Applied Mathematics 205

Unit 5. Eigenvalue Problems
and Iterative Methods

Lecturer: Petr Karnakov

November 21, 2022

Outline

e In this Unit, we will discuss
= methods to compute eigenvalues and eigenvectors of matrices
= iterative methods to solve linear systems

e Eigenvalue problems have applications in stability analysis,
vibration analysis, and are useful to study properties of matrices

o Iterative methods are better suited for large-scale problems
and parallel computation than direct methods (e.g. Gaussian elimination)

Eigenvalues and Eigenvectors

Consider a matrix A € R™*"

Vector v € R” is called an of A if
Av = \v

for ascalar A € R

The corresponding A is called an of A

Pair (A, v) is called an

The prefix comes from German “eigen” meaning “own”

In the following, we will also consider complex matrices A € C"*",
eigenvectors v € C", and eigenvalues A € C

Motivation: Eigenvalue Problems

e The definition of eigenvalues extends to linear operators in general,
including differential operators in a function space

e Recall the describing the vibration of a string

Uy — c2um =0

with zero Dirichlet boundary conditions u(0,t) = u(1,¢t) =0

 Eigenfunctions U(x) of the operator U, found from the problem
Uz = AU
correspond to solutions of the wave equation called

u(z,t) = e“'U(x)

Motivation: Eigenvalue Problems

By substituting the ansatz u(z,t) = e“'U(z) into the wave equation

g—; (ei“’tU(az)> — c2aa—; (ei‘UtU(w)) =0

and using that U(z) is an eigenfunction, we get
(—w® — N U(z) =0
e So the wave equation is satisfied for

w=cV—2A

Motivation: Eigenvalue Problems

 Eigenfunctions U(x) of the operator U,,
Uz = AU
that satisfy boundary conditions U (0) = U(1) = 0 are given by
Uk(x) = sin (mkx) k=12,...

with eigenvalues A\, = —m2k?

sin(7z) sin(27x) sin(37x) sin(4rzx)

0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0

Motivation: Eigenvalue Problems

« Wave equation with forcing [Unit 3]

Utt — Ugx = f

___ 200

I e oo 1 g S 150 =
T i T L e Z
R R I | ...t S N =
> 21 100 S
o B . T o
GCJ T I ey S B 8

1 - 50 E

0 . 0

0 2 4 6 8 10

e Energy [uldx
e Sound [w2dz (change in arc length)

o Forcing f = x sin(w(t)t)
w(t) =at+b

https://pkarnakov.github.io/am205/slides/unit3/#/191

Motivation: Eigenvalue Problems

o This is an example of

the system is able to store energy at certain frequencies

e Other systems and phenomena related to resonance

pendulums

natural vibration modes of structures
musical instruments

lasers

nuclear magnetic resonance (NMR)

Eigenvalue Problems

Eigenvalues and eigenvectors of real-valued matrices can be complex

Therefore, we will generally work with complex-valued matrices and vectors

For A € C™*", consider the
find (A, v) € C x C" such that

Av =

lvl[2 =1

The 2-norm of a complex vector v € C" is defined
using of components (as opposed to just (vy)?):

lolla = (p_, Jox[?) "

Eigenvalues and Eigenvectors

This problem can be reformulated as
(A—=A)v=0
We know this system has a non-trivial solution
if and only if (A — AI) is singular, therefore
det(A—AI) =0

The polynomial p(z) = det(A — zI) is called
the of A

Eigenvalues A are roots of p(z)

Characteristic Polynomaial

e By the fundamental theorem of algebra, we can factorize p(z) as
p(z) = cn(z = A1)(2 = A2) -+ (2 = An)
where the roots \; € C need not be distinct

« Note also that complex eigenvalues of a real matrix A € R™*"
must occur as

o That is, if A\ = a + i3 is an eigenvalue,
then so is its complex conjugate A = a — if3

Characteristic Polynomaial

o This follows from the fact that for a polynomial p with

p(Z) = p(z) for any z € C:

n n n

p(Z) = ch(z)’“ = ch; = 2k =p(z)

e Therefore, if w € C is a root of p, then so is w, since

0 = p(w) = p(w) = p(w)

