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Outline
In this Unit, we will discuss

methods to compute eigenvalues and eigenvectors of matrices
iterative methods to solve linear systems

Eigenvalue problems have applications in stability analysis,

vibration analysis, and are useful to study properties of matrices

Iterative methods are better suited for large-scale problems

and parallel computation than direct methods (e.g. Gaussian elimination)
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Eigenvalues and Eigenvectors
Consider a matrix 

Vector  is called an eigenvector of  if

for a scalar 

The corresponding  is called an eigenvalue of 

Pair  is called an eigenpair

The prefix comes from German “eigen” meaning “own”

In the following, we will also consider complex matrices ,

eigenvectors , and eigenvalues 

A ∈ Rn×n

v ∈ Rn A

Av = λv

λ ∈ R
λ A

(λ, v)

A ∈ Cn×n

v ∈ Cn λ ∈ C
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Motivation: Eigenvalue Problems
The definition of eigenvalues extends to linear operators in general,

including differential operators in a function space

Recall the wave equation describing the vibration of a string

with zero Dirichlet boundary conditions 

Eigenfunctions  of the operator  found from the problem

correspond to solutions of the wave equation called standing waves

u ​ −tt c u ​ =2
xx 0

u(0, t) = u(1, t) = 0

U(x) U ​xx

U ​ =xx λU

u(x, t) = e U(x)iωt
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Motivation: Eigenvalue Problems
By substituting the ansatz  into the wave equation

and using that  is an eigenfunction, we get

So the wave equation is satisfied for

u(x, t) = e U(x)iωt

​ (e U(x)) −
∂t2
∂2

iωt c ​ (e U(x)) =2

∂x2

∂2
iωt 0

U(x)

(−ω −2 c λ)e U(x) =2 iωt 0

ω = c ​−λ
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Motivation: Eigenvalue Problems
Eigenfunctions  of the operator 

that satisfy boundary conditions  are given by

with eigenvalues 

U(x) U ​xx

U ​ =xx λU

U(0) = U(1) = 0

U ​(x) =k sin (πkx) k = 1, 2, …

λ ​ =k −π k2 2

sin(πx) sin(2πx) sin(3πx) sin(4πx)
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Motivation: Eigenvalue Problems 🔊
Wave equation with forcing 

Energy 


Sound  (change in arc length)

Forcing 




[Unit 3]

u ​ −tt u ​ =xx f

u ​dx∫ t
2

u ​dx∫ x
2

f = x sin(ω(t)t)
ω(t) = at + b
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Motivation: Eigenvalue Problems
This is an example of resonance:

the system is able to store energy at certain frequencies

Other systems and phenomena related to resonance
pendulums
natural vibration modes of structures
musical instruments
lasers
nuclear magnetic resonance (NMR)
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Eigenvalue Problems
Eigenvalues and eigenvectors of real-valued matrices can be complex

Therefore, we will generally work with complex-valued matrices and vectors

For , consider the eigenvalue problem:

find  such that

The 2-norm of a complex vector  is defined

using absolute values of components (as opposed to just ):


A ∈ Cn×n

(λ, v) ∈ C× Cn

​ ​

Av

∥v∥ ​2

= λv

= 1

v ∈ Cn

(v ​)k 2

∥v∥ ​ =2 ( ​ ∣v ​∣ )∑k=1
n

k
2 1/2
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Eigenvalues and Eigenvectors
This problem can be reformulated as

We know this system has a non-trivial solution

if and only if  is singular, therefore

The polynomial  is called

the characteristic polynomial of 

Eigenvalues  are roots of 

(A − λI)v = 0

(A − λI)

det(A − λI) = 0

p(z) = det(A − zI)
A

λ p(z)
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Characteristic Polynomial
By the fundamental theorem of algebra, we can factorize  as

where the roots  need not be distinct

Note also that complex eigenvalues of a real matrix 

must occur as complex conjugate pairs

That is, if  is an eigenvalue,

then so is its complex conjugate 

p(z)

p(z) = c ​(z −n λ ​)(z −1 λ ​) ⋯ (z −2 λ ​)n

λ ​ ∈i C
A ∈ Rn×n

λ = α + iβ

=λ α − iβ
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Characteristic Polynomial
This follows from the fact that for a polynomial  with real coefficients,


 for any :

Therefore, if  is a root of , then so is , since

p

p( ) =z ​p(z) z ∈ C

p( ) =z ​c ​( ) =
k=0

∑
n

k z k
​c ​ =

k=0

∑
n

kzk ​ =​c ​z

k=0

∑
n

k
k

​p(z)

w ∈ C p w

0 = p(w) = ​ =p(w) p( )w
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Companion Matrix
We have seen that every matrix has an associated characteristic polynomial

Conversely, every polynomial has an associated companion matrix

The companion matrix , of a polynomial 

is a matrix which has eigenvalues that match the roots of 

Divide  by its leading coefficient to get a monic polynomial,

i.e. with leading coefficient equal to 1 (this doesn’t change the roots)

C ​n p ∈ P ​n

p

p

p ​(z) =monic c ​ +0 c ​z +1 ⋯ + c ​z +n−1
n−1 zn
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Companion Matrix
Then  is the characteristic polynomial

of the following  matrix

Therefore,  is companion matrix for 

p ​monic

n × n

C ​ =n ​ ​ ​ ​ ​ ​ ​

0
1
0

⋮
0

0
0
1

⋮
0

⋯
⋯
⋯

⋱
⋯

0
0
0

⋮
1

−c ​0

−c ​1

−c ​2

⋮
−c ​n−1

C ​n p
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Companion Matrix
Let us show this for the  case

