If $\left\|J_{G}(\alpha)\right\|_{\infty}<1$, then there is some neighborhood of α for which the fixed-point iteration converges to α
- The proof of this is a natural extension of the corresponding scalar result

Fixed-Point Iteration: Example

- Once again, we can employ a fixed point iteration to solve $F(x)=0$
- For example, consider

$$
\begin{array}{r}
x_{1}^{2}+x_{2}^{2}-1=0 \\
5 x_{1}^{2}+21 x_{2}^{2}-9=0
\end{array}
$$

- This can be rearranged to $x_{1}=\sqrt{1-x_{2}^{2}}, x_{2}=\sqrt{\left(9-5 x_{1}^{2}\right) / 21}$

Fixed-Point Iteration: Example

- Define

$$
\begin{aligned}
G_{1}\left(x_{1}, x_{2}\right) & =\sqrt{1-x_{2}^{2}} \\
G_{2}\left(x_{1}, x_{2}\right) & =\sqrt{\left(9-5 x_{1}^{2}\right) / 21}
\end{aligned}
$$

- See [examples/unit4/fixed_point_2d.py], fixed-point iteration in two dimensions

Newton's Method

- As in the one-dimensional case, Newton's method is generally more useful than a standard fixed-point iteration
- The natural generalization of Newton's method is

$$
x_{k+1}=x_{k}-J_{F}\left(x_{k}\right)^{-1} F\left(x_{k}\right)
$$

- Note that to put Newton's method in the standard form for a linear system, we write

$$
J_{F}\left(x_{k}\right) \Delta x_{k+1}=-F\left(x_{k}\right)
$$

where $\Delta x_{k+1}=x_{k+1}-x_{k}$

Newton's Method

- Once again, if x_{0} is sufficiently close to α, then Newton's method converges quadratically
- This result again relies on Taylor's theorem
- We first consider how to generalize Taylor's theorem to \mathbb{R}^{n}
- First, we consider the case for $F: \mathbb{R}^{n} \rightarrow \mathbb{R}$

Multivariate Taylor Theorem

- Let $\phi(s)=F(x+s \delta)$ and $\delta \in \mathbb{R}^{n}$. One-dimensional Taylor theorem yields

$$
\begin{aligned}
\phi(1) & =\phi(0)+\sum_{\ell=1}^{k} \frac{\phi^{(\ell)}(0)}{\ell!}+\frac{1}{(k+1)!} \phi^{(k+1)}(\eta), \quad \eta \in(0,1) \\
\phi(0) & =F(x) \\
\phi(1) & =F(x+\delta) \\
\phi^{\prime}(s) & =\frac{\partial F(x+s \delta)}{\partial x_{1}} \delta_{1}+\frac{\partial F(x+s \delta)}{\partial x_{2}} \delta_{2}+\cdots+\frac{\partial F(x+s \delta)}{\partial x_{n}} \delta_{n} \\
\phi^{\prime \prime}(s) & =\frac{\partial^{2} F(x+s \delta)}{\partial x_{1}^{2}} \delta_{1}^{2}+\cdots+\frac{\partial^{2} F(x+s \delta)}{\partial x_{1} x_{n}} \delta_{1} \delta_{n}+\cdots+ \\
& +\frac{\partial^{2} F(x+s \delta)}{\partial x_{1} \partial x_{n}} \delta_{1} \delta_{n}+\cdots+\frac{\partial^{2} F(x+s \delta)}{\partial x_{n}^{2}} \delta_{n}^{2}
\end{aligned}
$$

Multivariate Taylor Theorem

- We have

$$
F(x+\delta)=F(x)+\sum_{\ell=1}^{k} \frac{U_{\ell}(x)}{\ell!}+E_{k}
$$

where

$$
U_{\ell}(x)=\left[\left(\frac{\partial}{\partial x_{1}} \delta_{1}+\cdots+\frac{\partial}{\partial x_{n}} \delta_{n}\right)^{\ell} F\right](x), \quad \ell=1,2, \ldots, k
$$

and

$$
E_{k}=\frac{U_{k+1}(x+\eta \delta)}{(k+1)!}, \quad \eta \in(0,1)
$$

Multivariate Taylor Theorem

- Let A be an upper bound on the absolute values of all derivatives of order $k+1$, then

$$
\begin{aligned}
\left|E_{k}\right| & \leq \frac{1}{(k+1)!}\left|\left[\left(\|\delta\|_{\infty} \frac{\partial}{\partial x_{1}}+\ldots+\|\delta\|_{\infty} \frac{\partial}{\partial x_{n}}\right)^{k+1} F\right](x+\eta \delta)\right| \\
& =\frac{1}{(k+1)!}\|\delta\|_{\infty}^{k+1}\left|\left[\left(\frac{\partial}{\partial x_{1}}+\ldots+\frac{\partial}{\partial x_{n}}\right)^{k+1} F\right](x+\eta \delta)\right| \\
& \leq \frac{n^{k+1}}{(k+1)!} A\|\delta\|_{\infty}^{k+1}
\end{aligned}
$$

where the last line follows from the fact that there are n^{k+1} terms in the product (i.e. there are n^{k+1} derivatives of order $k+1$)

Multivariate Taylor Theorem

- We only need an expansion up to first order terms for analysis of Newton's method
- From our expression above, we can write first order Taylor expansion as

$$
F(x+\delta)=F(x)+\nabla F(x)^{T} \delta+E_{1}
$$

Multivariate Taylor Theorem

- For $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$, Taylor expansion follows by developing a Taylor expansion for each F_{i}

$$
F_{i}(x+\delta)=F_{i}(x)+\nabla F_{i}(x)^{T} \delta+E_{i, 1}
$$

so that for $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ we have

$$
F(x+\delta)=F(x)+J_{F}(x) \delta+E_{F}
$$

where $\left\|E_{F}\right\|_{\infty}=\max _{1 \leq i \leq n}\left|E_{i, 1}\right| \leq \frac{1}{2} n^{2}\left(\max _{1 \leq i, j, \ell \leq n}\left|\frac{\partial^{2} F_{i}}{\partial x_{j} \partial x_{\ell}}\right|\right)\|\delta\|_{\infty}^{2}$

Newton's Method

- Now return to Newton's method
- We have

$$
0=F(\alpha)=F\left(x_{k}\right)+J_{F}\left(x_{k}\right)\left[\alpha-x_{k}\right]+E_{F}
$$

so that

$$
x_{k}-\alpha=\left[J_{F}\left(x_{k}\right)\right]^{-1} F\left(x_{k}\right)+\left[J_{F}\left(x_{k}\right)\right]^{-1} E_{F}
$$

Newton's Method

- Also, the Newton iteration itself can be rewritten as

$$
J_{F}\left(x_{k}\right)\left[x_{k+1}-\alpha\right]=J_{F}\left(x_{k}\right)\left[x_{k}-\alpha\right]-F\left(x_{k}\right)
$$

- We obtain

$$
x_{k+1}-\alpha=\left[J_{F}\left(x_{k}\right)\right]^{-1} E_{F},
$$

which implies quadratic convergence

$$
\left\|x_{k+1}-\alpha\right\|_{\infty} \leq C\left\|x_{k}-\alpha\right\|_{\infty}^{2}
$$