Companion Matrix

We have seen that every matrix has an associated characteristic polynomial
Conversely, every polynomial has an associated

The companion matrix C,,, of a polynomial p € P,
is a matrix which has eigenvalues that match the roots of p

Divide p by its leading coefficient to get a polynomial,
i.e. with leading coefficient equal to 1 (this doesn’t change the roots)

pmonic(z) =Cy+cCl1z+ -+ cn_lzn_l + 2"

Companion Matrix

e Then p,onic is the characteristic polynomial
of the following n X n matrix

00 --- 0 —c

10 - 0 —¢
co—|01 0 -c

00 - 1 —cug

e Therefore, C), is for p

Companion Matrix

e Let us show this for the n = 3 case

e Consider

pmonic(z) =cCp +C12 + C2Z2 + 23

for which
0 0 — Co
1 0 — C1
0 1

Cs =

e Recall that the determinant of a 3 X 3 matrix is

aixz a2 Qi
det a1 Q22 Q23 = @a110220a33 + Q12023031 + A13A21032

azir agz2 Aass —a130a220a31 — A110230432 — Q120210433

Companion Matrix

e Substituting entries of C'5 then gives

det(zI — C3) = co + c12 + c22° + 2° = Pronic(2)

e This link between matrices and polynomials is used by numpy.roots()
that computes roots of a polynomial as eigenvalues of the companion matrix

Eigenvalue Decomposition

Let A be an eigenvalue of A € C"*"™; the set of all eigenvalues is called the

The of X is the multiplicity of the corresponding root
of the characteristic polynomial

The of A is the number of linearly independent
eigenvectors corresponding to A

For example, for A =1, A = 1 is an eigenvalue with algebraic and geometric
multiplicity of n

Eigenvalue Decomposition

o The geometric multiplicity of an eigenvalue
is less than or equal to its algebraic multiplicity

o If A has geometric multiplicity strictly less than algebraic multiplicity,
then A is said to be

« We say a matrix is if it has at least one defective eigenvalue

Eigenvalue Decomposition

e For example, the matrix

2 1 0
A=10 2 1
0 0 2

has one eigenvalue with algebraic multiplicity of 3
and geometric multiplicity of 1

>>> numpy np
>>> a = np.array([[2, 1, 0], [e, 2, 1], [0e, O, 2]])
>>> d, v = np.linalg.eig(a)

>>>

array([2., 2., 2.])

>>> v

array([[1.00000e+00, -1.00000e+00, 1.00000e+00],
[0.00000e+00, 4.44089e-16, -4.44089e-16],
[0.00000e+00, 0.00000e+00, 1.97215e-31]])

Eigenvalue Decomposition

Let A € C™"™ be a matrix, then it has a full set of n linearly
independent eigenvectors vy, vo,...,v, € C"

Suppose V' € C™*" contains the eigenvectors of A as columns,
and let D = diag(A1,...,Ay)

Then is equivalent to

Since we assumed A is nondefective, we can invert V to obtain

This is the of A

This shows that for a non-defective matrix, A is by V

Eigenvalue Decomposition

We introduce the A* € C™"™ of a matrix A € C™*"
(A%)i; = A, 1=1,2,....m,j=1,2,...,n

A matrix is said to be if A = A*

(this generalizes matrix symmetry)

A matrix is said to be if AA* =1

(this generalizes the concept of an orthogonal matrix)

Also, for v € C", ||v||2 = Vv*v

Eigenvalue Decomposition

e For numpy-array, the .T property contains the transpose,
while the .getH() function performs the conjugate transpose

>>> numpy np
>>> a = np.matrix([[1+1j, 2+3j], [0, 4]])
>>> a.T

matrix([[1.+1.7,

[2.438.7,
>>> a.getH()
matrix([[1.-

Eigenvalue Decomposition

e In some cases, the eigenvectors of A
can be chosen such that they are orthonormal