Consider

for which

Recall that the determinant of a  matrix is

n = 3

p ​(z) =monic c ​ +0 c ​z +1 c ​z +2
2 z3

C ​ =3 ​ ​ ​[
0
1
0

0
0
1

−c ​0

−c ​1

−c ​2

]

3 × 3

det ​ ​ ​ =[
a ​11

a ​21

a ​31

a ​12

a ​22

a ​32

a ​13

a ​23

a ​33

] a ​a ​a ​ + a ​a ​a ​ + a ​a ​a ​11 22 33 12 23 31 13 21 32

−a ​a ​a ​ − a ​a ​a ​ − a ​a ​a ​13 22 31 11 23 32 12 21 33
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Companion Matrix
Substituting entries of  then gives

This link between matrices and polynomials is used by numpy.roots()

that computes roots of a polynomial as eigenvalues of the companion matrix

C ​3

det(zI − C ​) =3 c ​ +0 c ​z +1 c ​z +2
2 z =3 p ​(z)monic
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Eigenvalue Decomposition
Let  be an eigenvalue of ; the set of all eigenvalues is called the
spectrum of 

The algebraic multiplicity of  is the multiplicity of the corresponding root
of the characteristic polynomial

The geometric multiplicity of  is the number of linearly independent
eigenvectors corresponding to 

For example, for ,  is an eigenvalue with algebraic and geometric
multiplicity of 

λ A ∈ Cn×n

A

λ

λ

λ

A = I λ = 1
n
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Eigenvalue Decomposition
Theorem: The geometric multiplicity of an eigenvalue

is less than or equal to its algebraic multiplicity

If  has geometric multiplicity strictly less than algebraic multiplicity,

then  is said to be defective

We say a matrix is defective if it has at least one defective eigenvalue

λ

λ
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Eigenvalue Decomposition
For example, the matrix

has one eigenvalue with algebraic multiplicity of 3

and geometric multiplicity of 1

A = ​ ​ ​ ​ ​

2
0
0

1
2
0

0
1
2

>>> import numpy as np

>>> a = np.array([[2, 1, 0], [0, 2, 1], [0, 0, 2]])

>>> d, v = np.linalg.eig(a)

>>> d

array([ 2.,  2.,  2.])

>>> v

array([[  1.00000e+00,  -1.00000e+00,   1.00000e+00],

       [  0.00000e+00,   4.44089e-16,  -4.44089e-16],

       [  0.00000e+00,   0.00000e+00,   1.97215e-31]])
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Eigenvalue Decomposition
Let  be a nondefective matrix, then it has a full set of  linearly
independent eigenvectors 

Suppose  contains the eigenvectors of  as columns,

and let 

Then ,  is equivalent to 

Since we assumed  is nondefective, we can invert  to obtain

This is the eigendecomposition of 

This shows that for a non-defective matrix,  is diagonalized by 

A ∈ Cn×n n

v ​, v ​, … , v ​ ∈1 2 n Cn

V ∈ Cn×n A

D = diag(λ ​, … ,λ ​)1 n

Av ​ =i λ ​v ​i i i = 1, 2, … ,n AV = V D

A V

A = V DV −1

A

A V
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Eigenvalue Decomposition
We introduce the conjugate transpose  of a matrix 

A matrix is said to be hermitian if 

(this generalizes matrix symmetry)

A matrix is said to be unitary if 

(this generalizes the concept of an orthogonal matrix)

Also, for , 

A ∈∗ Cn×m A ∈ Cm×n

(A ) ​ =∗
ij ​, i =A ​ji 1, 2, … ,m,  j = 1, 2, … ,n

A = A∗

AA =∗ I

v ∈ Cn ∥v∥ ​ =2 ​v v∗
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Eigenvalue Decomposition
For numpy-array, the .T property contains the transpose,

while the .getH() function performs the conjugate transpose

>>> import numpy as np

>>> a = np.matrix([[1+1j, 2+3j], [0, 4]])

>>> a.T

matrix([[ 1.+1.j,  0.+0.j],

        [ 2.+3.j,  4.+0.j]])

>>> a.getH()

matrix([[ 1.-1.j,  0.-0.j],

        [ 2.-3.j,  4.-0.j]])
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Eigenvalue Decomposition
In some cases, the eigenvectors of 

can be chosen such that they are orthonormal

In such a case, the matrix of eigenvectors  is unitary,

and hence  can be unitarily diagonalized

A

v ​v ​ =i
∗

j ​{
1, i = j

0, i = j

Q

A

A = QDQ∗
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Eigenvalue Decomposition
Theorem: A hermitian matrix is unitarily diagonalizable,

and its eigenvalues are real

But hermitian matrices are not the only matrices that can be unitarily
diagonalized


Matrix  is called normal if

Theorem: A matrix is unitarily diagonalizable if and only if it is normal

A ∈ Cn×n

A A =∗ AA∗
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Gershgorin’s Theorem
Due to the link between eigenvalues and polynomial roots,

in general one has to use iterative methods to compute eigenvalues

(recall that polynomials of degree higher than four cannot be solved in
radicals)

However, it is possible to gain some information about eigenvalue locations
more easily from Gershgorin’s Theorem

Let  denote a disk in the complex plane
centered at  with radius 

For a matrix , disk  is called a Gershgorin disk, where

D(c, r) = {x ∈ C : ∣x − c∣ ≤ r}
c r

A ∈ Cn×n D(a ​,R ​)ii i

R ​ =i ​ ∣a ​∣∑
​

j=1
j=i

n
ij
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Gershgorin’s Theorem
Theorem: All eigenvalues of  are contained

within the union of all  Gershgorin disks of 

Proof: Assume that , and .