Newton's Method: Example

- Recall the conditions of the two-point Gauss quadrature rule

$$
\begin{aligned}
& F_{1}\left(x_{1}, x_{2}, w_{1}, w_{2}\right)=w_{1}+w_{2}-2=0 \\
& F_{2}\left(x_{1}, x_{2}, w_{1}, w_{2}\right)=w_{1} x_{1}+w_{2} x_{2}=0 \\
& F_{3}\left(x_{1}, x_{2}, w_{1}, w_{2}\right)=w_{1} x_{1}^{2}+w_{2} x_{2}^{2}-2 / 3=0 \\
& F_{4}\left(x_{1}, x_{2}, w_{1}, w_{2}\right)=w_{1} x_{1}^{3}+w_{2} x_{2}^{3}=0
\end{aligned}
$$

- They constitute a nonlinear system of 4 equations for 4 unknowns

Newton's Method: Example

- We can solve this using Newton's method
- To do this, we require the Jacobian of this system:

$$
J_{F}\left(x_{1}, x_{2}, w_{1}, w_{2}\right)=\left[\begin{array}{cccc}
0 & 0 & 1 & 1 \\
w_{1} & w_{2} & x_{1} & x_{2} \\
2 w_{1} x_{1} & 2 w_{2} x_{2} & x_{1}^{2} & x_{2}^{2} \\
3 w_{1} x_{1}^{2} & 3 w_{2} x_{2}^{2} & x_{1}^{3} & x_{2}^{3}
\end{array}\right]
$$

- Alternatively, use scipy.optimize.fsolve() that implements Powell's hybrid method (combination of Newton and gradient descent) by calling HYBRD or HYBRJ from Fortran library MINPACK
- See [examples/unit4/nonlin_gauss_quad.py], two-point Gauss quadrature found from a nonlinear system

Newton's Method: Example

- Using either approach with an initial guess $[-1,1,1,1]$, we get the solution

$$
\begin{array}{rr}
x_{1}=-0.577350269189626 & \approx-1 / \sqrt{3} \\
x_{2}=0.577350269189626 & \approx 1 / \sqrt{3} \\
w_{1}=1.000000000000000 & \approx 1 \\
w_{2}=1.000000000000000 & \approx 1
\end{array}
$$

Optimization

Existence of Global Minimum

- To guarantee existence and uniqueness of a global minimum, we need to make assumptions about the objective function
- For example, if f is continuous on a closed (i.e. $\partial S \subset S$) and bounded set $S \subset \mathbb{R}^{n}$ then it has global minimum in S
- In one dimension, this says f achieves a minimum on the interval $[a, b] \subset \mathbb{R}$
- In general f does not achieve a minimum on (a, b), e.g. consider $f(x)=x$

Coercive Functions

- Another helpful concept for existence of global minimum is coercivity
- A function $f: S \rightarrow \mathbb{R}$ on an unbounded set $S \subset \mathbb{R}^{n}$ is coercive if

$$
\lim _{\|x\| \rightarrow \infty} f(x)=+\infty
$$

- That is, $f(x)$ must take large positive values whenever $\|x\|$ is large

Coercive Functions

- If f is continuous and coercive on a closed set S, then f has a global minimum in S
- Proof: From the definition of coercivity, for any $M \in \mathbb{R}, \exists r>0$ such that $f(x) \geq M$ for all $x \in S$ where $\|x\| \geq r$
- Take a point $x_{0} \in S$, and set $M=f\left(x_{0}\right)$
- Let $Y=S \cap\{\|x\| \geq r\}$, so that $f(x) \geq f\left(x_{0}\right)$ for all $x \in Y$
- And we already know that f achieves a minimum (which is at most $f\left(x_{0}\right)$) on the closed and bounded set $S \cap\{\|x\| \leq r\}$
- Hence f achieves a minimum on S

Coercive Functions: Examples

$$
f=x^{2}+y^{2}
$$

coercive on \mathbb{R}^{2}

$f=x^{2}-y^{2}$
not coercive on \mathbb{R}^{2}

$$
\begin{aligned}
f(0, y) & \rightarrow-\infty \\
\text { as }|y| & \rightarrow \infty
\end{aligned}
$$

$f=1-e^{-\left(x^{2}+y^{2}\right)}$ not coercive on \mathbb{R}^{2}

$$
\begin{gathered}
f(x, y) \rightarrow 1 \\
\text { as } x^{2}+y^{2} \rightarrow \infty
\end{gathered}
$$

Convex Functions

- An important concept for uniqueness is convexity
- A set $S \subset \mathbb{R}^{n}$ is convex if it contains the line segment between any two of its points
- That is, S is convex if for any $x, y \in S$, we have

$$
\{\theta x+(1-\theta) y: \theta \in[0,1]\} \subset S
$$

Convex Functions

- Similarly, we define convexity of a function $f: S \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$
- f is convex if its graph along any line segment in S is on or below the chord connecting the function values
- For example, f is convex if for any $x, y \in S$ and any $\theta \in(0,1)$, we have

$$
f(\theta x+(1-\theta) y) \leq \theta f(x)+(1-\theta) f(y)
$$

- Also, if

$$
f(\theta x+(1-\theta) y)<\theta f(x)+(1-\theta) f(y)
$$

then f is strictly convex

Convex Functions: Examples

$$
\begin{array}{cc}
f=x^{2}+y^{2} & f=x^{2}-y^{2} \\
\text { convex on } \mathbb{R}^{2} & \text { not convex on } \mathbb{R}^{2}
\end{array}
$$

$f=\max \left(1, x^{2}+(y+1)^{2}\right)$ convex but not strictly convex on \mathbb{R}^{2}

Convex Functions

- If f is a convex function on a convex set S, then any local minimum of f must be a global minimum
- Proof ($1 / 2$): Suppose x is a local minimum, i.e. there is $\epsilon>0$ so that $f(x) \leq f(y)$ for $y \in B(x, \epsilon)$, where $B(x, \epsilon)=\{y \in S:\|y-x\| \leq \epsilon\}$
- Suppose that x is not a global minimum, i.e. that there exists $w \in S$ such that $f(w)<f(x)$
- We will show that this gives a contradiction by drawing a line segment between x and w

Convex Functions

Proof (2/2):

- For $\theta \in[0,1]$ we have $f(\theta w+(1-\theta) x) \leq \theta f(w)+(1-\theta) f(x)$
- Let $\sigma \in(0,1]$ be sufficiently small so that

$$
z=\sigma w+(1-\sigma) x \in B(x, \epsilon)
$$

- Then

$$
f(z) \leq \sigma f(w)+(1-\sigma) f(x)<\sigma f(x)+(1-\sigma) f(x)=f(x),
$$

e.g. $f(z)<f(x)$, which contradicts that $f(x)$ is a local minimum

- Hence we cannot have $w \in S$ such that $f(w)<f(x) \quad \square$

Convex Functions

- Note that convexity does not guarantee uniqueness of global minimum
- However, if f is a strictly convex function on a convex set S, then a local minimum of f is the unique global minimum
- Optimization of convex functions over convex sets is called convex optimization, which is an important field in optimization