. 17 i:j
’U.’U-:
t 0, i#]

e In such a case, the matrix of eigenvectors () is unitary,
and hence A can be

A=QDQ"

Eigenvalue Decomposition

A hermitian matrix is unitarily diagonalizable,
and its eigenvalues are real

But hermitian matrices are not the only matrices that can be unitarily
diagonalized

Matrix A € C**™ is called if
AYA = AA"

A matrix is unitarily diagonalizable if and only if it is normal

Gershgorin’s Theorem

Due to the link between eigenvalues and polynomial roots,

in general one has to use iterative methods to compute eigenvalues
(recall that polynomials of degree higher than four cannot be solved in
radicals)

However, it is possible to gain some information about eigenvalue locations
more easily from

Let D(c,7) = {x € C: |x — ¢| < r} denote a disk in the complex plane
centered at ¢ with radius r

For a matrix A € C"*", disk D(aq, R;) is called a , Where

R; = Y j=1 |asj|
J7#1

Gershgorin’s Theorem

All eigenvalues of A € C™*" are contained
within the union of all n Gershgorin disks of A

Assume that Av = A\v, and i = argmax; |v;|.

a..v.
Al = | < S jayl = R O
1

J7i J7

Gershgorin’s Theorem

Recall that a matrix is if

|a,~i| >Z§L:1 |aij], fori=1,2,...,n
e

It follows from Gershgorin’s Theorem that a diagonally dominant matrix
cannot have a zero eigenvalue, hence

For example, the finite difference discretization matrix of the differential
operator is diagonally dominant

In -dimensions, (—V? + D)u = —uy; — Uy, + u

(each row of the corresponding discretization matrix contains

diagonal entry 4/h* + 1, and four off-diagonal entries of —1/h?)

Algorithms for Eigenvalue Problems

Power Method

e The power method is perhaps the simplest eigenvalue algorithm

o It finds the eigenvalue of A € C™*™ with largest absolute value

1: choose xy € C" arbitrarily
2: fork=1,2,...do

3: T = Axp_q

4: end for

e (Question: How does this algorithm work?

Power Method

Assuming A is nondefective, so the eigenvectors vy, vy, ..., v,
provide a basis for C”

Assume that the eigenvalues are ordered: |A1| < [Ag| < -+ < |\,

Therefore there exist coefficients «; such that zy = Z?Zl oV

Then, we have

zp = Axp 1 = Az o0 = - = AFzq

= Ak (Z O(j’l)j) = Z (XjAk’Uj = Z ij)\g?’vj
j=1 j=1 j=1
n—1 A\ k
= \F (anvn + Z o [)\—J] ’Uj)
j=1 K

Power Method

o Thenif |A,| > |A\;], 1 < j < n, we see that as
e This algorithm converges linearly: the error terms are scaled by a factor at
most |A,_1|/|A\n| at each iteration

o Also, we see that the method converges faster if \,, is well-separated from

the rest of the spectrum

Power Method

« However, in practice the exponential factor A* could cause overflow or
underflow after relatively few iterations

o Therefore the standard form of the power method is actually
the

1: choose xy € C" arbitrarily
2: fork=1,2,...do

3: yp = Azxp_q

4 k= Y/l yrll

5: end for

Power Method

o Convergence analysis of the normalized power method is essentially the
same as the un-normalized case

e Only difference is we now get an extra scaling factor, c; € R, due to the
normalization at each step

n—1 k
T = Ck)\f; (anvn + Z Q; [i—J] ’Uj)
j=1 "

Power Method

This algorithm directly produces the eigenvector v,

One way to recover \, is to note that
Y = ATr—1 = ApTr-1

Hence we can compare an entry of y; and x;_; to approximate \,

We also note two potential issues:

1. we require x¢ to have a nonzero component of v,

2. there may be more than one eigenvalue with maximum absolute
value

Power Method

e These issues may not realize in practice

e Issue 1:
= Very unlikely that xg will be orthogonal to v,
= BEven if 2jv,, = 0, rounding error will introduce a component of v,
during the power iterations

e Issue 2:
= We cannot ignore the possibility that there is more than one
maximum eigenvalue