A ∈ Cn×n

n A

Av = λv i = argmax ​∣v ​∣j j

λ − a ​ =∣ ii∣ ​ ​ ​ ​ ≤
j=i

∑
v ​i

a ​v ​ij j
​ a ​ =

j=i

∑ ∣ ij ∣ R ​ □i
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Gershgorin’s Theorem
Recall that a matrix is diagonally dominant if

It follows from Gershgorin’s Theorem that a diagonally dominant matrix
cannot have a zero eigenvalue, hence must be invertible

For example, the finite difference discretization matrix of the differential
operator  is diagonally dominant

In -dimensions, 

(each row of the corresponding discretization matrix contains

diagonal entry , and four off-diagonal entries of )

∣a ​∣ >ii ​ ∣a ​∣, for i =∑
​

j=1
j=i

n
ij 1, 2, … ,n

−∇ +2 I

(−∇ +2 I)u = −u ​ −xx u ​ +yy u

4/h +2 1 −1/h2
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Algorithms for Eigenvalue Problems
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Power Method
The power method is perhaps the simplest eigenvalue algorithm

It finds the eigenvalue of  with largest absolute value

1: choose  arbitrarily

2: for  do

3: 

4: end for

Question: How does this algorithm work?

A ∈ Cn×n

x ​ ∈0 Cn

k = 1, 2, …
x ​ =k Ax ​k−1

29



Power Method
Assuming  is nondefective, so the eigenvectors 

provide a basis for 

Assume that the eigenvalues are ordered: 

Therefore there exist coefficients  such that 

Then, we have

A v ​, v ​, … , v ​1 2 n

Cn

∣λ ​∣ ≤1 ∣λ ​∣ ≤2 ⋯ ≤ ∣λ ​∣n
α ​i x ​ =0 ​ α ​v ​∑j=1

n
j j

​ ​

x ​k = Ax ​ = A x ​ = ⋯ = A x ​k−1
2

k−2
k

0

= A ​α ​v ​ = ​α ​A v ​ = ​α ​λ ​v ​

k (
j=1

∑
n

j j)
j=1

∑
n

j
k

j

j=1

∑
n

j j
k

j

= λ ​ α ​v ​ + ​α ​ ​ v ​n
k ( n n

j=1

∑
n−1

j [
λ ​n

λ ​j ]
k

j)
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Power Method
Then if , , we see that  as 

This algorithm converges linearly: the error terms are scaled by a factor at
most  at each iteration

Also, we see that the method converges faster if  is well-separated from
the rest of the spectrum

∣λ ​∣ >n ∣λ ​∣j 1 ≤ j < n x ​ →k λ ​α ​v ​n
k

n n k → ∞

∣λ ​∣/∣λ ​∣n−1 n

λ ​n
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Power Method
However, in practice the exponential factor  could cause overflow or
underflow after relatively few iterations

Therefore the standard form of the power method is actually

the normalized power method

1: choose  arbitrarily

2: for  do

3: 

4: 

5: end for

λ ​n
k

x ​ ∈0 Cn

k = 1, 2, …
y ​ =k Ax ​k−1

x ​ =k y ​/∥y ​∥k k
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Power Method
Convergence analysis of the normalized power method is essentially the
same as the un-normalized case

Only difference is we now get an extra scaling factor, , due to the
normalization at each step

c ​ ∈k R

x ​ =k c ​λ ​ α ​v ​ + ​α ​ ​ v ​k n
k ( n n

j=1

∑
n−1

j [
λ ​n

λ ​j ]
k

j)

33



Power Method
This algorithm directly produces the eigenvector 

One way to recover  is to note that

Hence we can compare an entry of  and  to approximate 

We also note two potential issues:
1. we require  to have a nonzero component of 
2. there may be more than one eigenvalue with maximum absolute

value

v ​n

λ ​n

y ​ =k Ax ≈k−1 λ ​x ​n k−1

y ​k x ​k−1 λ ​n

x ​0 v ​n

34



Power Method
These issues may not realize in practice

Issue 1:
Very unlikely that  will be orthogonal to 
Even if , rounding error will introduce a component of 
during the power iterations

Issue 2:
We cannot ignore the possibility that there is more than one
maximum eigenvalue
In this case  would converge to a member of the corresponding
eigenspace

x ​0 v ​n

x ​v =0
∗

n 0 v ​n

x ​k
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Power Method
An important idea in eigenvalue computations is to consider the “shifted”
matrix , for 

We see that

and hence the spectrum of  is shifted by , and the eigenvectors are
the same

For example, if all the eigenvalues are real, a shift can be used with the
power method to converge to  instead of 

A − σI σ ∈ R

(A − σI)v ​ =i (λ ​ −i σ)v ​i

A − σI −σ

λ ​1 λ ​n
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Inverse Iteration
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Inverse Iteration
The eigenvalues of  are the reciprocals of the eigenvalues of , since

Question: What happens if we apply the power method to ?