Optimality Conditions

- We have discussed existence and uniqueness of minima, but haven't considered how to find a minimum
- The familiar optimization idea from calculus in one dimension is: set derivative to zero, check the sign of the second derivative
- This can be generalized to \mathbb{R}^{n}

Optimality Conditions

- If $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is differentiable, then the gradient vector $\nabla f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is

$$
\nabla f(x)=\left[\begin{array}{c}
\frac{\partial f(x)}{\partial x_{1}} \\
\frac{\partial f(x)}{\partial x_{2}} \\
\vdots \\
\frac{\partial f(x)}{\partial x_{n}}
\end{array}\right]
$$

- The importance of the gradient is that ∇f points "uphill", i.e. towards points with larger values than $f(x)$
- And similarly $-\nabla f$ points "downhill"

Optimality Conditions

- This follows from Taylor's theorem for $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$
- Recall that

$$
f(x+\delta)-f(x)=\nabla f(x)^{T} \delta+\text { h.o.t. }
$$

- Let $\delta=-\epsilon \nabla f(x)$ for $\epsilon>0$ and suppose that $\nabla f(x) \neq 0$, then:

$$
f(x-\epsilon \nabla f(x))-f(x) \approx-\epsilon \nabla f(x)^{T} \nabla f(x)<0
$$

- Also, we see from Cauchy-Schwarz that

$$
\left|\nabla f(x)^{T} \frac{\delta}{\|\delta\|_{2}}\right| \leq\left|\nabla f(x)^{T} \frac{\nabla f(x)}{\|\nabla f(x)\|_{2}}\right|
$$

so $-\nabla f(x)$ is the steepest descent direction

Optimality Conditions

- Similarly, we see that a necessary condition for a local minimum at $x^{*} \in S$ is that $\nabla f\left(x^{*}\right)=0$
- In this case there is no "downhill direction" at x^{*}
- The condition $\nabla f\left(x^{*}\right)=0$ is called a first-order necessary condition for optimality, since it only involves first derivatives

Optimality Conditions

- $x^{*} \in S$ that satisfies the first-order optimality condition is called a critical point of f
- A critical point can be a local minimum, local maximum, or saddle point
- A saddle point is where some directions are "downhill" and others are "uphill", e.g. $(x, y)=(0,0)$ for $f(x, y)=x^{2}-y^{2}$

Optimality Conditions

- As in the one-dimensional case, we can look at second derivatives to classify critical points
- If $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is twice differentiable, then the Hessian is the matrix-valued function $H_{f}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n \times n}$

$$
H_{f}(x)=\left[\begin{array}{cccc}
\frac{\partial^{2} f(x)}{\partial x_{1}^{1}} & \frac{\partial^{2} f(x)}{\partial x_{2} x_{2}} & \cdots & \frac{\partial^{2} f(x)}{\partial x_{1} x_{n}} \\
\frac{\partial^{2} f(x)}{\partial x_{2} x_{1}} & \frac{\partial^{2} f(x)}{\partial x_{2}^{2}} & \cdots & \frac{\partial^{2} f(x)}{\partial x_{2} x_{n}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial^{2} f(x)}{\partial x_{n} x_{1}} & \frac{\partial^{2} f(x)}{\partial x_{n} x_{2}} & \cdots & \frac{\partial^{2} f(x)}{\partial x_{n}^{2}}
\end{array}\right]
$$

- The Hessian is the Jacobian matrix of the gradient $\nabla f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$
- If the second partial derivatives of f are continuous, then $\partial^{2} f / \partial x_{i} \partial x_{j}=\partial^{2} f / \partial x_{j} \partial x_{i}$, and H_{f} is symmetric

Optimality Conditions

- Suppose we have found a critical point x^{*}, so that $\nabla f\left(x^{*}\right)=0$
- From Taylor's theorem, for $\delta \in \mathbb{R}^{n}$, we have

$$
\begin{aligned}
f\left(x^{*}+\delta\right) & =f\left(x^{*}\right)+\nabla f\left(x^{*}\right)^{T} \delta+\frac{1}{2} \delta^{T} H_{f}\left(x^{*}+\eta \delta\right) \delta \\
& =f\left(x^{*}\right)+\frac{1}{2} \delta^{T} H_{f}\left(x^{*}+\eta \delta\right) \delta
\end{aligned}
$$

for some $\eta \in(0,1)$

Optimality Conditions

- Recall positive definiteness: A is positive definite if $x^{T} A x>0$
- Suppose $H_{f}\left(x^{*}\right)$ is positive definite
- Then (by continuity) $H_{f}\left(x^{*}+\eta \delta\right)$ is also positive definite for $\|\delta\|$ sufficiently small, so that: $\delta^{T} H_{f}\left(x^{*}+\eta \delta\right) \delta>0$
- Hence, we have $f\left(x^{*}+\delta\right)>f\left(x^{*}\right)$ for $\|\delta\|$ sufficiently small, e.g. $f\left(x^{*}\right)$ is a local minimum
- Positive definiteness of H_{f} at a critical point x^{*} is a second-order sufficient condition for a local minimum

Optimality Conditions

- A matrix can also be negative definite: $x^{T} A x<0$ for all $x \neq 0$
- Or indefinite: There exists x, y such that $x^{T} A x<0<y^{T} A y$
- Then we can classify critical points as follows:
- $H_{f}\left(x^{*}\right)$ positive definite $\Longrightarrow x^{*}$ is a local minimum
- $H_{f}\left(x^{*}\right)$ negative definite $\Longrightarrow x^{*}$ is a local maximum
- $H_{f}\left(x^{*}\right)$ indefinite $\Longrightarrow x^{*}$ is a saddle point

Optimality Conditions

- Also, positive definiteness of the Hessian is closely related to convexity of f
- If $H_{f}(x)$ is positive definite, then f is convex on some convex neighborhood of x
- If $H_{f}(x)$ is positive definite for all $x \in S$, where S is a convex set, then f is convex on S
- Question: How do we test for positive definiteness?

Optimality Conditions

- Answer: For a symmetric matrix A
- A is positive definite if and only if all eigenvalues of A are positive, - A is negative definite if and only if all eigenvalues of A are negative
- Also, a matrix with positive and negative eigenvalues is indefinite
- Hence we can compute all the eigenvalues of A and check their signs

Optimality Conditions: Example

- From Heath's book (Example 6.5)
- Consider

$$
f(x)=2 x_{1}^{3}+3 x_{1}^{2}+12 x_{1} x_{2}+3 x_{2}^{2}-6 x_{2}+6
$$

- Then

$$
\nabla f(x)=\left[\begin{array}{c}
6 x_{1}^{2}+6 x_{1}+12 x_{2} \\
12 x_{1}+6 x_{2}-6
\end{array}\right]
$$

- We set $\nabla f(x)=0$ to find critical points $[1,-1]^{T}$ and $[2,-3]^{T}$

Optimality Conditions: Example

- The Hessian is

$$
H_{f}(x)=\left[\begin{array}{cc}
12 x_{1}+6 & 12 \\
12 & 6
\end{array}\right]
$$

- and hence

$$
\begin{aligned}
& H_{f}(1,-1)=\left[\begin{array}{cc}
18 & 12 \\
12 & 6
\end{array}\right], \text { which has eigenvalues } 25.4,-1.4 \\
& H_{f}(2,-3)=\left[\begin{array}{cc}
30 & 12 \\
12 & 6
\end{array}\right], \text { which has eigenvalues 35.0, } 1.0
\end{aligned}
$$

- Hence $[2,-3]^{T}$ is a local minimum whereas $[1,-1]^{T}$ is a saddle point

Optimization Methods

Steepest Descent

- One gradient-based method for unconstrained optimization is steepest descent
- Key idea: The negative gradient $-\nabla f(x)$ points in the "steepest downhill" direction for f at x
- An iterative method for minimizing f is obtained by following $-\nabla f\left(x_{k}\right)$ at each step
- Question: How far should we go in the direction of $-\nabla f\left(x_{k}\right)$?