= In this case x; would converge to a member of the corresponding
elgenspace

Power Method

e An important idea in eigenvalue computations is to consider the “shifted”
matrix ,foroc € R

e We see that
(A — O'I)’UZ' = ()\z — 0')’01'

and hence the spectrum of A — ol is shifted by —o, and the eigenvectors are
the same

o For example, if all the eigenvalues are real, a shift can be used with the
power method to converge to A\; instead of A\,

Inverse Iteration

Inverse Iteration

o The eigenvalues of A~! are the reciprocals of the eigenvalues of A, since

Av = v < A v = %v

o What happens if we apply the power method to A~1?

Inverse Iteration

° We converge to the largest (in absolute value) eigenvalue of A1,
which is 1/A; (recall that \; is the smallest eigenvalue of A)

e This is called

1: choose xy € C" arbitrarily
2: fork=1,2,...do

3: solve Ay, = xx—1 for yi
4

5

Tr = Yr/||Yx|
end for

Inverse Iteration

e Hence inverse iteration gives A\; without requiring a shift

e This is helpful since it may be difficult to determine
what shift is required to get A\; in the power method

g What happens if we apply inverse iteration
to the shifted matrix A — o1?

Inverse Iteration

o The smallest eigenvalue of A — ol is (A — o), where

" = argmin |\; — 0|

1=1,...,n
o We converge to A = 1/(\y — o), then recover \;- via
1
)\z* = = —|— o
A

o Inverse iteration with shift allows us to find the eigenvalue

Rayleigh Quotient

Rayleigh Quotient

Consider a matrix A € R™*"
Assume that the eigenvalues are ordered: |A;| < [Ag]| < -+ < |\
The is a function r : R™ — R defined as

If Av = Av, then

Rayleigh Quotient
Suppose A € R™" is a symmetric matrix, then for any x € R”
AL < 7r(z) < M

We write = as a linear combination of orthogonal eigenvectors
x =Y ;4 a;vj, and the lower bound follows from

() ! Ax 2?21 Ajord D i1

r\xr) = —) = —n 95 —
z'z > i1 a; 21 QY

o The proof of the upper bound r(x) < A, is analogous [

o Therefore, the Rayleigh quotient of a symmetric matrix

Rayleigh Quotient

o A symmetric matrix A € R"*" is positive definite
if and only if all of its eigenvalues are positive

o (=) Suppose A is symmetric positive definite,
then for any nonzero z € R”, we have 27 Az > 0. Take x = v;

vl Av,

’UlT’Ul

> 0

A1 =7r(v1) =

o (<) Suppose A has positive eigenvalues, then for any nonzero x € R",
from the previous theorem

el Az = r(z)(zlz) > M\||z|3 >0 O

Rayleigh Quotient

o If x € R" approximates an eigenvector,
then r(x) approximates the eigenvalue

« Consider Taylor’s expansion of 7(x) about a vector v

r(z) = r(v) + Vr(v)'(z —v) + O([lz - v]3)

Rayleigh Quotient

 Let’s compute the gradient Vr(z)
e Recall from [Unit 1, slide 69] that V(z? Az) = (A + AT)z
e Then using the product rule

Vr(x) = V(mTAmﬁ) = V(;sz;jlw) — (mTAm)ZE;Zi;EZ) —
 (A+ A"z 20 (A+ A"z 2z
- 2Tz ()(2zl Tz
B acga: (A +2AT:13 ; r(m)x) a :Izi’%:v (A +2AT ; r(m)I)w

https://pkarnakov.github.io/am205/slides/unit1/#68

Rayleigh Quotient

A+ AT

5 and

o If Ais symmetric, then A =

Vr(z) = % (A—r(z)])z

o Therefore, eigenvectors of a symmetric matrix
coincide with stationary points of its Rayleigh quotient

e Indeed, forany z #0and A € R

2

Az = Az & E(A—)\I)wzo & Vr(x) =0, A=r(z)