A−1 A

Av = λv ⟺ A v =−1
​v

λ

1

A−1

38



Inverse Iteration
Answer: We converge to the largest (in absolute value) eigenvalue of ,
which is  (recall that  is the smallest eigenvalue of )

This is called inverse iteration

1: choose  arbitrarily

2: for  do

3: solve  for 

4: 

5: end for

A−1

1/λ ​1 λ ​1 A

x ​ ∈0 Cn

k = 1, 2, …
Ay ​ =k x ​k−1 y ​k

x ​ =k y ​/∥y ​∥k k

39



Inverse Iteration
Hence inverse iteration gives  without requiring a shift

This is helpful since it may be difficult to determine
what shift is required to get  in the power method

Question: What happens if we apply inverse iteration

to the shifted matrix ?

λ ​1

λ ​1

A − σI
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Inverse Iteration
The smallest eigenvalue of  is , where

Answer: We converge to , then recover  via

Inverse iteration with shift allows us to find the eigenvalue closest to 

A − σI (λ ​ −i∗ σ)

i =∗
​ ∣λ ​ −

i=1,…,n
arg min i σ∣

=λ
~

1/(λ ​ −i∗ σ) λ ​i∗

λ ​ =i∗ ​ +
λ
~
1

σ

σ
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Rayleigh Quotient
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Rayleigh Quotient
Consider a real matrix 

Assume that the eigenvalues are ordered: 

The Rayleigh quotient is a function  defined as

If , then

A ∈ Rn×n

∣λ ​∣ ≤1 ∣λ ​∣ ≤2 ⋯ ≤ ∣λ ​∣n
r : R →n R

r(x) = ​

x xT
x AxT

Av = λv

r(v) = ​ =
v vT
v AvT

​ =
v vT
λv vT

λ

43



Rayleigh Quotient
Theorem: Suppose  is a symmetric matrix, then for any 

Proof: We write  as a linear combination of orthogonal eigenvectors

, and the lower bound follows from

The proof of the upper bound  is analogous 

Therefore, the Rayleigh quotient of a symmetric matrix

always remains within the range of its spectrum

A ∈ Rn×n x ∈ Rn

λ ​ ≤1 r(x) ≤ λ ​n

x

x = ​ α ​v ​∑j=1
n

j j

r(x) = ​ =
x xT
x AxT

​ ≥
​ α ​∑j=1

n
j
2

​ λ ​α ​∑j=1
n

j j
2

λ ​ ​ =1
​ α ​∑j=1

n
j
2

​ α ​∑j=1
n

j
2

λ ​1

r(x) ≤ λ ​n □
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Rayleigh Quotient
Theorem: A symmetric matrix  is positive definite

if and only if all of its eigenvalues are positive

Proof: ( ) Suppose  is symmetric positive definite,

then for any nonzero , we have . Take 

( ) Suppose  has positive eigenvalues, then for any nonzero ,

from the previous theorem

A ∈ Rn×n

⇒ A

x ∈ Rn x Ax >T 0 x = v ​1

λ ​ =1 r(v ​) =1 ​ >
v ​v ​1
T

1

v ​Av ​1
T

1 0

⇐ A x ∈ Rn

x Ax =T r(x)(x x) ≥T λ ​∥x∥ ​ >1 2
2 0 □
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Rayleigh Quotient
If  approximates an eigenvector,

then  approximates the eigenvalue

Consider Taylor’s expansion of  about a vector 

x ∈ Rn

r(x)

r(x) v

r(x) = r(v) + ∇r(v) (x −T v) + O(∥x − v∥ ​)2
2

46



Rayleigh Quotient
Let’s compute the gradient 

Recall from  that 

Then using the product rule

∇r(x)

[Unit 1, slide 69] ∇(x Ax) =T (A + A )xT

​ ​

∇r(x) = ∇(x Ax ​ ) = ​ − (x Ax) ​ =T

x xT
1

x xT
∇(x Ax)T

T

(x x)T 2

∇(x x)T

= ​ − (x Ax) ​ = ​ − r(x) ​ =
x xT

(A + A )xT
T

(x x)T 2

2x
x xT

(A + A )xT

x xT
2x

= ​ ( x − r(x)x) = ​ ( ​ − r(x)I)x
x xT

2
2

A + AT

x xT
2

2
A + AT

47
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Rayleigh Quotient

If  is symmetric, then  and

Therefore, eigenvectors of a symmetric matrix

coincide with stationary points of its Rayleigh quotient

Indeed, for any  and 

A A = ​2
A+AT

∇r(x) = ​ (A −
x xT

2
r(x)I)x

x = 0 λ ∈ R

Ax = λx ⇔ ​ (A −
x xT

2
λI)x = 0 ⇔ ∇r(x) = 0, λ = r(x)

48



Rayleigh Quotient
Suppose that 

Then  and , therefore Taylor’s expansion turns into

Then the approximation error is

That is, the Rayleigh quotient approximation to an eigenvalue

squares the error of the approximation to the eigenvector

Av = λv

r(v) = λ ∇r(v) = 0

r(x) = r(v) + ∇r(v) (x −T v) + O(∥x − v∥ ​) =2
2 λ + O(∥x − v∥ ​)2

2

∣r(x) − λ∣ = O(∥x − v∥ ​)2
2
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Rayleigh Quotient Iteration
The Rayleigh quotient iteration combines the inverse iteration,

spectrum shifts, and Rayleigh quotient approximations to an eigenvalue

1: choose  arbitrarily

2: for  do


3: 