Steepest Descent

- We can try to find the best step size via an easier subproblem
- For a direction $s \in \mathbb{R}^{n}$, let $\phi: \mathbb{R} \rightarrow \mathbb{R}$ be given by

$$
\phi(\eta)=f(x+\eta s)
$$

- Then minimizing f along s corresponds to minimizing the one-dimensional function ϕ
- This process of minimizing f along a line is called a line search

Steepest Descent

- Putting these pieces together leads to the steepest descent method:

$$
\begin{array}{ll}
1: & \text { choose initial guess } x_{0} \\
2: & \text { for } k=0,1,2, \ldots \text { do } \\
\text { 3: } & s_{k}=-\nabla f\left(x_{k}\right) \\
\text { 4: } & \text { choose } \eta_{k} \text { to minimize } f\left(x_{k}+\eta_{k} s_{k}\right) \\
\text { 5: } & x_{k+1}=x_{k}+\eta_{k} s_{k} \\
\text { 6: } & \text { end for }
\end{array}
$$

- However, steepest descent often converges very slowly
- Steepest descent is part of HW4
- A simpler option to use a constant $\eta_{k}=\eta$

Newton's Method

- We can get faster convergence by using more information about f
- Note that $\nabla f(x)=0$ is a system of nonlinear equations, so we can solve it with quadratic convergence via Newton's method
- The Jacobian matrix of $\nabla f(x)$ is $H_{f}(x)$ and therefore Newton's method for unconstrained optimization is:

$$
\begin{array}{ll}
\text { 1: choose initial guess } x_{0} \\
\text { 2: } & \text { for } k=0,1,2, \ldots \text { do } \\
\text { 3: } & \text { solve } H_{f}\left(x_{k}\right) s_{k}=-\nabla f\left(x_{k}\right) \\
\text { 4: } & x_{k+1}=x_{k}+s_{k} \\
\text { 5: } & \text { end for }
\end{array}
$$

Newton's Method

- We can also interpret Newton's method as seeking a stationary point based on a sequence of local quadratic approximations
- Recall that for small δ

$$
f(x+\delta) \approx f(x)+\nabla f(x)^{T} \delta+\frac{1}{2} \delta^{T} H_{f}(x) \delta=q(\delta)
$$

where $q(\delta)$ is quadratic in δ (for a fixed x)

- We find stationary point of q in the usual way:

$$
\nabla q(\delta)=\nabla f(x)+H_{f}(x) \delta=0
$$

- This leads to $H_{f}(x) \delta=-\nabla f(x)$, as in the previous slide

Newton's Method: Example

- Rosenbrock function

$$
f(x, y)=100\left(y-x^{2}\right)^{2}+(1-x)^{2}
$$

with minimum 0 at $(x, y)=(1,1)$

- See [examples/unit4/rosenbrock.py],

Rosenbrock function minimized with Newton's method

Newton's Method: Robustness

- Newton's method generally converges much faster than steepest descent
- However, Newton's method can be unreliable far away from a solution
- To improve robustness during early iterations it is common to perform a line search in the Newton step direction
- Also line search can ensure we don't approach a local maximum (instead of minimum) as can happen with raw Newton method
- The line search modifies the Newton step size, therefore often referred to as a damped Newton method

Newton's Method: Robustness

- Another way to improve robustness is with trust region methods
- At each iteration k, a "trust radius" R_{k} is computed
- This determines a region surrounding x_{k} on which we "trust" our quadratic approx.
- We require $\left\|x_{k+1}-x_{k}\right\| \leq R_{k}$, which is a constrained optimization problem (with quadratic objective function) at each step

Newton's Method: Robustness

- Size of R_{k+1} is based on comparing actual change, $f\left(x_{k+1}\right)-f\left(x_{k}\right)$, to change predicted by the quadratic model
- If quadratic model is accurate, we expand the trust radius, otherwise we contract it
- When close to a minimum, R_{k} should be large enough to allow full Newton steps \Longrightarrow eventual quadratic convergence

Quasi-Newton Methods

- Possible drawbacks of Newton's method
- unreliable: only converges when sufficiently close to a minimum
- expensive: the Hessian H_{f} is dense in general, making the method expensive if n is large
- complicated: can be impractical to compute the Hessian exactly
- Methods that do not require the Hessian but achieve superlinear convergence are quasi-Newton methods

Quasi-Newton Methods

- General form of quasi-Newton methods:

$$
x_{k+1}=x_{k}-\alpha_{k} B_{k}^{-1} \nabla f\left(x_{k}\right)
$$

where α_{k} is a line search parameter and
B_{k} is some approximation to the Hessian

- Quasi-Newton methods generally lose quadratic convergence of Newton's method, but often achieve superlinear convergence
- We now consider some specific quasi-Newton methods

BFGS

- The Broyden-Fletcher-Goldfarb-Shanno (BFGS) method is one of the most popular quasi-Newton methods

$$
\begin{array}{ll}
\hline \text { 1: } & \text { choose initial guess } x_{0} \\
\text { 2: } & \text { choose } B_{0} \text {, initial guess for Hessian, e.g. } B_{0}=\mathrm{I} \\
\text { 3: } & \text { for } k=0,1,2, \ldots \text { do } \\
\text { 4: } & \text { solve } B_{k} s_{k}=-\nabla f\left(x_{k}\right) \\
\text { 5: } & x_{k+1}=x_{k}+s_{k} \\
\text { 6: } & y_{k}=\nabla f\left(x_{k+1}\right)-\nabla f\left(x_{k}\right) \\
\text { 7: } & B_{k+1}=B_{k}+\Delta B_{k} \\
\text { 8: } & \text { end for }
\end{array}
$$

where $\Delta B_{k}=\frac{y_{k} y_{k}^{T}}{y_{k}^{T} s_{k}}-\frac{B_{k} s_{k} s_{k}^{T} B_{k}}{s_{k}^{T} B_{k} s_{k}}$

BFGS

- Basic idea is that B_{k} accumulates second derivative information on successive iterations and eventually approximates H_{f} well
- BFGS is implemented in scipy.optimize.fmin_bfgs()
- See [examples/unit4/rosenbrock.py],