Rayleigh Quotient

Suppose that Av = \v

Then r(v) = X and Vr(v) = 0, therefore Taylor’s expansion turns into
r(z) = r(v) + Vr(v)' (z — v) + O]z — v[l2) = A+ O(||z — v]3)
Then the approximation error is
r(z) = A = O(||z — vl|2)

That is, the Rayleigh quotient approximation to an eigenvalue
of the approximation to the eigenvector

Rayleigh Quotient Iteration

e The combines the inverse iteration,
spectrum shifts, and Rayleigh quotient approximations to an eigenvalue

1: choose xy € R™ arbitrarily
2: fork=1,2,...do

T
z, 1 Azp_1

Ok =— —T
& Lp1Tk-1

Tr = Yr/||Yx
end for

3
4: solve (A — oI)yr = xk—1 for ys
5
6

Rayleigh Quotient Iteration

For a symmetric matrix A, if the Rayleigh quotient iteration

converges, it results in

Let’s show the idea for thecase 0 < A1 < Ao < --- < A\,

assuming that z;, — v; and o, — A4

Convergence of the inverse iteration is linear, and the rate is determined
by the ratio of the two eigenvalues closest to zero. Asymptotically,

b1 — v~ R ek — v

s P

|z — v1]| ~ Pa—oy]

On the other hand, the Rayleigh quotient squares the error
M — o] = O([Jzp-1 — i)
This shows cubic convergence

|z — vl < Cllzg-r — v ?

Rayleigh Quotient Iteration: Example

o See [examples/unit5 /rayleigh_iter.py|
the Rayleigh quotient iteration applied to a 3 x 3 matrix

it=0
|[Ax - sigma x| .2176638128637163e-01
| sigma - lambda| .1431974337752990e-01

it=1
|[Ax - sigma x| .2052279264915474e-03
| sigma - lambda| .2049892791683448e-03

it=2
|[Ax - sigma x| .9350397099098787e-10
| sigma - lambda| .9349855051586928e-10

it=3
|Ax - sigma x| .0000000000000000e+00
| sigma - lambda| .3290705182007514e-15

https://github.com/pkarnakov/am205/tree/main/examples/unit5/rayleigh_iter.py

QR Algorithm

QR Algorithm

The QR algorithm is a standard algorithm for computing eigenvalues

It was developed independently in the late 1950s
by John G.F. Francis (England) and Vera N. Kublanovskaya (USSR)

The QR algorithm efficiently provides approximations
to of a matrix

In the following, assume that A € A™*" is

QR Algorithm

o To motivate the QR-algorithm, let’s start with
the power method applied to p vectors at once

e Let m§0), - ,a:](,o) denote p linearly independent starting vectors
stored in the columns of Xy € R"*P

e The power method applied to these vectors results in

1: choose an n X p matrix X arbitrarily
2: fork=1,2,...do

3: X = AXk_l

4: end for

QR Algorithm

Assume that the eigenvalues are ordered |A;| < [Ag] < -+ < |\,
and v1, ..., v, is a full set of eigenvectors

()

1

Again, to analyze convergence of the method, express each x

in the basis of v1,...,v, foreachi=1,2,...,p
L, = — A, QinUn + n—1%in—1Un—1 + -+ 1 %101
n n—p
_)k Ak A Yk
=3, (0> () e+ > () ey,
j=n—p+1 =1

If [An—pi1]| > [An—pl|, the sum in orange will dominate
compared to the sum in green as k — o0

Therefore, the columns of X}, will converge to a basis of

span{vp_pi1,...,Un}

QR Algorithm

e« However, this method does not provide a good basis:
since)\, is the largest eigenvalue, columns of X, will approach v,

e Therefore the columns of X;, will be more “linearly dependent”

e« We can resolve this issue by enforcing orthonormality at each step

QR Algorithm

Using the reduced QR factorization, we orthonormalize the vectors after

each iteration
This algorithm is called the

1

2: fork=1,2,...do
3: Xy = AQr1

4 QrRr = X,

5. end for

choose n X p matrix)y with orthonormal columns

The column spaces of Qk and X} in line 4 are the same

Columns of Q) converge to an

basis of span{v,_pi1,...,Vn}

QR Algorithm

In fact, columns Qs do not just converge to a basis,
they actually converge to a set of eigenvectors
The columns of Qj, converge to the p dominant eigenvectors of A