4: solve  for 

5: 

6: end for

x ​ ∈0 Rn

k = 1, 2, …

σ ​ =k ​

x ​x ​

k−1
T

k−1

x ​Ax ​k−1
T

k−1

(A − σ ​I)y ​ =k k x ​k−1 y ​k

x ​ =k y ​/∥y ​∥k k

50



Rayleigh Quotient Iteration
For a symmetric matrix , if the Rayleigh quotient iteration

converges, it results in cubic convergence

Let’s show the idea for the case 

assuming that  and 

Convergence of the inverse iteration is linear, and the rate is determined

by the ratio of the two eigenvalues closest to zero. Asymptotically,

On the other hand, the Rayleigh quotient squares the error

This shows cubic convergence

A

0 < λ ​ <1 λ ≤2 ⋯ ≤ λ ​n

x ​ →k v ​1 σ ​ →k λ ​1

∥x ​ −k v ​∥ ∼1 ​ ∥x ​ −∣λ ​−σ ​∣2 k

∣λ ​−σ ​∣1 k
k−1 v ​∥ ∼1 ​ ∥x ​ −∣λ ​−λ ​∣2 1

∣λ ​−σ ​∣1 k
k−1 v ​∥1

∣λ ​ −1 σ ​∣ =k O(∥x ​ −k−1 v ​∥ )1
2

∥x ​ −k v ​∥ ≤1 C∥x ​ −k−1 v ​∥1
3
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Rayleigh Quotient Iteration: Example
See 

the Rayleigh quotient iteration applied to a  matrix

[examples/unit5/rayleigh_iter.py]
3 × 3

A = ​ ​ ​ ​ ​

5
1
1

1
6
1

1
1
7

it=0

|Ax - sigma x|   = 2.2176638128637163e-01

|sigma - lambda| = 2.1431974337752990e-01


it=1

|Ax - sigma x|   = 1.2052279264915474e-03

|sigma - lambda| = 1.2049892791683448e-03


it=2

|Ax - sigma x|   = 1.9350397099098787e-10

|sigma - lambda| = 1.9349855051586928e-10


it=3

|Ax - sigma x|   = 0.0000000000000000e+00

|sigma - lambda| = 5.3290705182007514e-15

52
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QR Algorithm
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QR Algorithm
The QR algorithm is a standard algorithm for computing eigenvalues

It was developed independently in the late 1950s

by John G.F. Francis (England) and Vera N. Kublanovskaya (USSR)

The QR algorithm efficiently provides approximations

to all eigenvalues and eigenvectors of a matrix

In the following, assume that  is symmetricA ∈ An×n

54



QR Algorithm
To motivate the QR-algorithm, let’s start with

the power method applied to  vectors at once

Let  denote  linearly independent starting vectors

stored in the columns of 

The power method applied to these vectors results in

1: choose an  matrix  arbitrarily

2: for  do

3: 

4: end for

p

x ​, … ,x ​1
(0)

p
(0)

p

X ​ ∈0 Rn×p

n × p X ​0

k = 1, 2, …
X ​ =k AX ​k−1
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QR Algorithm
Assume that the eigenvalues are ordered 

and  is a full set of eigenvectors

Again, to analyze convergence of the method, express each 

in the basis of  for each 

If , the sum in orange will dominate

compared to the sum in green as 

Therefore, the columns of  will converge to a basis of 

∣λ ​∣ ≤1 ∣λ ​∣ ≤2 ⋯ ≤ ∣λ ​∣n
v ​, … , v ​1 n

x ​i
(k)

v ​, … , v ​1 n i = 1, 2, … , p

​ ​

x ​i
(k) = λ ​α ​v ​ + λ ​α ​v ​ + ⋯ + λ ​α ​v ​n

k
i,n n n−1

k
i,n−1 n−1 1

k
i,1 1

= λ ​( ​ ( ​ ) α ​v ​ + ​ ( ​ ) α ​v ​)n−p
k

j=n−p+1

∑
n

λ ​n−p

λ ​j k
i,j j

j=1

∑
n−p

λ ​n−p

λ ​j k
i,j j

∣λ ​∣ >n−p+1 ∣λ ​∣n−p

k → ∞

X ​k

span{v ​, … , v ​}n−p+1 n 56



QR Algorithm
However, this method does not provide a good basis:

since  is the largest eigenvalue, columns of  will approach 

Therefore the columns of  will be more “linearly dependent”

We can resolve this issue by enforcing orthonormality at each step

λ ​n X ​k v ​n

X ​k

57



QR Algorithm
Using the reduced QR factorization, we orthonormalize the vectors after
each iteration

This algorithm is called the simultaneous iteration

1: choose  matrix  with orthonormal columns

2: for  do

3: 

4: 

5: end for

The column spaces of  and  in line 4 are the same

Columns of  converge to an orthonormal basis of 

n × p ​ ​Q̂0

k = 1, 2, …
X ​ =k A ​ ​Q̂k−1

​ ​ ​ =Q̂kR̂k X ​k

​ ​Q̂k X ​k

​ ​Q̂k span{v ​, … , v ​}n−p+1 n
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QR Algorithm