Rosenbrock function minimized with BFGS

BFGS: Derivation

- Replace Newton's update $H_{f}\left(x_{k}\right) s_{k}=-\nabla f\left(x_{k}\right)$ with

$$
B_{k} s_{k}=-\nabla f\left(x_{k}\right)
$$

where $s_{k}=x_{k+1}-x_{k}$

- Define $B_{k+1} \in \mathbb{R}^{n \times n}$ to satisfy the requirements
- B_{k+1} is obtained by a "small" change from B_{k}
- B_{k+1} is symmetric and positive definite
- $B_{k+1} \approx H_{f}\left(x_{k+1}\right)$

BFGS: Derivation

- In particular, we want $B_{k+1} s_{k} \approx H_{f}\left(x_{k+1}\right) s_{k}$
- The product $H_{f}\left(x_{k+1}\right) s_{k}$ is the directional derivative of ∇f along s_{k} and can be approximated by the difference $y_{k}=\nabla f\left(x_{k+1}\right)-\nabla f\left(x_{k}\right)$ $H_{f}\left(x_{k+1}\right) s_{k}=\lim _{h \rightarrow 0} \frac{\nabla f\left(x_{k+1}\right)-\nabla f\left(x_{k+1}-h s_{k}\right)}{h} \underset{h=1}{\approx} \nabla f\left(x_{k+1}\right)-\nabla f\left(x_{k}\right)=y_{k}$
- Impose the requirement $B_{k+1} s_{k}=y_{k}$ exactly

BFGS: Derivation

- Look for B_{k+1} in the form of a rank-two update

$$
B_{k+1}=B_{k}-\beta v v^{T}+\alpha u u^{T}
$$

with unknown $\alpha, \beta \in \mathbb{R}$ and $u, v \in \mathbb{R}^{n}$

- impose $\left(B_{k}-\beta v v^{T}\right) s_{k}=0$

$$
0=\left(B_{k}-\beta v v^{T}\right) s_{k}=B_{k} s_{k}-\beta v v^{T} s_{k}=B_{k} s_{k}-\left(\beta v^{T} s_{k}\right) v
$$

which is achieved by $v=B_{k} s_{k}$ and $\beta=\frac{1}{s_{k}^{T} B_{k} s_{k}}$

- impose $\alpha u u^{T} s_{k}=y_{k}$

$$
y_{k}=\alpha u u^{T} s_{k}=\left(\alpha u^{T} s_{k}\right) u
$$

which is achieved by $u=y_{k}$ and $\alpha=\frac{1}{y_{k}^{T} s_{k}}$

- This implies $B_{k+1} s_{k}=y_{k}$ and recovers the BFGS algorithm above

BFGS: Derivation

- Note that if B_{k} is symmetric and positive definite, then $B_{k}-\beta v v^{T}=B_{k}-\frac{B_{k} s_{k}^{T} s_{k}^{T} B_{k}}{s_{k}^{T} B_{k} s_{k}}$ is positive semi-definite
- Under the assumption $y_{k}^{T} s_{k}>0$, known as the curvature condition, the matrix $\alpha u u^{T}=\frac{y_{k} y_{k}^{T}}{y_{k}^{T} s_{k}}$ is positive definite
- Therefore, $B_{k+1}=B_{k}-\beta v v^{T}+\alpha u u^{T}$ is positive definite

BFGS: Inverse Hessian

- Actual implementation of BFGS: store and update the inverse approximate Hessian H_{k} to avoid solving a linear system

```
1: choose initial guess \(x_{0}\)
2: choose \(H_{0}\), initial guess for inverse Hessian, e.g. \(H_{0}=\mathrm{I}\)
3: for \(k=0,1,2, \ldots\) do
4: \(\quad s_{k}=-H_{k} \nabla f\left(x_{k}\right)\)
5: \(\quad x_{k+1}=x_{k}+s_{k}\)
6: \(\quad y_{k}=\nabla f\left(x_{k+1}\right)-\nabla f\left(x_{k}\right)\)
7: \(\quad H_{k+1}=\left(I-\rho_{k} s_{k} y_{k}^{T}\right) H_{k}\left(I-\rho_{k} y_{k} s_{k}^{T}\right)+\rho_{k} s_{k} s_{k}^{T}\)
8: end for
```

where $\rho_{k}=\frac{1}{y_{k}^{T} s_{k}}$

BFGS: Inverse Hessian

- The update rule for H_{k+1} follows from the update rule for B_{k+1} and the Sherman-Morrison-Woodbury formula

$$
\left(A+U V^{T}\right)^{-1}=A^{-1}-A^{-1} U\left(I+V^{T} A^{-1} U\right)^{-1} V^{T} A^{-1}
$$

where $A \in \mathbb{R}^{n \times n} \quad$ and $\quad U, V \in \mathbb{U}^{n \times p}$

- Provides a low-rank update of the inverse from a low-rank update of the matrix
- In our case

$$
\left.\begin{array}{l}
B_{k+1}=B_{k}+U V^{T}=B_{k}+\frac{1}{y_{k}^{T} s_{k}} y_{k} y_{k}^{T}-\frac{1}{s_{k}^{T} B_{k} s_{k}} B_{k} s_{k} s_{k}^{T} B_{k} \\
U=\left[\frac{1}{y_{k}^{T} s_{k}} y_{k}-\frac{1}{s_{k}^{T} B_{k} s_{k}} B_{s} s_{k}\right.
\end{array}\right], \quad V=\left[\begin{array}{ll}
y_{k} & B_{k} s_{k}
\end{array}\right] \in \mathbb{R}^{n \times 2} .
$$

BFGS: Modifications

- Typically, the search direction s_{k} is adjusted by a more robust inexact line search, e.g. Wolfe conditions
- Limited-memory BFGS (L-BFGS) avoids storing the full H_{k} and instead represents H_{k} implicitly using a limited history of gradient evaluations. Suited for large-scale problems
- Extra reading: Nocedal \& Wright. Numerical Optimization, 1999 (chapters 6 and 7)

Constrained Optimization

Constrained Optimization

- So far we have ignored constraints
- Now we consider equality constrained optimization

$$
\min _{x \in \mathbb{R}^{n}} f(x) \quad \text { subject to } \quad g(x)=0
$$

where $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and $g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$, with $m \leq n$

- There are n unknowns and m constraints
- This problem is solved with Lagrange mutlipliers

Constrained Optimization

- We illustrate the concept of Lagrange multipliers for $f, g: \mathbb{R}^{2} \rightarrow \mathbb{R}$
- Let $f(x, y)=x+y$ and $g(x, y)=2 x^{2}+y^{2}-5$

- ∇g is normal to S : at any $x \in S$ we must move in direction $(\nabla g(x))_{\perp}$ (tangent direction) to remain in S

Constrained Optimization

- Also, change in f due to infinitesimal step in direction $(\nabla g(x))_{\perp}$ is

$$
f\left(x \pm \epsilon(\nabla g(x))_{\perp}\right)=f(x) \pm \epsilon \nabla f(x)^{T}(\nabla g(x))_{\perp}+\text { h.o.t. }
$$

- A critical point $x^{*} \in S$ satisfies $\nabla f\left(x^{*}\right)^{T}\left(\nabla g\left(x^{*}\right)\right)_{\perp}=0$, or

$$
\nabla f\left(x^{*}\right)=\lambda^{*} \nabla g\left(x^{*}\right), \quad \text { for some } \lambda^{*} \in \mathbb{R}
$$