We will not discuss the full proof, but this result is not surprising since
= the eigenvectors of a symmetric matrix are orthogonal

= columns of (), converge to a basis of span{v,_p11,...,0,}

To approximate the eigenvalues, we again use the Rayleigh quotient

QTAQ ~ diag(A1,---,An)

QR Algorithm

o« With p = n, the simultaneous iteration will of A
e We now show a more convenient formulation of the simultaneous iteration

e To distinguish matrices from two different formulations,
we introduce some extra notation: the () and R matrices in
the simultaneous iteration will be 1 Q L R,

QR Algorithm

Define the k-th Rayleigh quotient matrix
and the QR factors), Ry as

Our goal is to show that
Ar = RrQx, k=1,2,...
Initialize @, =1 € R™*™
Then in the first iteration: X; = A and Q . R, =A
It follows that A, = Q7 AQ, = Q, (Q,R,)Q, =
Also Q1 Ry = Ay = QOTAQO = A,sothat Q; = Q. , Ry = Ry, and

QR Algorithm

o In the second iteration, we have X, = AQ .
and we compute the QR factorization @) R, = X5

e Also, using our QR factorization of A; gives

Xy =AQ =(Q,Q))4Q, = Q A1 = Q (Q:R>)
which implies that Q2 = Qle = Qle and E2 = R2

e Therefore

= Q;FAQ2 = Q;FQ{A%@ = Q3 41Q2 = Q3 Q2R Q> =

QR Algorithm

The same pattern continues for k& = 3,4, .. .:

The columns of the product @, = Q1Q2--- Qy
approximate the eigenvectors of A

The diagonal entries of the Rayleigh quotient matrix A = QTAQ 3
approximate the eigenvalues of A

Also, A; converges to a diagonal matrix due to the eigenvalue
decomposition

QR Algorithm

e This discussion motivates the Q)R algorithm

1 A() — A

2: fork=1,2,...do
30 QpRp = Ap

4 Ar = RrQx

5: end for

QR Algorithm: Example

See [examples/unith/qr_algorithm.py],
eigenvalues and eigenvectors of a 4 by 4 matrix

[29766 0.3945 0.4198 1.1159 |
0.3945 2.7328 —0.3097 0.1129
0.4198 —0.3097 2.5675 0.6079

| 1.1159 0.1129 0.6079 1.7231

A=

This matrix has eigenvalues 1, 2, 3 and 4

https://github.com/pkarnakov/am205/tree/main/examples/unit5/qr_algorithm.py

QR Algorithm

e We have presented the simplest version of the QR algorithm:
the “unshifted” QR algorithm

e Practically relevant implementations include various improvements
= introduce shifts to accelerate convergence,
like in the Rayleigh quotient iteration
= reduce A to a tridiagonal form (e.g. via Householder reflectors)
to reduce computational cost
= add reliable convergence criteria for the eigenvalues and eigenvectors

e One example is _geev () in LAPACK used by numpy.linalg.eig()

Iterative Methods
for Linear Systems

Conjugate Gradient Method

Krylov Subspaces

e Given a matrix A and vector b, a
is the set of vectors

{b, Ab, A%b, A3, ...}

e The corresponding are the spaces spanned
by successive groups of these vectors

K.n(A,b) = span{b, Ab, A%, ..., A" b}

Krylov Subspaces

e Krylov subspaces are the basis for

o : Krylov methods do not deal directly with A,
but rather with matrix—vector products involving A

o This is particularly helpful when A is large and sparse,
since matrix—vector multiplications are relatively cheap