In fact, columns  do not just converge to a basis,

they actually converge to a set of eigenvectors

Theorem: The columns of  converge to the  dominant eigenvectors of 
We will not discuss the full proof, but this result is not surprising since

the eigenvectors of a symmetric matrix are orthogonal
columns of  converge to a basis of 

To approximate the eigenvalues, we again use the Rayleigh quotient


​ ​Q̂k

​ ​Q̂k p A

​ ​Q̂k span{v ​, … , v ​}n−p+1 n

​ A ​ ≈Q̂T Q̂ diag(λ ​, … ,λ ​)1 n
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QR Algorithm
With , the simultaneous iteration will converge to all eigenpairs of 

We now show a more convenient formulation of the simultaneous iteration

To distinguish matrices from two different formulations,

we introduce some extra notation: the  and  matrices in

the simultaneous iteration will be underlined: , 

p = n A

Q R

​ ​Q
k

​ ​Rk
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QR Algorithm
Define the -th Rayleigh quotient matrix 

and the QR factors ,  as 

Our goal is to show that

Initialize 

Then in the first iteration:  and 

It follows that 

Also , so that , , and 

k A ​ =k ​ ​A ​ ​Q
k

T Q
k

Qk R ​k Q ​R ​ =k k A ​k−1

A ​ =k R ​Q ​, k =k k 1, 2, …

​ ​ =Q
0

I ∈ Rn×n

X ​ =1 A ​ ​ ​ ​ =Q
1
R1 A

A ​ =1 ​ ​A ​ ​ =Q
1
T Q

1
​ ​( ​ ​ ​ ​) ​ ​ =Q
1
T Q

1
R1 Q

1
​ ​ ​ ​R1Q1

Q ​R ​ =1 1 A ​ =0 ​ ​A ​ ​ =Q
0
T Q

0
A Q ​ =1 ​ ​Q

1
R ​ =1 ​ ​R1 A ​ =1

R ​Q ​1 1
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QR Algorithm
In the second iteration, we have ,

and we compute the QR factorization 

Also, using our QR factorization of  gives

which implies that  and 

Therefore

X ​ =2 A ​ ​Q
1

​ ​ ​ ​ =Q
2
R2 X ​2

A ​1

X ​ =2 A ​ ​ =Q
1

( ​ ​ ​ ​)A ​ ​ =Q
1
Q

1
T Q

1
​ ​A ​ =Q
1 1 ​ ​(Q ​R ​)Q

1 2 2

​ ​ =Q
2

​ ​Q ​ =Q
1 2 Q ​Q ​1 2 ​ ​ =R2 R ​2

A ​ =2 ​ ​A ​ ​ =Q
2
T Q

2
Q ​ ​ ​A ​ ​Q ​ =2
TQ

1
T Q

1 2 Q ​A ​Q ​ =2
T

1 2 Q ​Q ​R ​Q ​ =2
T

2 2 2 R ​Q2 2
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QR Algorithm
The same pattern continues for :

we QR factorize  to get  and , then we compute 

The columns of the product 

approximate the eigenvectors of 

The diagonal entries of the Rayleigh quotient matrix 

approximate the eigenvalues of 

Also,  converges to a diagonal matrix due to the eigenvalue
decomposition

k = 3, 4, …
A ​k Q ​k R ​k A ​ =k+1 R ​Q ​k k

​ ​ =Q
k

Q ​Q ​ ⋯Q ​1 2 k

A

A ​ =k ​ ​A ​ ​Q
k

T Q
k

A

A ​k
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QR Algorithm
This discussion motivates the QR algorithm

1: 

2: for  do

3: 

4: 

5: end for

A ​ =0 A

k = 1, 2, …
Q ​R ​ =k k A ​k−1

A ​ =k R ​Q ​k k
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QR Algorithm: Example
See ,

eigenvalues and eigenvectors of a 4 by 4 matrix

This matrix has eigenvalues 1, 2, 3 and 4

[examples/unit5/qr_algorithm.py]

A = ​ ​ ​ ​ ​ ​

2.9766
0.3945
0.4198
1.1159

0.3945
2.7328

−0.3097
0.1129

0.4198
−0.3097
2.5675
0.6079

1.1159
0.1129
0.6079
1.7231
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QR Algorithm
We have presented the simplest version of the QR algorithm:

the “unshifted” QR algorithm

Practically relevant implementations include various improvements
introduce shifts to accelerate convergence,

like in the Rayleigh quotient iteration
reduce  to a tridiagonal form (e.g. via Householder reflectors)

to reduce computational cost
add reliable convergence criteria for the eigenvalues and eigenvectors

One example is _geev() in LAPACK used by numpy.linalg.eig()

A
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Iterative Methods

for Linear Systems
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Conjugate Gradient Method
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Krylov Subspaces
Given a matrix  and vector , a Krylov sequence

is the set of vectors

The corresponding Krylov subspaces are the spaces spanned

by successive groups of these vectors


A b

{b,Ab,A b,A b, …}2 3

K ​(A, b) =m span{b,Ab,A b, … ,A b}2 m−1
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Krylov Subspaces
Krylov subspaces are the basis for iterative methods

An important advantage: Krylov methods do not deal directly with ,

but rather with matrix–vector products involving 


This is particularly helpful when  is large and sparse,

since matrix–vector multiplications are relatively cheap


A

A

A
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Conjugate Gradient Method
The conjugate gradient method (CG) is one Krylov subspace methods