Constrained Optimization

- This shows that for a stationary point with $m=1$ constraints, ∇f cannot have any component in the "tangent direction" to S
- Now, consider the case with $m>1$ equality constraints
- Then $g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ and we have the gradients $\nabla g_{i}, i=1, \ldots, m$
- Then the feasible set is $S=\left\{x \in \mathbb{R}^{n}: g_{i}(x)=0, i=1, \ldots, m\right\}$
- Any "tangent direction" at $x \in S$ must be orthogonal to all gradient vectors $\left\{\nabla g_{i}(x), i=1, \ldots, m\right\}$ to remain in S

Constrained Optimization

- Let $\mathcal{T}(x)=\left\{v \in \mathbb{R}^{n}: \nabla g_{i}(x)^{T} v=0, i=1,2, \ldots, m\right\}$ denote the orthogonal complement of $\left\{\nabla g_{i}(x), i=1, \ldots, m\right\}$
- Then, for $\delta \in \mathcal{T}(x)$ and $\epsilon>0, \epsilon \delta$ is a step in a "tangent direction" of S at x
- Since we have

$$
f\left(x^{*}+\epsilon \delta\right)=f\left(x^{*}\right)+\epsilon \nabla f\left(x^{*}\right)^{T} \delta+\text { h.o.t. }
$$

it follows that for a stationary point we need

$$
\nabla f\left(x^{*}\right)^{T} \delta=0 \text { for all } \delta \in \mathcal{T}\left(x^{*}\right)
$$

Constrained Optimization

- We require that at a stationary point $x^{*} \in S$ we have

$$
\nabla f\left(x^{*}\right) \in \operatorname{span}\left\{\nabla g_{i}\left(x^{*}\right), i=1, \ldots, m\right\}
$$

- This can be written as a linear system

$$
\nabla f\left(x^{*}\right)=\left(J_{g}\left(x^{*}\right)\right)^{T} \lambda^{*}
$$

for some $\lambda^{*} \in \mathbb{R}^{m}$, where $\left(J_{g}\left(x^{*}\right)\right)^{T} \in \mathbb{R}^{n \times m}$

- This follows because the columns of $\left(J_{g}\left(x^{*}\right)\right)^{T}$ are the vectors $\left\{\nabla g_{i}\left(x^{*}\right), i=1, \ldots, m\right\}$

Constrained Optimization

- We can write equality constrained optimization problems more concisely by introducing the Lagrangian function, $\mathcal{L}: \mathbb{R}^{n+m} \rightarrow \mathbb{R}$,

$$
\begin{aligned}
\mathcal{L}(x, \lambda) & =f(x)+\lambda^{T} g(x) \\
& =f(x)+\lambda_{1} g_{1}(x)+\cdots+\lambda_{m} g_{m}(x)
\end{aligned}
$$

- Then

$$
\begin{array}{ll}
\frac{\partial \mathcal{L}(x, \lambda)}{\partial x_{i}}=\frac{\partial f(x)}{\partial x_{i}}+\lambda_{1} \frac{\partial g_{1}(x)}{\partial x_{i}}+\cdots+\lambda_{n} \frac{\partial g_{n}(x)}{\partial x_{i}}, & i=1, \ldots, n \\
\frac{\partial \mathcal{L}(x, \lambda)}{\partial \lambda_{i}}=g_{i}(x), & i=1, \ldots, m
\end{array}
$$

Constrained Optimization

- In matrix form

$$
\nabla \mathcal{L}(x, \lambda)=\left[\begin{array}{c}
\nabla_{x} \mathcal{L}(x, \lambda) \\
\nabla_{\lambda} \mathcal{L}(x, \lambda)
\end{array}\right]=\left[\begin{array}{c}
\nabla f(x)+J_{g}(x)^{T} \lambda \\
g(x)
\end{array}\right],
$$

- Therefore, the first order necessary optimality condition for the constrained problem can be written as a nonlinear system

$$
\nabla \mathcal{L}(x, \lambda)=\left[\begin{array}{c}
\nabla f(x)+J_{g}(x)^{T} \lambda \\
g(x)
\end{array}\right]=0
$$

Constrained Optimization: Examples

- Consider a cylinder with radius x_{1} and height x_{2}
- Minimize the surface area of a cylinder subject to a constraint on its volume

$$
\begin{gathered}
\min _{x} f\left(x_{1}, x_{2}\right)=2 \pi x_{1}\left(x_{1}+x_{2}\right) \\
\text { subject to } g\left(x_{1}, x_{2}\right)=\pi x_{1}^{2} x_{2}-V=0
\end{gathered}
$$

Constrained Optimization: Examples

- Another example is the underdetermined linear least squares problem from Unit 1

$$
\min _{b \in \mathbb{R}^{n}} f(b) \quad \text { subject to } \quad g(b)=0
$$

where $f(b)=b^{T} b, g(b)=A b-y$ and $A \in \mathbb{R}^{m \times n}$ with $m<n$

Constrained Optimization: Examples

- Introducing Lagrange multipliers gives

$$
\mathcal{L}(b, \lambda)=b^{T} b+\lambda^{T}(A b-y)
$$

where $b \in \mathbb{R}^{n}$ and $\lambda \in \mathbb{R}^{m}$

- And the necessary optimality condition $\nabla \mathcal{L}(b, \lambda)=0$ is

$$
\left[\begin{array}{c}
\nabla f(b)+J_{g}(b)^{T} \lambda \\
g(b)
\end{array}\right]=\left[\begin{array}{c}
2 b+A^{T} \lambda \\
A b-y
\end{array}\right]=0 \in \mathbb{R}^{n+m}
$$

Constrained Optimization: Examples

- We obtain the $(n+m) \times(n+m)$ square linear system

$$
\left[\begin{array}{cc}
2 \mathrm{I} & A^{T} \\
A & 0
\end{array}\right]\left[\begin{array}{l}
b \\
\lambda
\end{array}\right]=\left[\begin{array}{l}
0 \\
y
\end{array}\right]
$$

which we can solve for $\left[\begin{array}{c}b \\ \lambda\end{array}\right] \in \mathbb{R}^{n+m}$

Constrained Optimization: Examples

- We have $b=-\frac{1}{2} A^{T} \lambda$ from the first "block row"
- Subsituting into $A b=y$ (the second "block row") yields $\lambda=-2\left(A A^{T}\right)^{-1} y$
- And hence

$$
b=-\frac{1}{2} A^{T} \lambda=A^{T}\left(A A^{T}\right)^{-1} y
$$

which was the solution we introduced (but didn't derive) in Unit 1

Sequential Quadratic Programming

Sequential Quadratic Programming

- Consider equality constrained minimization

$$
\min _{x \in \mathbb{R}^{n}} f(x) \quad \text { subject to } \quad g(x)=0
$$

where $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and $g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$

- With the Lagrangian $\mathcal{L}(x, \lambda)=f(x)+\lambda^{T} g(x)$, the necessary condition for optimality is

$$
\nabla \mathcal{L}(x, \lambda)=\left[\begin{array}{c}
\nabla f(x)+J_{g}^{T}(x) \lambda \\
g(x)
\end{array}\right]=0
$$