Conjugate Gradient Method

o The (CG) is one Krylov subspace methods
o Assume that A € R™*" is symmetric and positive definite

e CG is an iterative method for solving Az = b

Conjugate Gradient Method

o Iterative solvers (e.g. CG) and direct solvers (e.g. Gaussian elimination)
for solving Az = b are fundamentally different
o In exact arithmetic, gives exact answer after finitely
many steps
I In principle require infinitely many iterations,
but should give accurate approximation after few iterations

o Iterative methods are typically more efficient for very large, sparse systems

o Also, iterative methods are generally better suited to parallelization,
hence an important topic in high performance computing

Conjugate Gradient Method

e This is the conjugate gradient algorithm

L0 :Oaro :b7p0 —=To
fork=1,2,3,...do
Qp = (Tlf—l"“k—l)/(Pg—lAqu)
Tp = Tp_1 + OkPr—1
TE = Th—1 — A Apr_1
Be = (ri i)/ (r5_175-1)
Pk = Tk + Brbr-1
end for

Conjugate Gradient Method

e We will now discuss CG in more detail

o Let ., = A 'b denote the exact solution,
and let ey = x« — = denote the error at step &

o Also, let || - |4 denote the norm

|z||4 = V2T Az

Conjugate Gradient Method

The CG iterate z;, is the unique member of IC; (A, b)
which minimizes ||ey|| 4. Also, z; = x, for some k& < n.

This result relies on a set of identities which can be derived
by induction from the CG algorithm:
= (i) Kr(A,b) = span{x1,z2,...,xr} = span{po,p1 -..,Pk—1}
= span{ro,r1,...,Tk—1}
n rir; =0forj <k
i p;‘gApj:0forj<k

Conjugate Gradient Method

o From the first identity above, it follows that x; € ICy(A, b)
e We will now show that x, is the
o Let £ € Ky(A,b) be another “candidate minimizer”
and let Ax = xx — &, then
|lzs — 2[% = [[(ze — zx) + (z — 2)|%

= [lex + Az|}

— (e, + Az)" A(er, + Ax)

— el Aey, + + Azl ANz

Conjugate Gradient Method

o Next, let r(z;) = b — Axy, denote the residual at step k, so that
=b— Az =b— A(zp-1 + orkpr-1) =

e Since r(xg) = b = ry, by induction we see that
for r; computed in line 5 of CG,

Tk = Tk—1 — akApk—l

we have

Conjugate Gradient Method

« Now, recall our expression for ||z, — &||4:
|z, — &||% = e} Aey, + + Azl AAz
and note that
= 2Az" Az, — x1,) = 2427 (b — Azp,) = 2027 7y,

e Now,
» Az =z, — T € Ki(A4,b)
= from (i), KCx(A,b) = span{ro,r1,...,7k—1}
= from (ii), re L span{ro, T1,... ,’l“k—l}

e Therefore, we have = 2AzxTr), =

Conjugate Gradient Method

e This implies that,
|z, — Z||4 = et Aey, + Azt ANz > |lex |4,
with equality only when Ax = 0, so x; € (A, b) is the
e This also tells us that

o Therefore CG will converge to z, in at most n iterations
since Kr (A, b) is a subspace of R" of dimension & [

Conjugate Gradient Method

The theorem implies that CG will converge in at most n steps
However, in floating point arithmetic we will not get exact convergence to x,

Also, if n is large, we want to terminate CG well before n iterations,
after reaching sufficient accuracy

Steps of CG are chosen to give the orthogonality properties (ii), :
which lead to the remarkable CG optimality property:

Conjugate Gradient Method

Where did the steps in the CG algorithm come from?
It turns out that CG can be derived by developing an optimization
algorithm for ¢ : R" — R given by
1

o(x) = §wTAw —zb

e.g. lines 3 and 4 in CG perform line search, line 7 gives a search direction py

Conjugate Gradient Method

e The name “conjudate gradient” comes from the property
Vo(zr) ' Vo(z;) =rir; =0forj <k
since —V¢(z) =b— Az = r(z)

o That is, the gradient directions at zy and x; are orthogonal, or “conjugate”

Conjugate Gradient Method

o Why is the quadratic objective function ¢ relevant to Az = b?
o Minimizing ¢ is equivalent to minimizing ||ey||%, since
lerlla = (2 — zi)" Az, —)
_ T T T
=z, Axy, — 223, Az, + x, Az,
= xi Axj, — 221 b+ 2Lb
= 2¢(zy) + const

e Our argument from above shows that at iteration &,
CG solves the optimization problem

Conjugate Gradient Method

How fast does ||ex|| 4 converge?