Assume that  is symmetric and positive definite

CG is an iterative method for solving 

A ∈ Rn×n

Ax = b
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Conjugate Gradient Method
Iterative solvers (e.g. CG) and direct solvers (e.g. Gaussian elimination)

for solving  are fundamentally different

direct solvers: In exact arithmetic, gives exact answer after finitely
many steps
iterative solvers: In principle require infinitely many iterations,
but should give accurate approximation after few iterations

Iterative methods are typically more efficient for very large, sparse systems

Also, iterative methods are generally better suited to parallelization,

hence an important topic in high performance computing

Ax = b
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Conjugate Gradient Method
This is the conjugate gradient algorithm

1: , , 

2: for  do

3: 

4: 

5: 

6: 

7: 

8: end for

x ​ =0 0 r ​ =0 b p ​ =0 r ​0

k = 1, 2, 3, …
α ​ =k (r ​r ​)/(p ​Ap ​)k−1

T
k−1 k−1

T
k−1

x ​ =k x ​ +k−1 α ​p ​k k−1

r ​ =k r ​ −k−1 α ​Ap ​k k−1

β ​ =k (r ​r ​)/(r ​r ​)k
T

k k−1
T

k−1

p ​ =k r ​ +k β ​p ​k k−1

73



Conjugate Gradient Method
We will now discuss CG in more detail

Let  denote the exact solution,

and let  denote the error at step 

Also, let  denote the norm

x ​ =∗ A b−1

e ​ =k x ​ −∗ x ​k k

∥ ⋅ ∥ ​A

∥x∥ ​ =A ​x AxT
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Conjugate Gradient Method
Theorem: The CG iterate  is the unique member of 

which minimizes . Also,  for some .

Proof: This result relies on a set of identities which can be derived

by induction from the CG algorithm:

(i) 


(ii)  for 
(iii)  for 

x ​k K ​(A, b)k

∥e ​∥ ​k A x ​ =k x ​∗ k ≤ n

K ​(A, b) =k span{x ​,x ​, … ,x ​} =1 2 k span{p ​, p ​ … , p ​}0 1 k−1

= span{r ​, r ​, … , r ​}0 1 k−1

r ​r ​ =k
T

j 0 j < k

p ​Ap ​ =k
T

j 0 j < k
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Conjugate Gradient Method
From the first identity above, it follows that 

We will now show that  is the unique minimizer in 

Let  be another “candidate minimizer”

and let , then

x ​ ∈k K ​(A, b)k

x ​k K ​(A, b)k

∈x~ K ​(A, b)k

Δx = x ​ −k x~

​ ​

∥x ​ − ∥ ​∗ x~ A
2 = ∥(x ​ − x ​) + (x ​ − )∥ ​∗ k k x~ A

2

= ∥e ​ + Δx∥ ​k A
2

= (e ​ + Δx) A(e ​ + Δx)k
T

k

= e ​Ae ​ + 2e ​AΔx + Δx AΔxk
T

k k
T T
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Conjugate Gradient Method
Next, let  denote the residual at step , so that

Since , by induction we see that

for  computed in line 5 of CG,

we have , 

r(x ​) =k b − Ax ​k k

r(x ​) =k b − Ax ​ =k b − A(x ​ +k−1 α ​p ​) =k k−1 r(x ​) − α ​Ap ​k−1 k k−1

r(x ​) =0 b = r ​0

r ​k

r ​ =k r ​ −k−1 α ​Ap ​k k−1

r =k r(x ​)k k = 1, 2, …
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Conjugate Gradient Method
Now, recall our expression for :

and note that

Now,

from (i), 
from (ii), 

Therefore, we have 

∥x ​ −∗ ∥ ​x~ A
2

∥x ​ −∗ ∥ ​ =x~ A
2 e ​Ae ​ +k

T
k 2e ​AΔx +k

T Δx AΔxT

2e ​AΔx =k
T 2Δx A(x ​ −T

∗ x ) =k 2Δx (b −T Ax ​) =k 2Δx r ​

T
k

Δx = x ​ −k ∈x~ K ​(A, b)k

K ​(A, b) =k span{r ​, r ​, … , r ​}0 1 k−1

r ​ ⊥k span{r ​, r ​, … , r ​}0 1 k−1

2e ​AΔx =k
T 2Δx r ​ =T

k 0
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Conjugate Gradient Method
This implies that,

with equality only when , so  is the unique minimizer

This also tells us that if , then 

Therefore CG will converge to  in at most  iterations

since  is a subspace of  of dimension  

∥x ​ −∗ ∥ ​ =x~ A
2 e ​Ae ​ +k

T
k Δx AΔx ≥T ∥e ​∥ ​,k A

2

Δx = 0 x ​ ∈k K ​(A, b)k

x ​ ∈∗ K ​(A, b)k x ​ =k x ​∗

x ​∗ n

K ​(A, b)k Rn k □

79



Conjugate Gradient Method
The theorem implies that CG will converge in at most  steps

However, in floating point arithmetic we will not get exact convergence to 

Also, if  is large, we want to terminate CG well before  iterations,

after reaching sufficient accuracy

Steps of CG are chosen to give the orthogonality properties (ii), (iii),

which lead to the remarkable CG optimality property:

CG minimizes the error over the Krylov subspace  at step 

n

x ​∗

n n

K ​(A, b)k k
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Conjugate Gradient Method
Question: Where did the steps in the CG algorithm come from?