- Once again, this is a nonlinear system of equations that can be solved using Newton's method

Sequential Quadratic Programming

- To derive the Jacobian of this system, we write

$$
\nabla \mathcal{L}(x, \lambda)=\left[\begin{array}{c}
\nabla f(x)+\sum_{k=1}^{m} \lambda_{k} \nabla g_{k}(x) \\
g(x)
\end{array}\right] \in \mathbb{R}^{n+m}
$$

- Then we differentiate w.r.t to $x \in \mathbb{R}^{n}$ and $\lambda \in \mathbb{R}^{m}$
- For $i=1, \ldots, n$, we have

$$
(\nabla \mathcal{L}(x, \lambda))_{i}=\frac{\partial f(x)}{\partial x_{i}}+\sum_{k=1}^{m} \lambda_{k} \frac{\partial g_{k}(x)}{\partial x_{i}}
$$

- Differentiating w.r.t x_{j}, for $i, j=1, \ldots, n$, gives

$$
\frac{\partial}{\partial x_{j}}(\nabla \mathcal{L}(x, \lambda))_{i}=\frac{\partial^{2} f(x)}{\partial x_{i} \partial x_{j}}+\sum_{k=1}^{m} \lambda_{k} \frac{\partial^{2} g_{k}(x)}{\partial x_{i} \partial x_{j}}
$$

Sequential Quadratic Programming

- The top-left $n \times n$ block of the Jacobian of $\nabla \mathcal{L}(x, \lambda)$ is

$$
B(x, \lambda)=H_{f}(x)+\sum_{k=1}^{m} \lambda_{k} H_{g_{k}}(x) \in \mathbb{R}^{n \times n}
$$

- Differentiating $(\nabla \mathcal{L}(x, \lambda))_{i}$ w.r.t λ_{j}, for $i=1, \ldots, n, j=1, \ldots, m$, gives

$$
\frac{\partial}{\partial \lambda_{j}}(\nabla \mathcal{L}(x, \lambda))_{i}=\frac{\partial g_{j}(x)}{\partial x_{i}}
$$

- The top-right $n \times m$ block of the Jacobian of $\nabla \mathcal{L}(x, \lambda)$ is

$$
J_{g}(x)^{T} \in \mathbb{R}^{n \times m}
$$

Sequential Quadratic Programming

- For $i=n+1, \ldots, n+m$, we have

$$
(\nabla \mathcal{L}(x, \lambda))_{i}=g_{i}(x)
$$

- Differentiating $(\nabla \mathcal{L}(x, \lambda))_{i}$ w.r.t x_{j}, for $i=n+1, \ldots, n+m, j=1, \ldots, n$, gives

$$
\frac{\partial}{\partial x_{j}}(\nabla \mathcal{L}(x, \lambda))_{i}=\frac{\partial g_{i}(x)}{\partial x_{j}}
$$

- The bottom-left $m \times n$ block of the Jacobian of $\nabla \mathcal{L}(x, \lambda)$ is

$$
J_{g}(x) \in \mathbb{R}^{m \times n}
$$

- The final $m \times m$ bottom right block is zero $\left(g_{i}(x)\right.$ does not depend on $\left.\lambda_{j}\right)$

Sequential Quadratic Programming

- We have derived the following Jacobian matrix for $\nabla \mathcal{L}(x, \lambda)$

$$
\left[\begin{array}{cc}
B(x, \lambda) & J_{g}^{T}(x) \\
J_{g}(x) & 0
\end{array}\right] \in \mathbb{R}^{(m+n) \times(m+n)}
$$

- Note the 2×2 block structure of this matrix
- Matrices with this structure are called KKT matrices after Karush, Kuhn, and Tucker

Sequential Quadratic Programming

- Therefore, Newton's method for $\nabla \mathcal{L}(x, \lambda)=0$ is

$$
\left[\begin{array}{cc}
B\left(x_{k}, \lambda_{k}\right) & J_{g}^{T}\left(x_{k}\right) \\
J_{g}\left(x_{k}\right) & 0
\end{array}\right]\left[\begin{array}{c}
s_{k} \\
\delta_{k}
\end{array}\right]=-\left[\begin{array}{c}
\nabla f\left(x_{k}\right)+J_{g}^{T}\left(x_{k}\right) \lambda_{k} \\
g\left(x_{k}\right)
\end{array}\right]
$$

for $k=0,1,2, \ldots$

- Here $\left(s_{k}, \delta_{k}\right) \in \mathbb{R}^{n+m}$ is the k-th Newton step

Sequential Quadratic Programming

- Now, consider the constrained minimization problem, where $\left(x_{k}, \lambda_{k}\right)$ is our Newton iterate at step k :

$$
\begin{gathered}
\min _{s}\left\{\frac{1}{2} s^{T} B\left(x_{k}, \lambda_{k}\right) s+s^{T}\left(\nabla f\left(x_{k}\right)+J_{g}^{T}\left(x_{k}\right) \lambda_{k}\right)\right\} \\
\text { subject to } \quad J_{g}\left(x_{k}\right) s+g\left(x_{k}\right)=0
\end{gathered}
$$

- The objective function is quadratic in s (here x_{k}, λ_{k} are constants)
- This minimization problem has Lagrangian

$$
\begin{aligned}
\mathcal{L}_{k}(s, \delta) & =\frac{1}{2} s^{T} B\left(x_{k}, \lambda_{k}\right) s+s^{T}\left(\nabla f\left(x_{k}\right)+J_{g}^{T}\left(x_{k}\right) \lambda_{k}\right) \\
& +\delta^{T}\left(J_{g}\left(x_{k}\right) s+g\left(x_{k}\right)\right)
\end{aligned}
$$

Sequential Quadratic Programming

- Then solving $\nabla \mathcal{L}_{k}(s, \delta)=0$ (i.e. first-order necessary conditions) gives a linear system, which is the same as the k-th Newton step
- Therefore, at each step of Newton's method, we exactly solve a minimization problem with a quadratic objective and linear constraints
- Optimization of this type is called quadratic programming
- Therefore, Newton's method applied to $\mathcal{L}(x, \lambda)=0$ is called sequential quadratic programming (SQP)

Sequential Quadratic Programming

- SQP is an important method, and there are many issues to be considered to obtain an efficient and reliable implementation:
- efficient solution of the linear systems at each Newton iteration matrix block structure can be exploited
- quasi-Newton approximations to the Hessian
- trust region, line search to improve robustness
- treatment of constraints (equality and inequality) during the iterative process
- selection of a good initial guess for λ

Penalty Methods

- Another approach to constrained optimization is penalty methods
- This converts a constrained problem into an unconstrained problem
- Key idea: Introduce a new objective function which is a weighted sum of objective function and constraints