One result for CG is that if A has 2-norm condition number k, then

feoll Q(ﬁ:)k

Taking this upper bound as an error estimate, it can be shown that

the number of CG iterations to reach % < € for a given tolerance € > 0

grows approximately as /K

Multigrid Method

Model Problem

e Consider a boundary value problem for the discrete Poisson equation

—u,-_1—|—2ui—u,-+1:fi ’1::].,...,71—].
’LL()ZO
u, =0

where u; approximate a function u(x;) with ; = i/n € [0, 1]

Model Problem

e This problem is linear and can be expressed in matrix form

Au=f
0o 2 -1 U
-1 .
A= 1 U =
-1 2 0 Up—1
; 0 1._ L Un

e Note that the boundary conditions are eliminated
from the equations for: =1land:i=n —1

o The matrix A € Rt)x(+1) jg symmetric

Jacobi Method

e One iterative method for solving Au = f is the

e The update rule to obtain ung) is
2l =

or equivalently

2wl — o) o) 4 2l ¥, =

7 7

e In matrix form
D(u(kH) _ u(k)) + Au®) = £
Du*t) = f — (A — D)u®
where D is the diagonal part of A

Jacobi Method

10% -

: —— Jacobi

109 3

n N f

=0 e N T 1071 4
1 \/\/ .

> 0:00/0:10 W L. : 10-3

residual

o The black line is the exact solution u(z) = sin (47x) + 0.5sin (167x)
for the right-hand side generated as f = Au

Gauss-Seidel Method

o Another iterative method for solving Au = f is the

e The update rule to obtain u(™ ig

B (k—l—l) 19 (k:+1) _u(k)l _ ¢
1+ t

e In matrix form
Loy = ¢ (A— L)u ()

where L is the lower triangular part of A (including the diagonal)

Gauss-Seidel Method

101_
1 4

—— Jacobi
%Mede
Va .
7 (v _ -1]
N \/\/ \/\/

u

(=]
=
o
o

residual
=
o
L

10—2]

1073

30 40 50

o The black line is the exact solution u(x) = sin (47x) + 0.5sin (167x)
for the right-hand side generated as f = Au

o Gauss-Seidel converges slightly faster than Jacobi

Multigrid Method

e However, both of these methods are local,
i.e. iteration only depends on the neighboring points

e Note that the high-frequency components
are found much faster than the low-frequency components

e The idea of the multigrid method is to solve the problem
on a hierarchy of coarser grids

Multigrid Method

o See [examples/unith /multigrid.py],
implementation of the multigrid method
for the one-dimensional Poisson equation

https://github.com/pkarnakov/am205/tree/main/examples/unit5/multigrid.py

e Convergence of the multigrid method using the Gauss-Seidel smoother

residual

102 -
10—1 4
1074 -
1077 A

10—10 4

10—13]

1071t

Multigrid Method

0 10

20

30

40

50

0 levels
1 levels
2 levels
3 levels
4 levels
5 levels

e Convergence of the multigrid method using the Jacobi smoother

residual

10!

100

107!

1072

1073 A

Multigrid Method

0

10

20

k

30

40

50

0 levels
1 levels
2 levels
3 levels
4 levels
5 levels

Multigrid Method

o Convergence of the multigrid method using the Jacobi smoother
with relaxation factor w = 0.5

WD = 4 4 (D — (A~ D)u®) — o)

102 -
R D —

1071+ —— 0 levels
10-4 - — 1 levels
= —— 2 levels
3 10-7 A — 3levels
0 4 levels
10710 5 levels

10—13 4

10—16