Answer: It turns out that CG can be derived by developing an optimization
algorithm for  given by

e.g. lines 3 and 4 in CG perform line search, line 7 gives a search direction 

ϕ : R →n R

ϕ(x) = ​x Ax −
2
1 T x bT

p ​k
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Conjugate Gradient Method
The name “conjudate gradient” comes from the property

since 

That is, the gradient directions at  and  are orthogonal, or “conjugate”

(ii) ∇ϕ(x ​) ∇ϕ(x ​) =k
T

j r ​r ​ =k
T

j 0 for j < k

−∇ϕ(x) = b − Ax = r(x)

x ​k x ​j
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Conjugate Gradient Method
Question: Why is the quadratic objective function  relevant to ?

Answer: Minimizing  is equivalent to minimizing , since

Our argument from above shows that at iteration ,

CG solves the optimization problem

ϕ Ax = b

ϕ ∥e ​∥ ​k A
2

​ ​

∥e ​∥ ​k A
2 = (x ​ − x ​) A(x ​ − x ​)∗ k

T
∗ k

= x ​Ax ​ − 2x ​Ax ​ + x ​Ax ​k
T

k k
T

∗ ∗
T

∗

= x ​Ax ​ − 2x ​b + x ​bk
T

k k
T

∗
T

= 2ϕ(x ​) + constk

k

​ϕ(x)
x∈K ​(A,b)k

min
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Conjugate Gradient Method
How fast does  converge?

One result for CG is that if  has 2-norm condition number , then

Smaller condition number  implies faster convergence

Taking this upper bound as an error estimate, it can be shown that

the number of CG iterations to reach  for a given tolerance 

grows approximately as 

∥e ​∥ ​k A

A κ

​ ≤
∥e ​∥ ​0 A

∥e ​∥ ​k A 2 ​(
​ + 1κ

​ − 1κ
)
k

κ(A)

​ ≤∥e ​∥ ​0 A

∥e ​∥ ​k A ϵ ϵ > 0
​κ
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Multigrid Method
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Model Problem
Consider a boundary value problem for the discrete Poisson equation

where  approximate a function  with 

​ ​

−u ​ + 2u ​ − u ​i−1 i i+1

u ​0

u ​n

= f ​ i = 1, … ,n − 1i

= 0

= 0

u ​i u(x ​)i x ​ =i i/n ∈ [0, 1]
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Model Problem
This problem is linear and can be expressed in matrix form

Note that the boundary conditions are eliminated

from the equations for  and 

The matrix  is symmetric

Au = f

A = ​ ​ ​ ​ ​ ​ ​ ​ u =

1
0

0
2

−1
−1
⋱
⋱

⋱
⋱
−1

−1
2
0

0
1

​ ​ ​ f =

u ​0

u ​1

⋮
u ​n−1

u ​n

​ ​ ​ .

0
f ​1

⋮
f ​n−1

0

i = 1 i = n − 1

A ∈ R(n+1)×(n+1)
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Jacobi Method
One iterative method for solving  is the Jacobi method

The update rule to obtain  is

or equivalently

In matrix form

where  is the diagonal part of 

Au = f

u ​

i
(k+1)

−u ​ +i−1
(k) 2u ​ −i

(k+1)
u ​ =i+1

(k)
f ​i

2(u ​ −i
(k+1)

u ​) −i
(k)

u ​ +i−1
(k) 2u ​ −i

(k)
u ​ =i+1

(k)
f ​i

D(u −(k+1) u ) +(k) Au =(k) f

Du =(k+1) f − (A − D)u(k)

D A
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Jacobi Method

The black line is the exact solution 

for the right-hand side generated as 

0:00 / 0:10

u(x) = sin (4πx) + 0.5 sin (16πx)
f = Au
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Gauss-Seidel Method
Another iterative method for solving  is the Gauss-Seidel method

The update rule to obtain  is

In matrix form

where  is the lower triangular part of  (including the diagonal)

Au = f

u ​i
(k+1)

−u ​ +i−1
(k+1) 2u ​ −i

(k+1)
u ​ =i+1

(k)
f ​i

L(u −(k+1) u ) +(k) Au =(k) f

Lu =(k+1) f − (A − L)u(k)

L A
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Gauss-Seidel Method

The black line is the exact solution 

for the right-hand side generated as 

Gauss-Seidel converges slightly faster than Jacobi

0:00 / 0:10

u(x) = sin (4πx) + 0.5 sin (16πx)
f = Au
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Multigrid Method
However, both of these methods are local,

i.e. iteration only depends on the neighboring points

Note that the high-frequency components

are found much faster than the low-frequency components

The idea of the multigrid method is to solve the problem

on a hierarchy of coarser grids
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Multigrid Method
See ,

implementation of the multigrid method

for the one-dimensional Poisson equation

[examples/unit5/multigrid.py]
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Multigrid Method
Convergence of the multigrid method using the Gauss-Seidel smoother
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Multigrid Method
Convergence of the multigrid method using the Jacobi smoother
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Multigrid Method
Convergence of the multigrid method using the Jacobi smoother

with relaxation factor ω = 0.5

u =(k+1) u +(k) ω(D (f −−1 (A − D)u ) −(k) u )(k)
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