Penalty Methods

- Given the minimization problem

$$
\min _{x} f(x) \quad \text { subject to } \quad g(x)=0
$$

define the corresponding penalized unconstrained problem

$$
\min _{x} \phi_{\rho}(x)=f(x)+\frac{1}{2} \rho g(x)^{T} g(x)
$$

with a parameter $\rho \in \mathbb{R}$

- Let x^{*} be the solution of the constrained problem
- Let x_{ρ}^{*} be the solution of the penalized unconstrained problem
- Under appropriate conditions, it can be shown that

$$
\lim _{\rho \rightarrow \infty} x_{\rho}^{*}=x^{*}
$$

Penalty Methods

- In practice, we can solve the unconstrained problem for a large value of ρ to get a good approximation of x^{*}
- Another strategy is to solve for a sequence of penalty parameters ρ_{k}, where $x_{\rho_{k}}^{*}$ serves as an initial guess for $x_{\rho_{k+1}}^{*}$
- Note that the major drawback of penalty methods is that a large factor ρ will increase the condition number of the Hessian $H_{\phi_{\rho}}$
- However, penalty methods can be convenient due to their simplicity

PDE-Constrained Optimization

PDE-Constrained Optimization

- Consider a general optimization problem

$$
\min _{p \in \mathbb{R}^{n}} \mathcal{G}(p)
$$

with the objective function $\mathcal{G}: \mathbb{R}^{n} \rightarrow \mathbb{R}$

- Gradient-based methods require gradients of the objective
- They could be approximated with finite differences

PDE-Constrained Optimization

- However, each partial derivative requires an extra evaluation of \mathcal{G}

$$
\frac{\partial \mathcal{G}(p)}{\partial p_{i}} \approx \frac{\mathcal{G}\left(p+h e_{i}\right)-\mathcal{G}(p)}{h}
$$

so we need $n+1$ evaluations of \mathcal{G} to approximate $\nabla \mathcal{G}(p)$

- For example, if $\mathcal{G}(p)$ requires solving a PDE and parameters p represent an unknown field on a grid, this procedure becomes too expensive
- The accuracy of finite differences is also limited

PDE-Constrained Optimization

- There are two main alternative approaches for computing gradients of solutions of ODEs or PDEs
- direct method
- adjoint method
- The direct method is simpler, but the adjoint method is more efficient in cases with many parameters

One-Dimensional Case

- Consider the boundary value problem for an ODE

$$
-u^{\prime \prime}(x ; p)+r(x ; p) u(x ; p)=f(x), \quad u(a)=u(b)=0
$$

referred to as the primal equation

- Here the functions $r: \mathbb{R} \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ and $f: \mathbb{R} \rightarrow \mathbb{R}$ are given
- The objective function $\mathcal{G}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is assumed to be a linear functional

$$
\mathcal{G}(p)=\int_{a}^{b} \sigma(x) u(x ; p) \mathrm{d} x
$$

for some given function $\sigma: \mathbb{R} \rightarrow \mathbb{R}$

Direct Method

- Note that the gradient of the objective is

$$
\frac{\partial \mathcal{G}(p)}{\partial p_{i}}=\int_{a}^{b} \sigma(x) \frac{\partial u}{\partial p_{i}} \mathrm{~d} x
$$

so we can compute it from derivatives of the solution $\frac{\partial u}{\partial p_{i}}$

- Differentiate the original ODE with respect to p_{i}

$$
-\frac{\partial u^{\prime \prime}}{\partial p_{i}}(x ; p)+r(x ; p) \frac{\partial u}{\partial p_{i}}(x ; p)=-\frac{\partial r}{\partial p_{i}} u(x ; p)
$$

for $i=1,2, \ldots, n$

Direct Method

- Once we compute each $\frac{\partial u}{\partial p_{i}}$ we can then evaluate $\nabla \mathcal{G}(p)$ by evaluating a sequence of n integrals
- This is not much better than using finite differences: we still need to solve n separate problems
- However, those can be cheaper since only the right-hand side changes. For example, we can reuse a common LU factorization

Adjoint Method

- A more efficient approach when n is large is the adjoint method
- The adjoint problem is defined as

$$
-z^{\prime \prime}(x ; p)+r(x ; p) z(x ; p)=\sigma(x), \quad z(a)=z(b)=0
$$

- Since $\sigma(x)$ enters the right-hand side, the adjoint problem depends on the objective

Adjoint Method

- Given a solution $z(x ; p)$ of the adjoint problem, the gradient is

$$
\begin{aligned}
\frac{\partial \mathcal{G}(p)}{\partial p_{i}} & =\int_{a}^{b} \sigma(x) \frac{\partial u}{\partial p_{i}} \mathrm{~d} x \\
& =\int_{a}^{b}\left[-z^{\prime \prime}(x ; p)+r(x ; p) z(x ; p)\right] \frac{\partial u}{\partial p_{i}} \mathrm{~d} x \\
& =\int_{a}^{b} z(x ; p)\left[-\frac{\partial u^{\prime \prime}}{\partial p_{i}}(x ; p)+r(x ; p) \frac{\partial u}{\partial p_{i}}(x ; p)\right] \mathrm{d} x
\end{aligned}
$$

- The last line follows from integrating by parts twice (boundary terms vanish because $\frac{\partial u}{\partial p_{i}}$ and z are zero at a and b)

Adjoint Method

- Recall the derivative of the primal problem with respect to p_{i}

$$
-\frac{\partial u^{\prime \prime}}{\partial p_{i}}(x ; p)+r(x ; p) \frac{\partial u}{\partial p_{i}}(x ; p)=-\frac{\partial r}{\partial p_{i}} u(x ; p)
$$

- Combining both, we get

$$
\frac{\partial \mathcal{G}(p)}{\partial p_{i}}=-\int_{a}^{b} \frac{\partial r}{\partial p_{i}} z(x ; p) u(x ; p) \mathrm{d} x
$$

- Therefore, we only need to solve the primal and adjoint problems once and then can obtain each component of $\nabla \mathcal{G}(p)$ from the integral
- This idea extends to PDEs

Linear Programming

Linear Programming

- As we mentioned earlier, the optimization problem

$$
\min _{x \in \mathbb{R}^{n}} f(x) \text { subject to } g(x)=0 \text { and } h(x) \leq 0
$$

with f, g, h affine, is called a linear programming problem

- The feasible region is a convex polyhedron
- Since the objective function has a constant non-zero gradient, its global minimum must occur at a vertex of the feasible region

Linear Programming

- Example of a convex feasible region in \mathbb{R}^{2}

Linear Programming

- The standard approach to linear programming is conceptually simple: try a sequence of the vertices to find the minimum
- This is called the simplex method
- In the worst case, the computational cost of the simplex method grows exponentially with the size of the problem
- But this worst-case behavior is rare. In practice, the cost grows linearly
- We will not discuss the implementation of the simplex method

Linear Programming

- scipy.optimize.linprog uses the HiGHS library that implements the dual revised simplex method
- See [examples/unit4/linprog.py], solving the problem

$$
\min _{x} f(x)=-5 x_{1}-4 x_{2}-6 x_{3}
$$

subject to

$$
\begin{aligned}
x_{1}-x_{2}+x_{3} & \leq 20 \\
3 x_{1}+2 x_{2}+4 x_{3} & \leq 42 \\
3 x_{1}+2 x_{2} & \leq 30
\end{aligned}
$$

$$
\text { and } 0 \leq x_{1}, 0 \leq x_{2}, 0 \leq x_{3}
$$

